ORF522 – Linear and Nonlinear Optimization

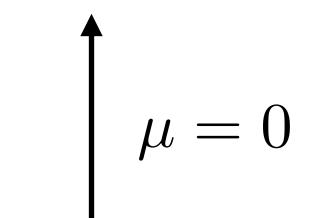
19. Operator splitting algorithms

Recap

Summary of monotone and cocoercive operators

Monotone

$$(T(x) - T(y))^T(x - y) \ge 0$$



Strongly monotone

$$(T(x) - T(y))^T (x - y) \ge \mu ||x - y||^2$$

Lipschitz

$$||F(x) - F(y)|| \le L||x - y||$$

Cocoercive

$$(T(x) - T(y))^{T}(x - y) \ge \mu ||x - y||^{2} \longleftrightarrow_{F = T^{-1}} (F(x) - F(y))^{T}(x - y) \ge \mu ||F(x) - F(y)||^{2}$$

$$\int_{G = I - 2\mu F} G = I - 2\mu F$$

Nonexpansive

$$||G(x) - G(y)|| \le ||x - y||$$

Strong convexity is the dual of smoothness

$$f$$
 is μ -strongly convex \iff f^* is $(1/\mu)$ -smooth

Proof

$$f$$
 μ -strongly convex \iff ∂f μ -strongly monotone
$$\iff (\partial f)^{-1} = \partial f^* \quad \mu\text{-cocoercive}$$
 \iff f^* $(1/\mu)$ -smooth

Remark: strong convexity and (strong) smoothness are dual

Resolvent and Cayley operators

The **resolvent** of operator A is defined as

$$R_A = (I + A)^{-1}$$

The Cayley (reflection) operator of A is defined as

$$C_A = 2R_A - I = 2(I + A)^{-1} - I$$

Properties

- If A is maximal monotone, $\operatorname{dom} R_A = \operatorname{dom} C_A = \mathbf{R}^n$ (Minty's theorem)
- If A is monotone, R_A and C_A are nonexpansive (thus functions)
- Zeros of A are fixed points of R_A and C_A

Key result we can solve $0 \in A(x)$ by finding fixed points of C_A or R_A

Building contractions

Forward step contractions

Given T L-Lipschitz and μ -strongly monotone, then $I-\gamma T$ converges linearly at rate $\sqrt{1-2\gamma\mu+\gamma^2L^2}$, with optimal step $\gamma=\mu/L^2$.

Proof

$$\begin{split} \|(I-\gamma T)(x)-(I-\gamma T)(y)\|^2 &= \|x-y+\gamma T(x)-\gamma T(y)\|^2 & \text{monotone} \\ &= \|x-y\|^2 - 2\gamma \frac{(T(x)-T(y))^T(x-y)}{(T(x)-T(y))^T(x-y)} + \gamma^2 \frac{\|T(x)-T(y)\|^2}{(T(x)-T(y))^T(x-y)} \\ &\leq (1-2\gamma \mu + \gamma^2 L^2) \|x-y\|^2 \end{split}$$

Remarks

- It applies to gradient descent with L-smooth and μ -strongly convex f
- Better rate in gradient descent lecture. We can get it by bounding derivative: $\|D(I-\gamma\nabla^2 f(x))\|_2 \leq \max\{|1-\gamma L|,|1-\gamma \mu|\}$. Optimal step $\gamma=2/(\mu+L)$ and factor $(\mu/L-1)(\mu/L+1)$.

strongly

Resolvent contractions

If A is μ -strongly monotone, then

$$R_A = (I + A)^{-1}$$

is a contraction with Lipschitz parameter $1/(1 + \mu)$

Proof

$$A$$
 μ -strongly monotone $\implies (I+A) \qquad (1+\mu)$ -strongly monotone $\implies R_A = (I+A)^{-1} \quad (1+\mu)$ -cocoercive $\implies R_A \quad (1/(1+\mu))$ -Lipschitz

Cayley contractions

If A is μ -strongly monotone and L-Lipschitz, then

$$C_{\gamma A} = 2R_{\gamma A} - I = 2(I + \gamma A)^{-1} - I$$

is a contraction with factor $\sqrt{1-4\gamma\mu/(1+\gamma L)^2}$

Remark need also Lipschitz condition

Proof [Page 20, PMO]

