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Today'’s lecture
[Chapter 3, COAC][Section 2.2, ILCO][Chapter 1, FMO]

First-order methods acceleration
e Lower bounds

e Acceleration

* |nterpretation and examples

Recap of nonlinear optimization



Lower bounds




Sublinear convergence rates

For a convex L-smooth function f we have

Gradient descent Proximal gradient
gl = gf — tVf(a:k) 2 = prOth(xk — tVf(xk))
Convergence
BN o |2Y — 2%]|3 . distance O(1/k)
fla7) = f(@7) < ok iterations  O(1/¢)

Can we do better? Is there a lower bound?



Lower bounds

First-order methods
Any algorithm that selects

2"t e xg + span{V f(zo), Vf(z1),..., Vf(z")}

Theorem (Nesterov ’83)

For every integer k£ < (n—1)/2, there exist a convex L-smooth function f such
that, for any first-order method

3L
32(k + 1)

distance  O(1/k?)
iterations  O(1//e)

f(z®) — f(a*) >

Sl —a2*|F



roof

Lower bound p
L

. 1
minimize  f(x) = T (§xTAx - e?x) Vf(x) = g (Ax — e1)
L ]
Gil. Strang -1 2 -1
(MIT) A= (1
“cupcake - a=00
matrix” -1 2 -1
—1 2
* fIs convex and L-smooth |
» z* isthe optimizer with z7 =1 j_ . (Solves Vf(z*) = 0— Ax™ = ey)
T
. L (1 . . L L n . n 4+ 1
'f($):Z(§e{x _eipx>:_§$1: s U Ll



Lower bound proof

Iterates
f 2° =0 then 2% ¢ span{Vf(2"),...,Vf(z* 1)} =spanie;,...,e.}

Upper bound I
k > . T) = min L) =
f@”) 2 x@span{vﬂ%?..,Vf@ck—l)}f( ) a:kﬂz---:a:nzof( ) Sk+1
For k ~n/2orn=2k+1,
f(gjk)—f(i*)>[/ k | 2k + 1 / 2K + 2 — oL
20— 2 T8\ k+1 2k+0 30 B2k+1)3




Convergence rates
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-------- 1/v'k (sublinear)

- -+ - 1/k (sublinear)
............... 1/(k?) (lower bound)
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Can we achieve the lower bound?
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Acceleration



Momentum

Gradient descent
"t = oF —tVf(2")

Adding momentum
p* = yF — 1V f(yF)

Pt = g+l 4 g (Rl k)

momentum




Nesterov momentum

" =yF — 1V (yF)

k
k41 _ k1 k+1 _ .k
d ! Pr3@ T
Properties

» Original Momentum proposed by Nesterov ('83)
- No longer a descent method (i.e., we can have f(z*1) > f(z"))
» Same complexity per iteration as gradient descent
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Accelerated proximal gradient method

f(x) convex and smooth

minimize f(x) + g(x) g(x) convex (may be not differentiable)

Iterations
"+t = prox,, (y* —tVf(y")) L+ /1 + 4\
A — 1 where yg = g and A1 = :
yk—l—l _ $k+1 | ; (:Ek_l_l B ZEk)
k+1

Note: ¢g(x) = 0 gives accelerated gradient descent .



Proximal gradient and Nesterov weights

1 1 + 4)\2 A — 1 k
Ao = 1 )\k_|_1: _I_\/_|_ k ~ as k — oo
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Convergence rate for accelerated proximal gradient method

f(x) convex and L-smooth

minimize  f(x) + g(x) g(x) convex (may be not differentiable)

Theorem
The accelerated proximal gradient method with step-size t < (1/L) satisfies

Fab) - @y < el
S THE1 12

Proof
[Thm 4.4, A Fast lterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, Beck, Teboulle]

Note
It works for any momentum weights (Ax — 1)/Ax1 such that

k+ 2
Ap > —— and A1 < Mgt — A 14




Convergence rate for accelerated proximal gradient method

f(x) convex and L-smooth

minimize f(x) + g(x) g(x) convex (may be not differentiable)

- Better iteration complexity O(1/k%) (i.e. O(1//¢)
 Fast If prox evaluations are cheap

