### **ORF522 – Linear and Nonlinear Optimization**

21. Acceleration schemes

# **Today's lecture**[Chapter 3, COAC][Section 2.2, ILCO][Chapter 1, FMO]

#### First-order methods acceleration

- Lower bounds
- Acceleration
- Interpretation and examples

#### Recap of nonlinear optimization

## Lower bounds

### Sublinear convergence rates

For a convex L-smooth function f we have

#### **Gradient descent**

$$x^{k+1} = x^k - t\nabla f(x^k)$$

### **Proximal gradient**

$$x^{k+1} = \mathbf{prox}_{tg}(x^k - t\nabla f(x^k))$$

#### Convergence

$$f(x^k) - f(x^\star) \le \frac{\|x^0 - x^\star\|_2^2}{2tk}$$
 — distance  $O(1/k)$  iterations  $O(1/\epsilon)$ 

Can we do better? Is there a lower bound?

### Lower bounds

#### First-order methods

Any algorithm that selects

$$x^{k+1} \in x_0 + \mathbf{span}\{\nabla f(x_0), \nabla f(x_1), \dots, \nabla f(x^k)\}$$

#### Theorem (Nesterov '83)

For every integer  $k \le (n-1)/2$ , there exist a convex L-smooth function f such that, for any first-order method

$$f(x^k) - f(x^\star) \ge \frac{3L}{32(k+1)^2} \|x^0 - x^\star\|^2 \qquad \qquad \text{distance} \qquad O(1/k^2)$$
 iterations 
$$O(1/\sqrt{\epsilon})$$

### Lower bound proof

minimize 
$$f(x) = \frac{L}{4} \left( \frac{1}{2} x^T A x - e_1^T x \right) \longrightarrow \nabla f(x) = \frac{L}{4} \left( A x - e_1 \right)$$

Gil. Strang (MIT) "cupcake matrix"



$$A = \begin{bmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{bmatrix}, \qquad e_1 = (1, 0, \dots, 0)$$
 oth

$$e_1 = (1, 0, \dots, 0)$$

- f is convex and L-smooth

• 
$$x^*$$
 is the **optimizer** with  $x_i^* = 1 - \frac{\iota}{n+1}$  (Solves  $\nabla f(x^*) = 0 \to Ax^* = e_1$ )
•  $f(x^*) = \frac{L}{4} \left( \frac{1}{2} e_1^T x^* - e_1^T x^* \right) = -\frac{L}{8} x_1^* = -\frac{L}{8} \frac{n}{n+1}$ ,  $||x^*||^2 \le \frac{n+1}{3}$ 

### Lower bound proof

#### **Iterates**

If 
$$x^0 = 0$$
 then  $x^k \in \operatorname{span}\{\nabla f(x^0), \dots, \nabla f(x^{k-1})\} = \operatorname{span}\{e_1, \dots, e_k\}$ 