If, in addition, $A=\partial f$ where f is CCP, then $C_{\gamma A}$ converges with factor $(\sqrt{\mu/L}-1)/(\sqrt{\mu/L}+1)$ and optimal step $\gamma=1/\sqrt{\mu L}$

Proof

[Linear Convergence and Metric Selection for Douglas-Rachford Splitting and ADMM, Giselsson and Boyd]

Requirements for contractions

$\mathbf{Operator}\ A$

Function f $(A = \partial f)$

Forward step

$$I - \gamma A$$

$$\mu\text{-strongly monotone}$$

$$\mu ext{-strongly convex} \ L ext{-smooth}$$

Resolvent

$$R_A = (I + A)^{-1}$$

$$\mu\text{-strongly monotone}$$

$$\mu ext{-strongly convex} \ L ext{-smooth}$$

Cayley

$$C_A = 2(I+A)^{-1} - I$$

$$\mu$$
-strongly monotone L -Lipschitz

$$\mu ext{-strongly convex} \ L ext{-smooth}$$

faster convergence

Key to contractions: strong monotonicity/convexity

Today's lecture [PMO][LSMO][PA]

Operator splitting algorithms

- Algorithms
 - Proximal point method
 - Forward-backward splitting
 - Douglas-Rachford splitting

Proximal point method

Proximal point method

Resolvent iterations

$$x^{k+1} = R_A(x^k) = (I+A)^{-1}(x^k)$$

Many traditional algorithms are **proximal point method** with a specific \boldsymbol{A}

If $A = \partial t f$, we get proximal minimization algorithm

$$x^{k+1} = \mathbf{prox}_{tf}(x^k) = \operatorname*{argmin}_{z} \left(tf(z) + \frac{1}{2} ||z - x^k||_2^2 \right)$$

Proximal minimization properties

- R_A is 1/2 averaged: $R_A = (1/2)I + (1/2)C_A \implies R_{t\partial f}$ converges $\forall t$
- $\operatorname{fix} R_{\partial tf}$ are zeros of ∂f : optimal solutions
- If f μ -strongly convex, $R_{\partial tf}$ contraction: linear convergence
- Useful only if you can evaluate \mathbf{prox}_{tf} efficiently

Method of multipliers

minimize f(x)

subject to Ax = b

Lagrangian

$$L(x,y) = f(x) + y^T (Ax - b)$$

Dual problem

maximize $g(y) = -(f^*(-A^Ty) + y^Tb)$

Multiplier to residual map operator

$$T(y) = b - Ax$$
, where $x = \operatorname{argmin}_z L(z, y) \longrightarrow T(y) = \partial(-g)$

Therefore, $\partial(-g)(y) = b - Ax$, $0 \in \partial f(x) + A^T y$

Solve the dual with proximal point method

$$y^{k+1} = R_{t\partial(-g)}(y^k)$$

Method of multipliers

Derivation

Solve the dual with proximal point method

$$y^{k+1} = R_{t\partial(-g)}(y^k)$$

where $\partial(-g)(y) = b - Ax$, with x such that $0 \in \partial f(x) + A^Ty$

Resolvent reformulation

$$y^{k+1} = R_{t\partial(-g)}(y^k) \iff y^{k+1} + t\partial(-g)(y^{k+1}) = y^k$$

$$\iff y^{k+1} + t(b - Ax^{k+1}) = y^k, \quad \text{with} \quad 0 \in \partial f(x^{k+1}) + A^T y^{k+1}$$

 x^{k+1} minimizes the augmented Lagrangian $L_t(x,y^{k+1})$

$$0 \in \partial f(x^{k+1}) + A^{T}(y^{k} + t(Ax^{k+1} - b))$$

$$\implies x^{k+1} \in \underset{x}{\operatorname{argmin}} f(x) + (y^{k})^{T}(Ax - b) + (t/2)||Ax - b||^{2} = \underset{x}{\operatorname{argmin}} L_{t}(x, y^{k}) \quad \text{15}$$

Method of multipliers (augmented Lagrangian method)

