ORF522 - Linear and Nonlinear Optimization
19. Operator splitting algorithms

Bartolomeo Stellato — Fall 2022

Summary of monotone and cocoercive operators

Monotone Lipschitz
(T(@) =T (@ =y) 20 |F(z) - F(y)| < Lz —y]
p=_0 | L=1/p
Strongly monotone Cocoercive
(T(x) = T(y)" (z —y) > pllz -yl ﬁl (F(z) — F(y))" (x —y) > pl|F(z) — F(y)|°
G=1-2uF

Nonexpansive
|G(z) -G <z —yll °

Strong convexity is the dual of smoothness

f is p-strongly convex <= f*is (1/u)-smooth

Proof
f w-strongly convex <= 0Jf p-strongly monotone

— (0f)"'=0f* p-cocoercive
<~ f* (1/u)-smooth B

Remark: strong convexity and (strong) smoothness are dual

Resolvent and Cayley operators

The resolvent of operator A is defined as
Ra=(I+ A)_l

The Cayley (reflection) operator of A is defined as
Cap=2Ry—1=20+A)" -1

Properties

* |If A is maximal monotone, dom R4 = dom (4 = R"™ (Minty’s theorem)
- If A is monotone, R4 and C' 4 are nonexpansive (thus functions)

« Zeros of A are fixed points of R4 and C'4

Key result we can solve 0 € A(x) by finding fixed points of C'4 or R 4

Building contractions

Forward step contractions
Given T' L-Lipschitz and p-strongly monotone, then I — AT

converges linearly at rate /1 — 2yu + v2L2, with optimal step v = u/L>.
Proof strongly
monotone | . -
|(I =~AT)(@)~(I =T W)|I* = |z —y + T () =T (y)|° ;pSCh'tZ
= [lz —y|* = 29(T(z) = T(y))" (x —y) +*|IT(z) = T(y)|°
< (1=2ypu+~°L?)||lz — y? N

Remarks

» |t applies to gradient descent with L-smooth and u-strongly convex f

- Better rate in gradient descent lecture. We can get it by

bounding derivative: ||D(I — yV-f(z))ll2 < max{|l —~L|, |1 — yu|}.

Optimal step v = 2/(u + L) and factor (u/L — 1)(u/L + 1). !

Resolvent contractions
If A is pu-strongly monotone, then
Ry = ([A)_l

is a contraction with Lipschitz parameter 1/(1 + p)

Proof
A p-strongly monotone — (I + A) (1 + p)-strongly monotone

— Ru={I+A"" (1+ p)-cocoercive
— Rj (1/(1 + p))-Lipschitz B

Cayley contractions

If Ais u-strongly monotone and L-Lipschitz, then
Cop=2RA—T=2I+~A)"" =1
is a contraction with factor /1 — 4yu /(1 + vL)?

Remark need also Lipschitz condition

Proof [Page 20, PMO]

If, in addition, A = 0f where f is CCP, then C, 4 converges
with factor (v/p/L —1)/(v/p/L + 1) and optimal step v = 1/+/uL

Proof

[Linear Convergence and Metric Selection for Douglas-Rachford Splitting and ADMM, Giselsson and Boyd]
9

Requirements for contractions

Function f
Operator A
i (A =0f)

Forward step _strongly monotone 1-strongly convex
[—~A s L-smooth
nesolvent 1 -strongly monotone p-strongly convex
Ra=(I+ A) - L-smooth
Cayley B u-strongly monotone u-strongly convex
Ca=2I+A) " -1 L-Lipschitz L-smooth

faster convergence

Key to contractions: strong monotonicity/convexity 10

Today'’s lecture
[IPMO]ILSMO]|[PA]

Operator splitting algorithms
» Algorithms

* Proximal point method

* Forward-backward splitting

* Douglas-Rachford splitting

11

Proximal point method

Proximal point method

Resolvent iterations Many traditional algorithms
k+1 _ BY — (T 4 AY—1(,F are proximal point method
v Ra(@®) = (I +4) (") with a specific A

If A = 0tf, we get proximal minimization algorithm

1
it = proxtf(xk) — argmin (tf(z) 5 |2 — xﬂ\%)

Z

Proximal minimization properties

* Ryis1/2averaged: Ry = (1/2)I +(1/2)Cx = R.sf cOnverges Vit
+ fix Rp:¢ are zeros of Jf: optimal solutions

» If f pu-strongly convex, Ry:+ contraction: linear convergence

» Usetul only if you can evaluate prox, , efficiently

13

Method of multipliers

minimize f(x) Lagrangian
subjectto Ax =0 L(z,y) = f(z) +y (Az — D)