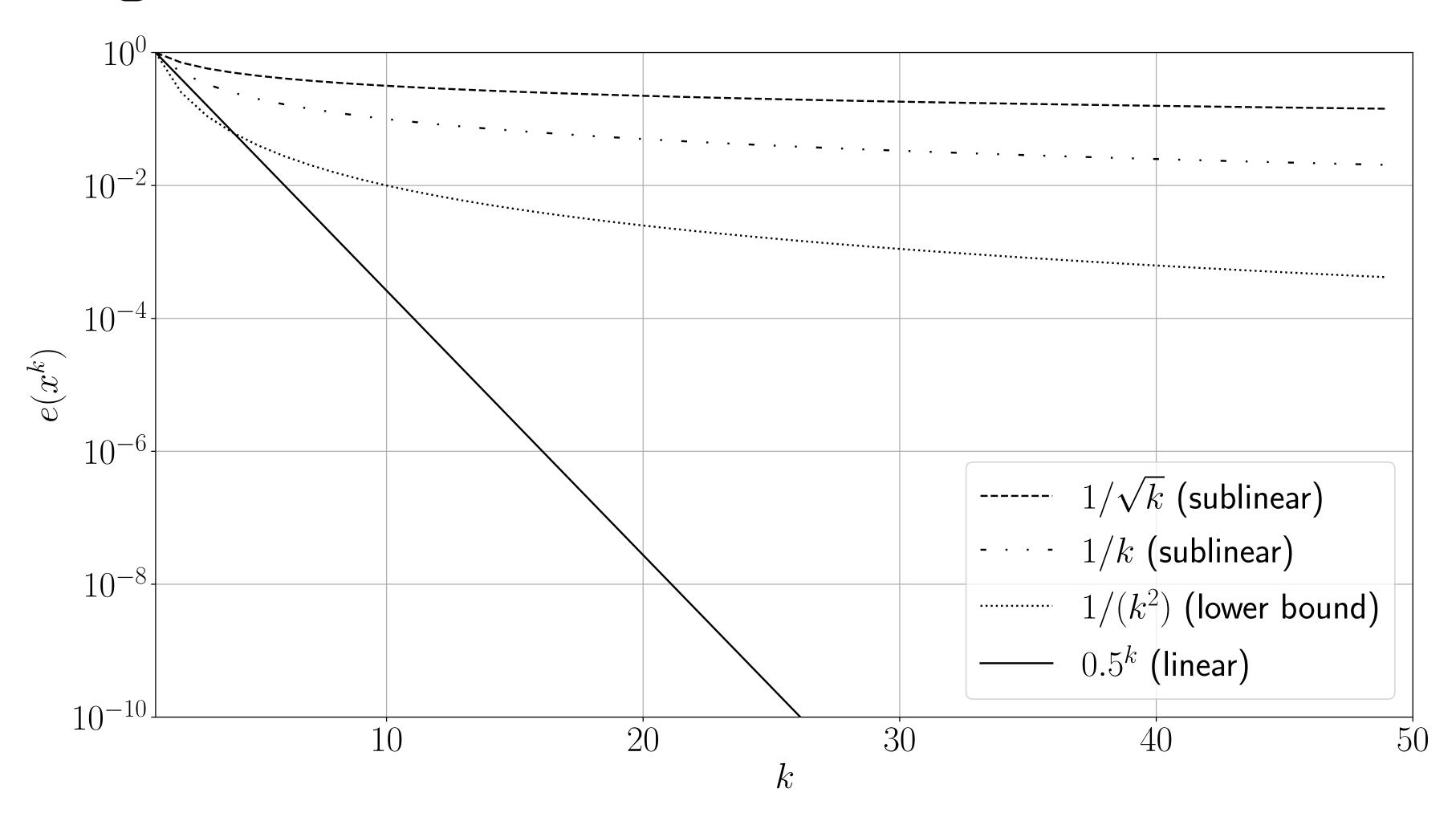
#### **Upper bound**

$$f(x^k) \ge \min_{x \in \mathbf{span}\{\nabla f(x^0), \dots, \nabla f(x^{k-1})\}} f(x) = \min_{x_{k+1} = \dots = x_n = 0} f(x) = -\frac{L}{8} \frac{k}{k+1}$$

For  $k \approx n/2$  or n = 2k + 1,

$$\frac{f(x^k) - f(x^\star)}{\|x^0 - x^\star\|^2} \ge \frac{L}{8} \left( -\frac{k}{k+1} + \frac{2k+1}{2k+2} \right) / \left( \frac{2k+2}{3} \right) = \frac{3L}{32(k+1)^2}$$

### Convergence rates



Can we achieve the lower bound?