Primal

minimize f(x)subject to Ax = b

Iterates

$$y^{k+1} = R_{t\partial(-g)}(y^k)$$

$$x^{k+1} \in \underset{x}{\operatorname{argmin}} L_t(x, y^k)$$
$$y^{k+1} = y^k + t(Ax^{k+1} - b)$$

Properties

- Always converges with CCP f for any t > 0
- If f L-smooth

 f^* and g are μ -strongly convex

 $R_{\partial(-q)}$ is a contraction: linear convergence

- If f strictly convex (>), then argmin has a unique solution (\in becomes =)
- Useful when f L-smooth and A sparse

Method of multipliers dual feasibility

minimize
$$f(x)$$
 subject to $Ax = b$

$$x^{k+1} \in \underset{x}{\operatorname{argmin}} L_t(x, y^k)$$
$$y^{k+1} = y^k + t(Ax^{k+1} - b)$$

Optimality conditions (primal and dual feasibility)

$$Ax - b$$
, $\partial f(x) + A^T y \ni 0$

From x^{k+1} update

$$0 \in \partial f(x^{k+1}) + A^T y^k + t A^T (Ax^{k+1} - b)$$

$$= \partial f(x^{k+1}) + A^T y^{k+1}$$

$$= \partial f(x^{k+1}) + A^T y^{k+1}$$

$$= dual feasible$$

Forward-backward splitting

Operator splitting

Main idea

We would like to solve

$$0 \in F(x)$$
, F maximal monotone

Split the operator

$$F = A + B$$

F = A + B, A and B are maximal monotone

Solve by evaluating

$$R_A = (I+A)^{-1}$$
 $C_A = 2R_A - I$ $R_B = (I+B)^{-1}$ or $C_B = 2R_B - I$

Forward-backward splitting

Goal

Find x such that $0 \in A(x) + B(x)$

Rewrite optimality condition

$$0 \in (A+B)(x) \iff 0 \in t(A+B)(x)$$

$$\iff 0 \in (I+tB)(x) - (I-tA)(x)$$

$$\iff (I+tB)(x) \ni (I-tA)(x)$$

$$\iff x = (I+tB)^{-1}(I-tA)(x)$$

$$\iff x = R_{tB}(I-tA)(x)$$

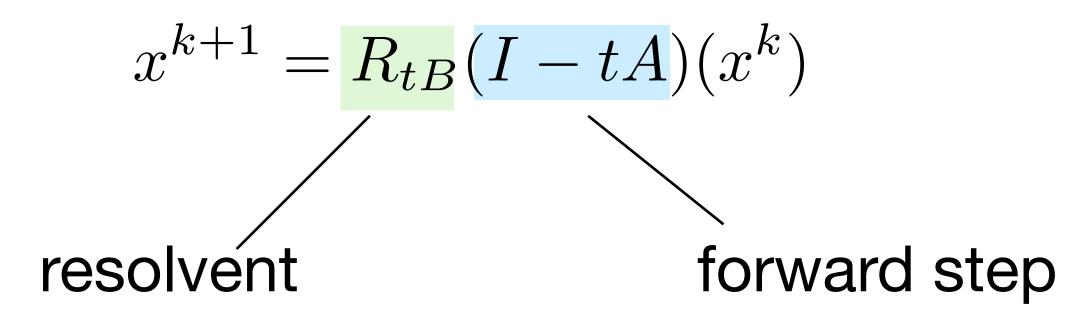
Iterations

$$x^{k+1} = R_{tB}(I - tA)(x)$$

Forward-backward splitting

Properties

Iterations



Properties

- R_{tB} is 1/2 averaged
- If A is μ -cocoercive then $I-2\mu A$ is nonexpansive $\Rightarrow I-tA$ is averaged for $t\in(0,2\mu)$
- Therefore forward-backward splitting converges
- If either A or B is strongly monotone, then linear convergence

Proximal gradient descent as forward-backward splitting

minimize
$$f(x) + g(x)$$

f is L-smooth g is nonsmooth but proxable

Therefore, ∇f is (1/L)-cocoercive and ∂g maximal monotone

Proximal gradient descent

$$x^{k+1} = R_{t\partial g}(I - t\nabla f)(x^k)$$
$$= \mathbf{prox}_{tg}(x^k - t\nabla f(x^k))$$