Dual problem
maximize g(y) = —(f*(=A"y) +y" b)

Multiplier to residual map operator
T(y) =b— Ax, where x = argmin, L(z,y) —— T(y) = 0(—g)

Therefore, 9(—g)(y) = b — Ax, 0€df(x)+ Ay

Solve the dual with proximal point method
yk_l_l — th’?(—g) (yk)

14

Method of multipliers

Derivation
Solve the dual with proximal point method

yk_H — Rt@(—g) (yk)
where 0(—g)(y) =b— Ax, withzsuchthat 0cdf(z)+ Ay

Resolvent reformulation
v = Rig_ g (¥") = " +1t0(—g)(y") =
— "4 t(b— Az =¢F, with 0€ df(a") + AT yFT!

z**T1 minimizes the augmented Lagrangian L, (z,y"*!)
0 € Of (") + AT (y* + t(Az* Tt — b))
— 2" € argmin f(x) + (v") (Az — b) + (¢/2)||Az — b||* = argmin L(x, y") 15

Method of multipliers (augmented Lagrangian method)

Primal Iterates
minimize f(x) y " = Rip(—g) (yk)
subjectto Az =10 l

Dual A= argmin Lt(a:,yk)

maximize g¢(y) = —(f*(—=A"y) + y' b) v

yk—l—l _ yk t(AIk_H B b)

Properties
 Always converges with CCP f forany ¢t > 0

» |If f L-smooth
f* and g are u-strongly convex
Ry(—4) Is @ contraction: linear convergence
» If f strictly convex (>), then argmin has a unique solution (¢ becomes =)

. Useful when f L-smooth and A sparse 10

Method of multipliers dual feasibility

il?k_l_

minimize f(x)
subjectto Az =0 Taa

b ¢ argmin Ly (z, y")

X

b= % +t(Az" —b)

Optimality conditions (primal and dual feasibility)
Az — b, Of(x)+ A"y >0

From z**! update
0 € Of(z") + ATy 4 tAT (AT —b)
_ 8f(33k+1) 4+ ATyk—l—l

(l’k_l_l k+1)

y Y
dual feasible

——

primal feasible in the limit, i.e. Az* —b — 0

17

Forward-backward splitting

Operator splitting
Main idea
We would like to solve

0 € F(x), F maximal monotone

Split the operator

F=A+B, A and B are maximal monotone

Solve by evaluating

Ra=(I+A)" Cy=2R4—1
or
RB:(I—I—B)_l Cp=2Rp —1

Useful when R4 and Rp are cheaper than Rg 19

Forward-backward splitting

Goal
Find x suchthat 0¢€¢ A(x)+ B(x)

Rewrite optimality condition
0€(A+ B)(x) <— 0€t(A+ B)(x)
<— 0e [+tB)(x)— I —tA)(x)
< ([+tB)(x)> (I —tA)(x)
— = I+tB)" (I —tA)(z)
<— = Rip({ —tA)(x)

Iterations
2"t = Rip(I — tA)(z)

20

Forward-backward splitting

Properties

Iterations
(I —tA)(

P2y

resolvent forward step

Properties

» R;p is 1/2 averaged
» |If Ais u-cocoercive then I — 2. A Is nonexpansive
— [—tA is averaged for ¢t € (0,2u)
» Therefore forward-backward splitting converges
» If either A or B Is strongly monotone, then linear convergence

21

Proximal gradient descent as forward-backward splitting

f I1s L-smooth

minimize f(z) + g(z) g IS nonsmooth but proxable

Therefore, Vf is (1/L)-cocoercive and dg maximal monotone

Proximal gradient descent
" = Rypg(I —tV f)(a")
— p]f'():x;tg(xl‘C — tV f(z™))

Remarks
 Converges fort € (0,2/L)
» If either f or g strongly convex linear convergence

. If ¢ = I, then it’s projected gradient descent 22

Example: Lasso with linear convergence
Iterative Soft Thresholding Algorithm (ISTA)

Proximal gradient descent

minimize (1/2)||Ax — bl|2 +)|z
(1/2)]] 15+ Az tF = Sy, (8 — tAT (Az — b))

f(@) g(x)
Subgradient 0.001/v/k + 1
022 Su_:_Jgradient 0.01/(k+ 1) Example
i ISTA ¢t = 0.001
' randomly A e R500x300
generated