# Acceleration

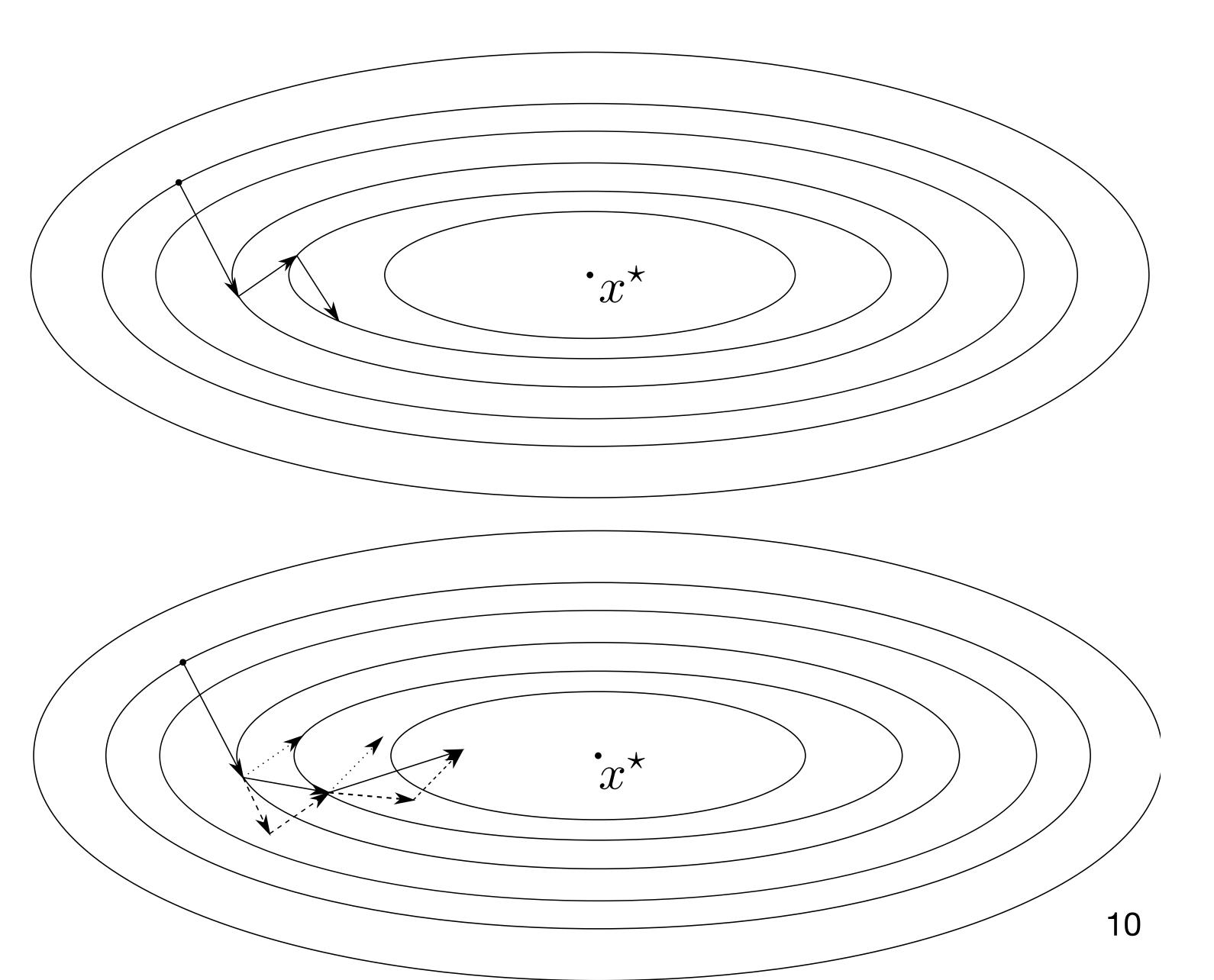
### Momentum

#### **Gradient descent**

$$x^{k+1} = x^k - t\nabla f(x^k)$$

### Adding momentum

$$x^{k+1} = y^k - t\nabla f(y^k)$$
 
$$y^{k+1} = x^{k+1} + \beta_k(x^{k+1} - x^k)$$
 
$$\mid$$
 
$$momentum$$



### Nesterov momentum

$$x^{k+1} = y^k - t\nabla f(y^k)$$
$$y^{k+1} = x^{k+1} + \frac{k}{k+3}(x^{k+1} - x^k)$$

#### **Properties**

- Original Momentum proposed by Nesterov ('83)
- No longer a descent method (i.e., we can have  $f(x^{k+1}) > f(x^k)$ )
- Same complexity per iteration as gradient descent

### Accelerated proximal gradient method

minimize 
$$f(x) + g(x)$$

f(x) convex and smooth g(x) convex (may be not differentiable)