Remarks

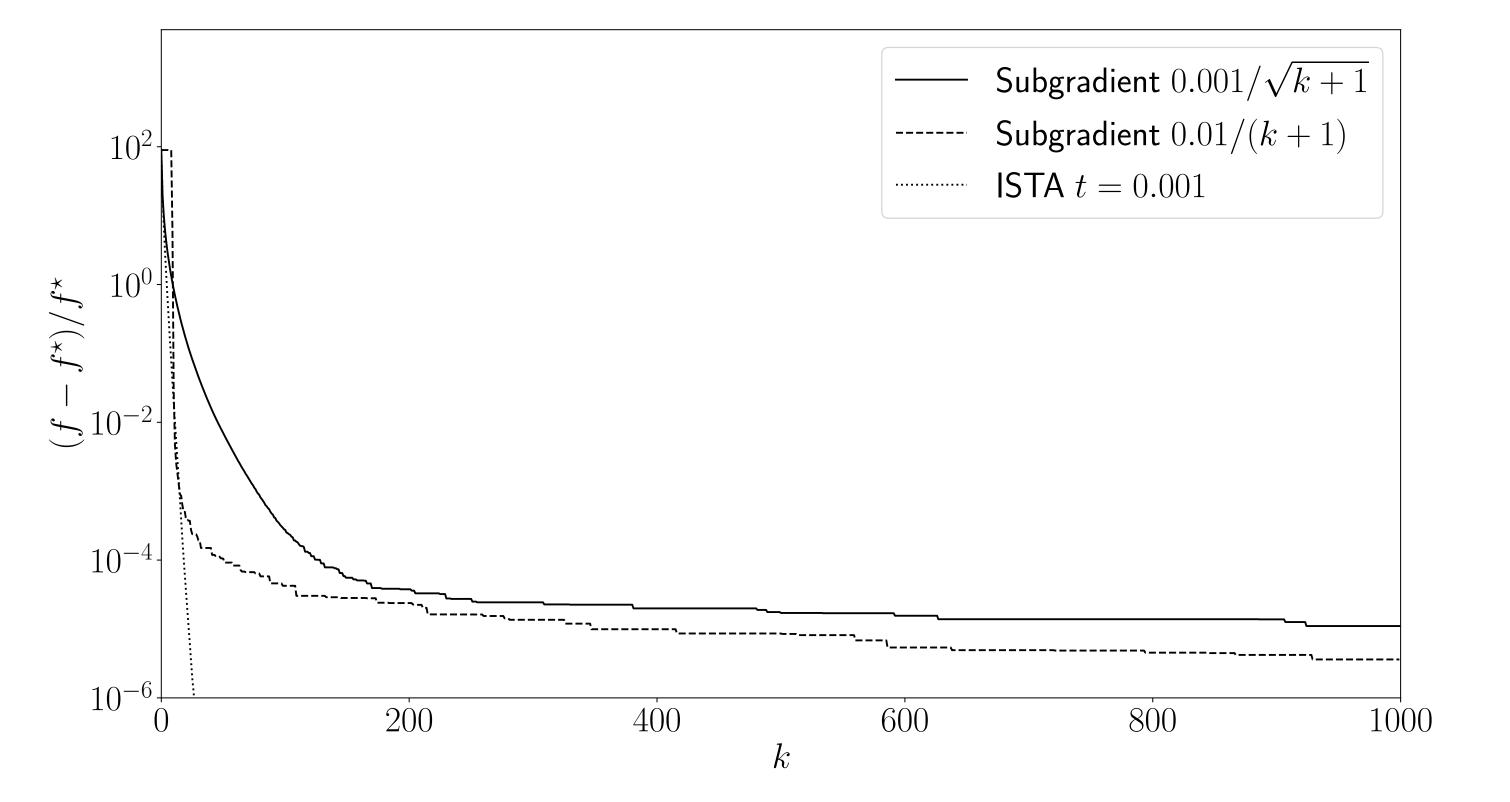
- Converges for $t \in (0, 2/L)$
- If either f or g strongly convex linear convergence
- If $g = \mathcal{I}_C$, then it's projected gradient descent