= V’f=A"4+-0
= f strongly convex

e — T linear convergence

6| i | | | |
10775 200 400 600 300 1000 23

Example: Lasso without linear convergence
Iterative Soft Thresholding Algorithm (ISTA)

minimize (1/2)||Az — b||2 + \||z||;

f(x) g()
Subgradient 0.0005/vk + 1
-------- Subgradient 0.005/(k + 1)
............... ISTA ¢ = 0.001
0 200 400 600 300

1000

Proximal gradient descent
it = Sy, (xk — tAT (Ax" — b))

Example

randomly 300 x 500
generated A€R

= Vf=A"A4>0
= f not strongly convex

sublinear convergence

24

Douglas-Rachford splitting

Operator splitting
Main idea
We would like to solve

0 € F(x), F maximal monotone

Split the operator

F=A+B, A and B are maximal monotone

Solve by evaluating

Ra=(I+A)" Cy=2R4—1
or
RB:(I—I—B)_l Cp=2Rp —1

Useful when R4 and Rp are cheaper than Rg 26

Splitting Cayley iterations

Key result

0€ A(x)+ B(x) <= (CaCp(2z)=2, z== Rp(z)

Goal
Apply C' 4 and C'g sequentially instead of computing R 4. g directly

27

Splitting Cayley iterations

Proof of key result r = Rp(2)
s _ o combine
CuCp(z) = 2 . Z2=20—2 —m—— 7 =
r = Rp(2)
last
Since x = Rp(z), we have z € = + B(x) equation
Sincex = Ra(z),wehavez €+ A(x) =z + A(x)
20 = 2 + 2

By adding them, we obtain z + z € 22 + A(x) + B(x)
Therefore, 0 € A(z) + B(x) B

Note the arguments also holds the other way but we do not need it 28

Peaceman-Rachford splitting

w = C 4 Cr(w")

It does not converge in general (product of nonexpansive).

Need C'4 or (' to be a contraction

Douglas-Rachford splitting (averaged iterations)

wt = (1/2)(I + C4Cg)(w")

» Always converges when 0 € A(x) 4+ B(x) has a solution
» If A or B strongly monotone and Lipschitz, then C4Cg Is
a contraction: linear convergence

* This method traces back to the 1950s

Peaceman-Rachford and Douglas Rachford splitting

29

Douglas-Rachford splitting

Iterations

Zk+1 — RB (wk)

,J]k’—|—1 __ zzk—l—l
wrETt = (1/2)(I + C'AC’B)(wk) R ———

k

— W

CEk_l_l _ RA (wk—l—l)

wkH — wk + x

Last update (averaging) follows from:
wh T = (1/2)w” + (1/2) (225 — @~ 1)
= (1/2)w"” + 2"t — (1/2)(22F T — w")

_ Wk gkl ke

k+1

&

k+1

30

Simplified iterations of Douglas-Rachford splitting

1 Swap iterations and counter
wi ! = w® + RA(227F — w”) — 2"

Zk—l—l _ RB (wk—l—l)

3 Update w**! at the end

" = RA (227 — w")

2R — Rp(wk 4 oF L — o)

w

k

1

:wk—l—a:

k

1

— &

k

DR iterations
(simplify two inner steps)
Zk—l—l _ RB (wk)

wk:—l—l _ wk: + RA(QZk:—I—l o wk) B Zk:—l—l

2 Introduce 2!
T = RA(22° — w")

WL — ok 4kl Lk

Zk—l—l _ RB (wk—|—1)

4 Define u* = wh — zF
2"t = Ra (2% — u)

Zk—l—l _ RB(ka+1 _|_uk)

WL — kg Rl ket

31

Douglas-Rachford splitting

Simplified iterations

- . k1l k1
QEk_H __ RA(Zk - uk) Residual: =z Z
k+l k1 k —_— running sum of .
< Rp (™" + u”) g Interpretation as
k1 I k1 b1 residuals .
1 — u L x — 5 " iIntegral control
Remarks

* many ways to rearrange the D-R algorithm

» Equivalent to many other algorithms (proximal point, Spingarn’s partial
iInverses, Bregman iterative methods, etc.)

* Need very little to converge: A, B maximal monotone

» Splitting A and B, we can uncouple and evaluate R4 and R separately 35

Operator splitting algorithms

Today, we learned to:

* Apply the proximal point method to the “multiplier to residual” mapping
obtaining the Method of Multipliers (Augmented Lagrangian)

* Derive proximal gradient from forward-backward splitting

» Split operators to obtain simpler averaged iterations with Douglas-Rachford
splitting

33

Next lecture

» Alternating Direction Method of Multipliers

34