#### **Iterations**

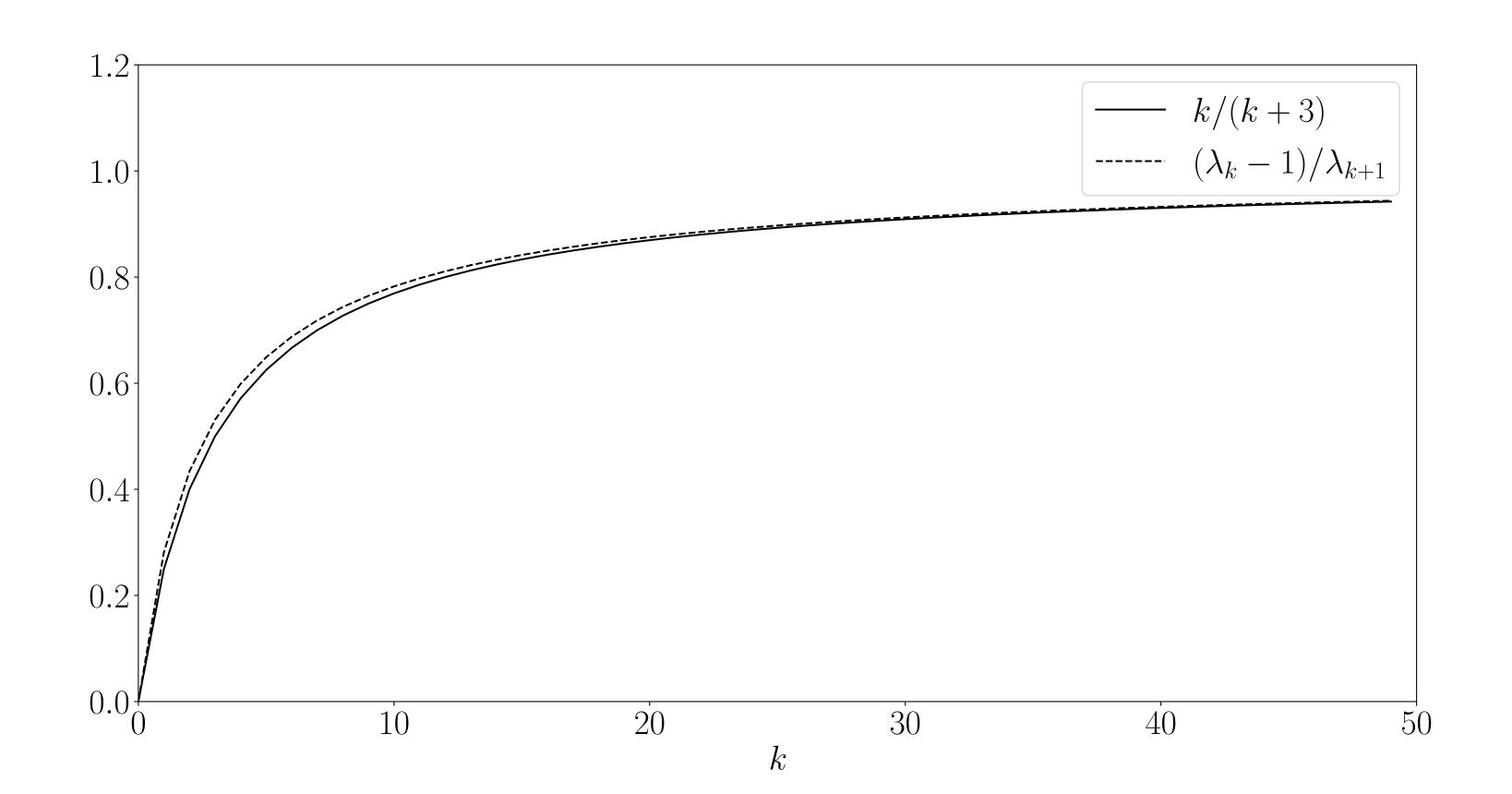
$$x^{k+1} = \mathbf{prox}_{tg} (y^k - t\nabla f(y^k))$$
$$y^{k+1} = x^{k+1} + \frac{\lambda_k - 1}{\lambda_{k+1}} (x^{k+1} - x^k)$$

where 
$$y_0=x_0$$
 and  $\lambda_{k+1}=\frac{1+\sqrt{1+4\lambda_k^2}}{2}$ 

Note: g(x) = 0 gives accelerated gradient descent

### Proximal gradient and Nesterov weights

$$\lambda_0 = 1 \qquad \lambda_{k+1} = \frac{1 + \sqrt{1 + 4\lambda_k^2}}{2} \longrightarrow \frac{\lambda_k - 1}{\lambda_{k+1}} \approx \frac{k}{k+3} \text{ as } k \to \infty$$



### Convergence rate for accelerated proximal gradient method

minimize 
$$f(x) + g(x)$$

f(x) convex and L-smooth g(x) convex (may be not differentiable)