Example: Lasso with linear convergence

Iterative Soft Thresholding Algorithm (ISTA)

minimize $(1/2)||Ax - b||_2^2 + \lambda ||x||_1$

$$f(x) \frac{|Ax - b||_2}{f(x)} + \frac{|A||x||_1}{g(x)}$$



Proximal gradient descent

$$x^{k+1} = S_{\lambda t} \left(x^k - tA^T (Ax^k - b) \right)$$

Example

randomly generated

$$A \in \mathbf{R}^{500 \times 300}$$

$$\Rightarrow \nabla^2 f = A^T A \succ 0$$

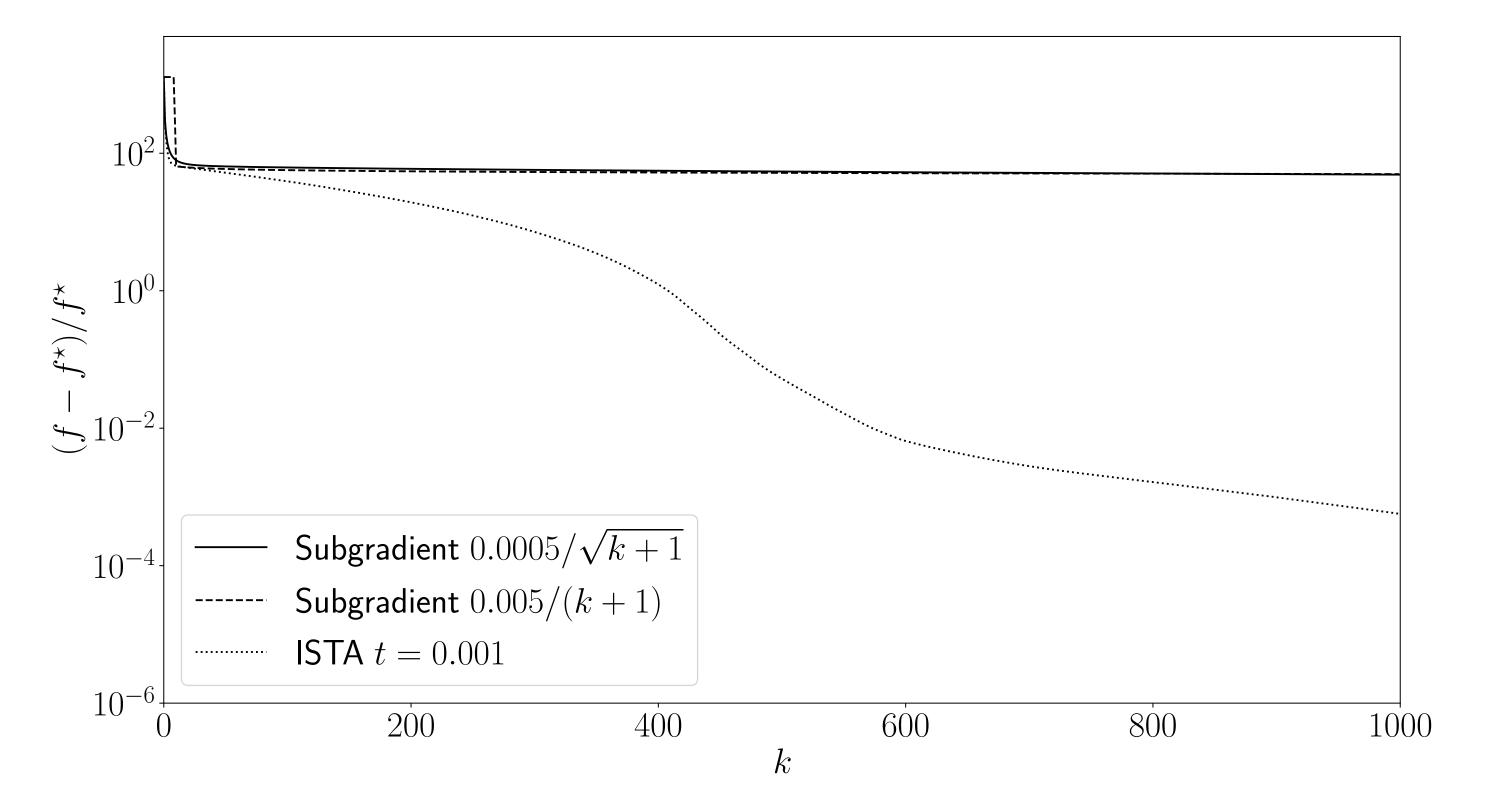
 \Rightarrow f strongly convex

linear convergence

Example: Lasso without linear convergence

Iterative Soft Thresholding Algorithm (ISTA)