» Can’t do better! (from lower bound)
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Examples and interpretations



Nesterov acceleration

ODE interpretation P ()
gt = gt k (F+L — k)
Time-varying k+ 3
damping
—§X t—0 a?k%X(k‘\/g):X(T)
. X (1) - ?_X(T)—FVJB(X(T)):O
damping
= coefficient

Spring —Vf(X)
Note: 3 is the smallest constant

that guarantees O(1/74) convergence

17
[A Differential Equation for Modeling Nesterov’s Accelerated Gradient Method: Theory and Insights, Su, Boyd, Candes]



Example: Lasso without linear convergence

minimize (1/2)||Az — b5 + ||z
f(x) g()

Proximal gradient descent
(Iterative Shrinkage Thresholding Algorithm)

"t =5, (a8 — tAT (Az* — b)) ISTA

Accelerated proximal gradient descent
(Fast Iterative Shrinkage Thresholding Algorithm)

xk—l—l _ Sfyt (yk B tAT(Ayk B b))

JEHL gkt A — 1 (2hH1 k)
Ak+1

FISTA

18

[A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, Beck, Teboulle]



Example: Lasso without linear convergence
Fast Iterative Soft Thresholding Algorithm (FISTA)

- 118

minimize (1/2)||Az — b||2 + ~v||z||1

\\\\\\

\\\\\

ISTA ¢t = 0.001
FISTAt = 0.001

200

400

600

300

1000

Example

randomly 300 x 500
generated A€R

= Vf=A"A%0
= f not strongly convex

FISTA is much faster

Typical rippling behavior
(not a descent method)
19



Image deblurring

x:. reconstructed image

minimize  (1/2)|| Az — b||5 + 7||z|1 in wavelet basis (sparse)

k= 100 k = 200

is
-

original blurred

FISTA
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[A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, Beck, Teboulle]



More sophisticated accelerations
Other algorithms

Acceleration can also be applied also to ADMM

[Fast Alternating Direction Optimization Methods, Goldstein, O’Donoghue, Setzer, Baraniuk]

Momentum with restarts Improved
(reset momentum when it makes convergence rate
small progress) O(1/k*)

Nonlinear acceleration
(e.g., Anderson Acceleration)

Adaptively pick weights by solving
a small optimization problem
(usually least-squares)

[Acceleration Methods, d'Aspremont, Scieur, Taylor]
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Momentum intuition and much more

Why Momentum Really Works
P All deep learning optimization
| algorithms
are based on

Momentum/Acceleration:

RMSprop, AdaGrad, Adam, etc.

https://distill.pub/2017/momentum/
22



Summary of nonlinear optimization



Nonlinear optimization

T - General
Optimality conditions Necessary
- KKT optimality conditions
» Subgradient optimality conditions 0 € 9 f (x*) Convex

Necessary and sufficient

First order methods: Moderate accuracy on Large-scale data

» Gradient descent

» Subgradient methods

» Proximal algorithms (e.g., ISTA)

» Operator splitting algorithms (e.g., ADMM)
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Convergence rates

Typical rates
(gradient descent, proximal gradient, ADMM, etc.)

- L-smoothness: O(1/k), accelerated O(1/k%)

» u-strong convexity: O(log(1/k))

» We can always combine line search

» Convergence bounds usually in terms of cost function distance

Operator theory

* Helps developing and analyzing serial and distributed algorithms
» Algorithms always converge for convex problems

(independently from step size)
» Convergence bounds usually in terms of iterates distance
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First-order methods

» Gradient/subgradient method

 Forward-backward splitting (proximal algorithms)

Per-iteration Number of

cost terations » Accelerated forward-backward splitting

* Douglas-Rachford splitting (ADMM)

* |nterior-point methods (not covered)

Large-scale systems
e start with feasible method with cheapest per-iteration cost
* |f too many iterations, transverse down the list 26



Acceleration In nonlinear optimization

Today, we learned to:

* Derive lower bounds on cost optimality for first-order methods

* Accelerate first-order algorithms by adding momentum term

* Apply acceleration schemes to get the best possible convergence

e Select the appropriate algorithms to apply in large-scale optimization
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Next lecture

e Extensions and nonconvex optimization
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