#### **Theorem**

The accelerated proximal gradient method with step-size  $t \leq (1/L)$  satisfies

$$f(x^k) - f(x^*) \le \frac{2\|x^0 - x^*\|^2}{t(k+1)^2}$$

#### **Proof**

[Thm 4.4, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, Beck, Teboulle]

#### Note

It works for any momentum weights  $(\lambda_k - 1)/\lambda_{k+1}$  such that

$$\lambda_k \geq \frac{k+2}{2}$$
 and  $\lambda_{k+1}^2 \leq \lambda_{k+1} - \lambda_k^2$ 

### Convergence rate for accelerated proximal gradient method

minimize 
$$f(x) + g(x)$$

f(x) convex and L-smooth g(x) convex (may be not differentiable)

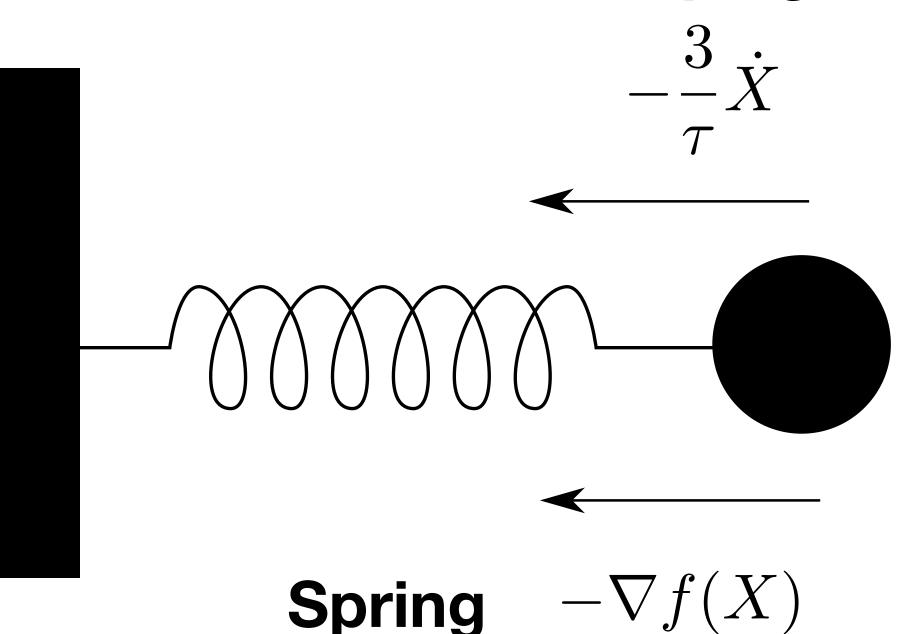
$$f(x^k) - f(x^*) \le \frac{2\|x^0 - x^*\|^2}{t(k+1)^2}$$

- Better iteration complexity  $O(1/k^2)$  (i.e.  $O(1/\sqrt{\epsilon})$
- Fast if prox evaluations are cheap
- Can't do better! (from lower bound)

# Examples and interpretations

### **ODE** interpretation

### Time-varying damping



#### **Nesterov acceleration**

$$x^{k+1} = y^k - t\nabla f(y^k)$$
 
$$y^{k+1} = x^{k+1} + \frac{k}{k+3}(x^{k+1} - x^k)$$
 
$$t \to 0 \qquad \qquad x^k \approx X(k\sqrt{t}) = X(\tau)$$
 
$$\ddot{X}(\tau) + \frac{3}{\tau}\dot{X}(\tau) + \nabla f(X(\tau)) = 0$$
 damping