minimize $(1/2) ||Ax - b||_2^2 + \lambda ||x||_1$ f(x) g(x)



Proximal gradient descent

$$x^{k+1} = S_{\lambda t} \left(x^k - tA^T (Ax^k - b) \right)$$

Example

randomly generated

$$A \in \mathbf{R}^{300 \times 500}$$

$$\Rightarrow \nabla^2 f = A^T A \succeq 0$$

 \Rightarrow f not strongly convex

sublinear convergence

Douglas-Rachford splitting

Operator splitting

Main idea

We would like to solve

$$0 \in F(x)$$
, F maximal monotone

Split the operator

$$F = A + B$$
,

F = A + B, A and B are maximal monotone

Solve by evaluating

$$R_A = (I+A)^{-1}$$
 or $C_A = 2R_A - I$ $R_B = (I+B)^{-1}$

Splitting Cayley iterations

Key result

$$0 \in A(x) + B(x) \iff C_A C_B(z) = z, \quad x = R_B(z)$$

Goal

Apply C_A and C_B sequentially instead of computing R_{A+B} directly

Splitting Cayley iterations

Proof of key result

$$C_A C_B(z) = z$$

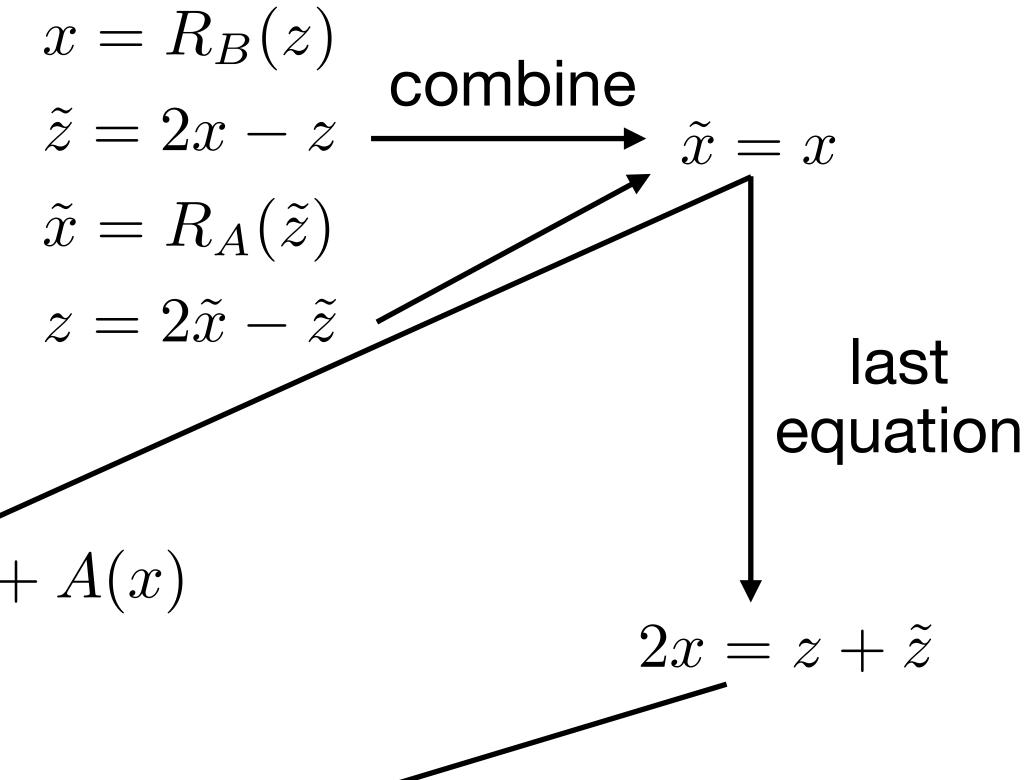
$$x = R_B(z)$$

Since $x = R_B(z)$, we have $z \in x + B(x)$

Since
$$\tilde{x} = R_A(\tilde{z})$$
, we have $\tilde{z} \in \tilde{x} + A(\tilde{x}) = x + A(x)$

