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Method of multipliers

minimize  f(x) Lagrangian
subjectto Ax =0 L(z,y) = f(z) +y (Az — D)

Dual problem
maximize g(y) = —(f*(=A"y) +y" b)

Multiplier to residual map operator
T(y) =b— Ax, where x = argmin, L(z,y) —— T(y) = 0(—g)

Therefore,  9(—g)(y) = b — Ax, 0€df(x)+ Ay

Solve the dual with proximal point method
yk_l_l — th’?(—g) (yk)



Method of multipliers (augmented Lagrangian method)

Primal Iterates
minimize  f(x) y " = Rip(—g) (yk)
subjectto Az =10 l

Dual A= argmin Lt(a:,yk)

maximize g¢(y) = —(f*(—=A"y) + y' b) v

yk—l—l _ yk t(AIk_H B b)

Properties
 Always converges with CCP f forany ¢t > 0

» |If f L-smooth

f* and g are u-strongly convex

Ry(—4) Is @ contraction: linear convergence
» If f strictly convex (>), then argmin has a unique solution (¢ becomes =)
» Useful when f L-smooth and A sparse



Operator splitting
Main idea
We would like to solve

0 € F(x), F maximal monotone

Split the operator

F=A+B, A and B are maximal monotone

Solve by evaluating

Ra=(I+A)" Cy=2R4—1
or
RB:(I—I—B)_l Cp=2Rp —1

Useful when R4 and Ry are cheaper than Ry 0



Peaceman-Rachford and Douglas Rachford splitting

Peaceman-Rachford splitting

w = C 4 Cr(w")

It does not converge in general (product of nonexpansive).
Need C'4 or (' to be a contraction

Douglas-Rachford splitting (averaged iterations)

wt = (1/2)(I + C4Cg)(w")

» Always converges when 0 € A(x) 4+ B(x) has a solution
» If A or B strongly monotone and Lipschitz, then C4Cg Is
a contraction: linear convergence

* This method traces back to the 1950s



Douglas-Rachford splitting

Simplified iterations

- . k1l k1
QEk_H __ RA(Zk - uk) Residual: =z Z
k+l k1 k —_— running sum of .
< Rp (™" + u”) g Interpretation as
k1 I k1 b1 residuals .
1 — u L x — 5 " iIntegral control
Remarks

* many ways to rearrange the D-R algorithm

» Equivalent to many other algorithms (proximal point, Spingarn’s partial
inverses, Bregman iterative methods, etc.)

* Need very little to converge: A, B maximal monotone

» Splitting A and B, we can uncouple and evaluate R4 and R separately v



Today'’s lecture
[IPMOJ]ILSMOJ]IPA]JADMM]

Alternating Direction Method of Multipliers

» Alternating Direction Method of Multipliers as Douglas-Rachford splitting in
Optimization

 Examples

* Distributed Optimization



Alternating Direction Method of Multipliers



Douglas-Rachford splitting in optimization

Problem Problem
minimize f(x) + g(x) B,
Scaling by \ > 0 minimize Af(xz) 4+ Ag(x)
Optimality conditions —_— Optimality conditions
0 € df(x)+ dg(x) 0 € A0 f(x) + Adg(x)
A(x)  B(x)
DouglaS'RaChford Spllttlng Proximal operators
" = Ryor (2" —u”) it = pI‘OXAf(Zk — u")
T = Ryg (2" + ) 2"t = prox,, ("' 4+ u")
R N e kL — ok kbl k]
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Alternating direction method of multipliers (ADMM)
minimize f(x) 4+ g(x)

ADMM iterations

Proximal iterations
"t = argmin (A f(x) + (1/2)|lz — 2" + u”||?)

it = p]f'o:x:)\f(zl”C — u")

: k k
Skl prOXAg(ka LUk T Rl — ATgmin (Ag(2) + (1/2)]|z — 2" — u”|?)
uFtt = oF £ phtl Skt N S RS S R
Remarks