coefficient

**Note:** 3 is the smallest constant that guarantees  $O(1/\tau^2)$  convergence

### Example: Lasso without linear convergence

minimize 
$$(1/2) ||Ax - b||_2^2 + \gamma ||x||_1$$
  $f(x)$   $g(x)$ 

# Proximal gradient descent (Iterative Shrinkage Thresholding Algorithm)

$$x^{k+1} = S_{\gamma t} (x^k - tA^T (Ax^k - b))$$

**ISTA** 

# Accelerated proximal gradient descent (Fast Iterative Shrinkage Thresholding Algorithm)

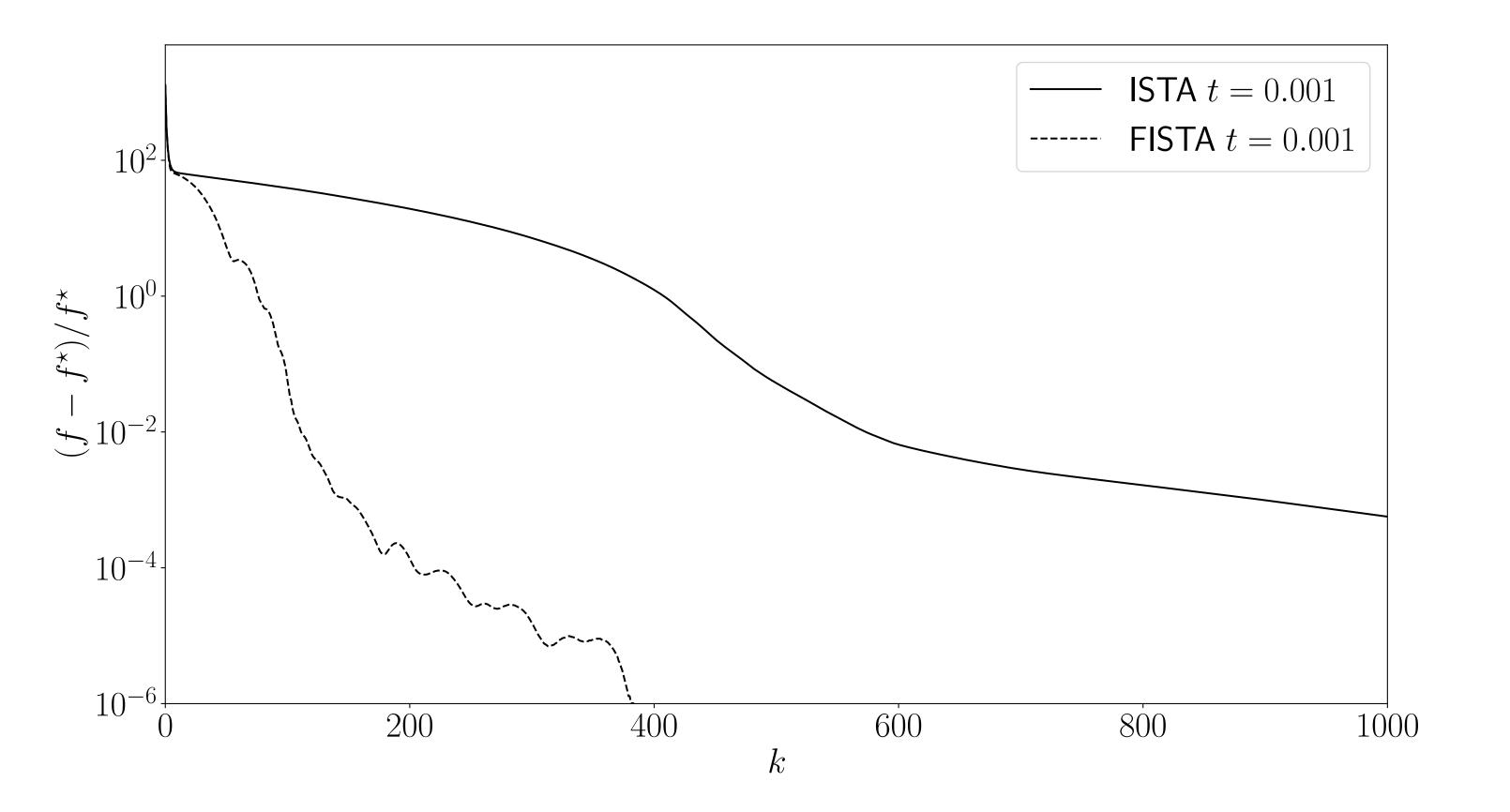
$$x^{k+1} = S_{\gamma t} \left( y^k - tA^T (Ay^k - b) \right)$$
$$y^{k+1} = x^{k+1} + \frac{\lambda_k - 1}{\lambda_{k+1}} (x^{k+1} - x^k)$$

**FISTA** 

### Example: Lasso without linear convergence

### Fast Iterative Soft Thresholding Algorithm (FISTA)

minimize 
$$(1/2)||Ax - b||_2^2 + \gamma ||x||_1$$



#### **Example**

randomly  $A \in \mathbf{R}^{300 \times 500}$  generated

$$\Rightarrow \nabla^2 f = A^T A \succeq 0$$

 $\Rightarrow$  f not strongly convex

#### FISTA is much faster

Typical rippling behavior (not a descent method)