By adding them, we obtain $z + \tilde{z} \in 2x + A(x) + B(x)$

Therefore,
$$0 \in A(x) + B(x)$$



Note the arguments also holds the other way but we do not need it

Peaceman-Rachford and Douglas Rachford splitting

Peaceman-Rachford splitting

$$w^{k+1} = C_A C_B(w^k)$$

It does not converge in general (product of nonexpansive). Need C_A or C_B to be a contraction

Douglas-Rachford splitting (averaged iterations)

$$w^{k+1} = (1/2)(I + C_A C_B)(w^k)$$

- Always converges when $0 \in A(x) + B(x)$ has a solution
- If A or B strongly monotone and Lipschitz, then C_AC_B is a contraction: **linear convergence**
- This method traces back to the 1950s

Douglas-Rachford splitting

$$w^{k+1} = (1/2)(I + C_A C_B)(w^k)$$

Iterations

$$z^{k+1} = R_B(w^k)$$

$$\tilde{w}^{k+1} = 2z^{k+1} - w^k$$

$$x^{k+1} = R_A(\tilde{w}^{k+1})$$

$$w^{k+1} = w^k + x^{k+1} - z^{k+1}$$

Last update (averaging) follows from:

$$w^{k+1} = (1/2)w^k + (1/2)(2x^{k+1} - \tilde{w}^{k+1})$$

$$= (1/2)w^k + x^{k+1} - (1/2)(2z^{k+1} - w^k)$$

$$= w^k + x^{k+1} - z^{k+1}$$

Simplified iterations of Douglas-Rachford splitting DR iterations

(simplify two inner steps)

$$z^{k+1} = R_B(w^k)$$

$$w^{k+1} = w^k + R_A(2z^{k+1} - w^k) - z^{k+1}$$

1 Swap iterations and counter

$$w^{k+1} = w^k + R_A(2z^k - w^k) - z^k$$
$$z^{k+1} = R_B(w^{k+1})$$

3 Update w^{k+1} at the end

$$x^{k+1} = R_A(2z^k - w^k)$$

$$z^{k+1} = R_B(w^k + x^{k+1} - z^k)$$

$$w^{k+1} = w^k + x^{k+1} - z^k$$

2 Introduce x^{k+1}

$$x^{k+1} = R_A(2z^k - w^k)$$

$$w^{k+1} = w^k + x^{k+1} - z^k$$

$$z^{k+1} = R_B(w^{k+1})$$

4 Define
$$u^k = w^k - z^k$$

$$x^{k+1} = R_A(z^k - u^k)$$

$$z^{k+1} = R_B(x^{k+1} + u^k)$$

$$u^{k+1} = u^k + x^{k+1} - z^{k+1}$$

Douglas-Rachford splitting

Simplified iterations

$$x^{k+1} = R_A(z^k - u^k)$$

$$z^{k+1} = R_B(x^{k+1} + u^k)$$

$$u^{k+1} = u^k + x^{k+1} - z^{k+1}$$

Residual: $x^{k+1} - z^{k+1}$

running sum of residuals u^k

Interpretation as integral control

Remarks

- many ways to rearrange the D-R algorithm
- Equivalent to many other algorithms (proximal point, Spingarn's partial inverses, Bregman iterative methods, etc.)
- Need very little to converge: A, B maximal monotone
- Splitting A and B, we can uncouple and evaluate R_A and R_B separately

Operator splitting algorithms

Today, we learned to:

- Apply the proximal point method to the "multiplier to residual" mapping obtaining the Method of Multipliers (Augmented Lagrangian)
- Derive proximal gradient from forward-backward splitting
- Split operators to obtain simpler averaged iterations with Douglas-Rachford splitting

Next lecture

Alternating Direction Method of Multipliers