» |t works forany A > 0
» The choice of A can greatly change performance
» |t recently gained a wide popularity in various fields:
Machine Learning, Imaging, Control, Finance 11



ADMM and the Augmented Lagrangian

minimize  f(z) + g(z)

subjectto Az + Bz = ¢ (more generic form)

Augmented Lagrangian

f(x)+g(z)+y (Ax + Bz —c) + (t/2)||Ax + Bz — c||* = dueﬁcvz:figble
— f(@)+ 9() + (/D) Az + Bz — e+l = /Dl = Lz z0) =y

Note: t =1/
Rewritten ADMM iterations

"t = argmin Ly (z, 2%, u")

I

2T = argmin Ly (2

Z

1z b)

12
u Tt = 4 AT 4 B — ¢



Comparison with method of multipliers

minimize  f(x) minimize  f(x) + g(2)
subjectto Ax =0 subjectto Ax + Bz =c
L ADMM
Method of Multipliers #F+ — argmin Ly (z, 2%, u)
k+1 - k x
""" € argmin Ly (x, y")
z 2T = argmin L, ("1, 2, u®)

Z

it = 4 AT 4 BT — ¢

u it = 4 Azt — b

Remarks
+ Same dual variable update "1

* Augmented Lagrangian does not split f and ¢: argmin can be expensive

- ADMM splits f and g making steps easier
- We can derive ADMM by splitting the dual subdifferential operator

[page 35, A Primer on Monotone Operator Methods] 13



Examples



Constrained optimization

minimize  f(x)

=7
subjectto xz e C 9(2) c(2)

ADMM iterates

it = p]f'():sc;)\f(zlC — u") it = p]f'():x;)\f(zl“C — u")
Rl — p]f'():xg\g(a:/leLl + u) —_— L =TI (2" 4+ u®)
e S R R s R S R

* Easy If prox, ; and Il are easy
- Many ways to split (we can include some constraints also in f)
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Linear/Quadratic Optimization

minimize  (1/2)xz! Px + ¢’ f(x) = (1/2)2T Pz + ¢F
subjectto Ax =0 » dom f = {x | Az = b}
r >0

g(Z) :IR+ (Z)
AcR™*™

ADMM iterations

21 — argmin (Af(z) + (1/2)]|z — 2 4 uk||2)
{x|Ax=b}
Zk—l—l __ ($k+1 4 uk)_'_

s S S N



Linear/Quadratic Optimization

Rewriting prox
Equality constrained QP

T = argmin N/ 22T Px + NPz + (1/2)||z — 2% + uF||?

subjectto Az =0

Optimality conditions

AP + 1 AT | |kt _—)\q + 28 — uk
A 0 % b

» Symmetric, possibly sparse, linear system O((n + m)?)
» We can factor only once (it does not depend on the iterates)



Linear/Quadratic Optimization

minimize  (1/2)z" Pz + ¢«
subjectto Az =10

r > 0 1. 2Ft1 = Solve

2. Tl = (gh Tl

3. uktl = ¢F

Remarks

L

Iterations
AP +1T Al |x
A 0
-u”) 4
k+1 _  k+1

- Cheap iterations (after factorization) O((n + m)?)

* Projection is just variables clipping
» Dual variables y = A\u
» More sophisticated version

[OSQP: An Operator Splitting Solver for Quadratic Programs,

Stellato, Banjac, Goulart, Bemporad, Boyd]

k+1

vV

_—)\q + 28 — ub
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Find point at the Iintersection of two sets

find T "t = o (25 — u®)
subjectto x e CND — AL = T p (2P + )
s S NS S R E
Remarks

 Much more robust convergence than simple alternating projections
 Useful when projections are cheap
 Similar to Dykstra’s alternating projections

* |t can be used to solve optimization problems
[Conic Optimization via Operator Splitting and Homogeneous Self-Dual
Embedding, O’Donoghue, Chu, Parikh, Boyd] 19