### Image deblurring

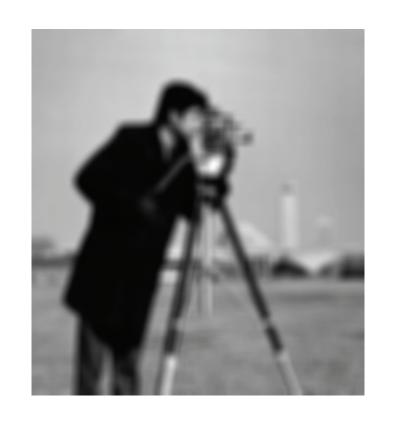
minimize  $(1/2)||Ax - b||_2^2 + \gamma ||x||_1$ 

x: reconstructed image in wavelet basis (sparse)

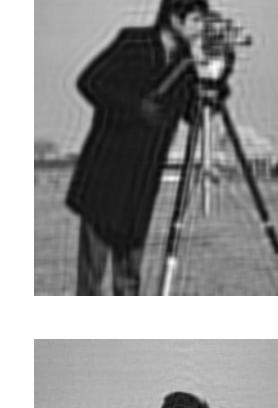
original



blurred



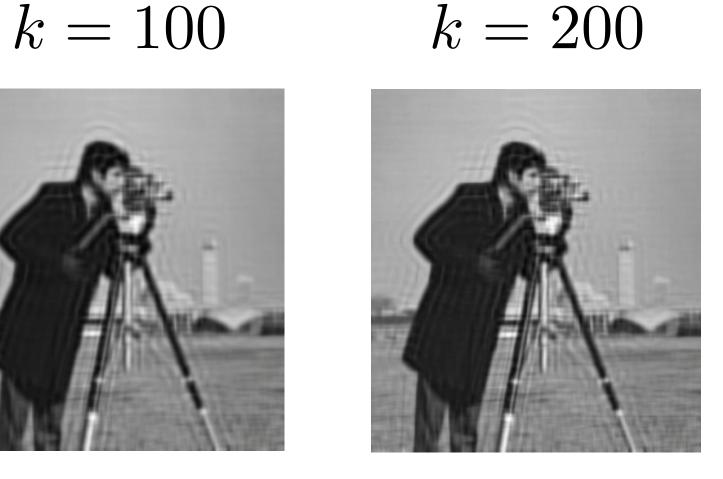
ISTA



**FISTA** 



k = 200





### More sophisticated accelerations

#### Other algorithms

Acceleration can also be applied also to ADMM

[Fast Alternating Direction Optimization Methods, Goldstein, O'Donoghue, Setzer, Baraniuk]

Momentum with restarts
(reset momentum when it makes \_\_\_\_\_\_
small progress)

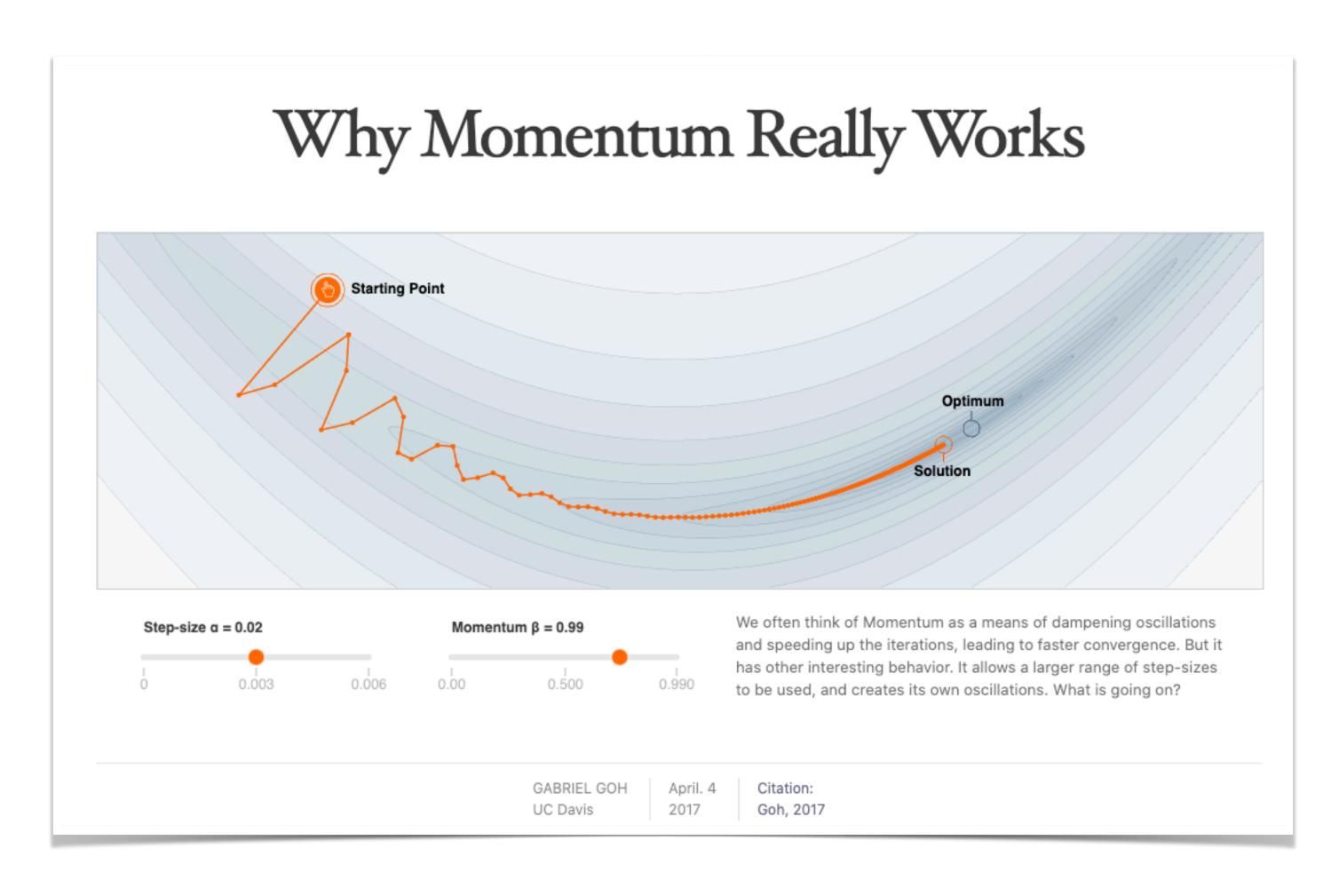
Improved convergence rate  $O(1/k^2)$ 

#### Nonlinear acceleration

(e.g., Anderson Acceleration)

Adaptively pick weights by solving a small optimization problem (usually least-squares)

### Momentum intuition and much more



All deep learning optimization algorithms are based on Momentum/Acceleration:

RMSprop, AdaGrad, Adam, etc.

https://distill.pub/2017/momentum/

# Summary of nonlinear optimization

### Nonlinear optimization

### **Optimality conditions**

- KKT optimality conditions
- Subgradient optimality conditions  $0 \in \partial f(x^*)$

**General** Necessary

**Convex**Necessary and sufficient

### First order methods: Moderate accuracy on Large-scale data

- Gradient descent
- Subgradient methods
- Proximal algorithms (e.g., ISTA)
- Operator splitting algorithms (e.g., ADMM)

### Convergence rates

#### **Typical rates**

(gradient descent, proximal gradient, ADMM, etc.)

- L-smoothness: O(1/k), accelerated  $O(1/k^2)$
- $\mu$ -strong convexity:  $O(\log(1/k))$
- We can always combine line search
- Convergence bounds usually in terms of cost function distance

#### **Operator theory**

- Helps developing and analyzing serial and distributed algorithms
- Algorithms always converge for convex problems (independently from step size)
- Convergence bounds usually in terms of iterates distance

### First-order methods

Per-iteration cost

Number of iterations

- Gradient/subgradient method
- Forward-backward splitting (proximal algorithms)
- Accelerated forward-backward splitting
- Douglas-Rachford splitting (ADMM)
- Interior-point methods (not covered)

#### Large-scale systems

- start with feasible method with cheapest per-iteration cost
- if too many iterations, transverse down the list

### Acceleration in nonlinear optimization

#### Today, we learned to:

- Derive lower bounds on cost optimality for first-order methods
- Accelerate first-order algorithms by adding momentum term
- Apply acceleration schemes to get the best possible convergence
- Select the appropriate algorithms to apply in large-scale optimization

### Next lecture

Extensions and nonconvex optimization