Matrix decomposition

Given M € R™*"™, consider the sparse + low rank decomposition

minimize  ||L]|. + v||S]1
subjectto L+S=M

n

* Nuclear norm (low-rank): || L|. =) _._, 0;(L) (1-norm on singular values)

- Elementwise 1-norm (sparse): ||S|; =

Sij

2,]

ADMM lterations
Lk_l_l — prOX>\||’H* (M — Sk_l — Wk)
SkJrl — PFOXMH-Hl(M — Lk_l_l + Wk)
Wk—l—l _ Wk 4+ M — Lk—l—l B Sk—l—l

[Robust Principal Component Analysis?, Candes et al.]

20



Matrix decomposition

Explicit iterations

Lk_I_l — pI‘OXAHH*(M — Sk_l — Wk) Lk+1 — ST)\(M — Sk_l — Wk)
Sk_l_l — pI'OX)\,yH.Hl(M — Lk_l_l -+ Wk) —_ Sk—l_l — S)\fy(M — Lk—l_l -+ Wk)
Wk—l—l __ Wk: 4 M — Lk—l—l B Sk—l—l Wk—l—l _ Wk 4 M — Lk—l—l o Sk—l—l

Soft thresholding: S, (X;)

(1 —7/|X;])+X; (we saw it in lecture 16)

Singular value thresholding: ST, (X)=U(X —7I),. V! where X = UXV?
Note it involves an SVD!

21



Matrix decomposition surveillance example

Estlmated Estimated
Orlglnal M Low- rank L Sparse S

22

[Robust Principal Component Analysis?, Candes et al.]



Distributed optimization



Consensus optimization

Rewrite as consensus problem
N
minimize Zfi(xi)
1=1

subjectto xzeC

Goal solve
N
minimize f(x) = Zf@'(‘r)
1=1

Consensus set

C={(x1,...,2n) |T1 =22 = =N}
Constrained ADMM o5 = prox, ;. (2F — uF) separable
= profo(zk — u") N
=T (2" 4+ u”) — 2T =(1/N) Z(%]Jﬁl +u;) averaging
uF L — g F okt kel =1

k+1 kK k+1 k41
iy = U; + I, — Z o4



Distributed consensus optimization

ri = p]f'():)c/\fi(zkj — u")
P = (1/N) i(xf“ +uf) rewntte k1 _ gkt + 4" By combining,
— kbl _
uf ™t = uf + xz;ll — R O, @+l = gk gh+l ke - l |
kAl _ ket

Simplified distributed iterations

xf“ = prox, . (fk — uf)

uFtl = F gkl _ gkt

) )

» Fully distributed prox between processors/cores/agents

- Gather x;’s to compute z, which is then scattered e



Global exchange problem

N
minimize )  fi(;)

i]:\fl Tr; © R"
subjectto  » x; =0

1—=1

* (z;),;: quantity of commodity received (> 0) or contributed by (< 0) agent :
» f;. utility function of each agent
- equilibrium constraint (market clearing) “supply” = “demand”

ADMM iterations

v; " = prox,; (zf — " —u”) proximal exchange

~ algrithm
uk Tl — ko gkt g o



Summary of ADMM

Convergence
» Slow to converge to high accuracy

» |t often converges to modest accuracy in a few tens of iterations
» Step size A (also called 1/p) can greatly influence convergence
» If f or g Is strongly convex, it converges linearly

Applications

Machine learning, control, finance, parallel computing,
advertising, imaging, robotics, etc...

Surveys

* [Proximal Algorithms, Parikh and Boyd]

 [Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, 5~
Boyd, Parikh, Chu, Peleato, Eckstein]



Alternating Direction Method of Multipliers (ADMM)

Today, we learned to:

 Rewrite Douglas-Rachford splitting for optimization problems:
Alternating Directions Method of Multipliers (ADMM)

 Apply ADMM to various examples

 Derive distributed versions of ADMM

28



Next lecture

e Acceleration schemes

29



