ORF522 - Linear and Nonlinear Optimization
17. Operator theory |

Bartolomeo Stellato — Fall 2022



Today'’s lecture
[Chapter 4, FMO][PA][PMOI][LSMO]

Operator theory |

* Proximal gradient method

* Operators

 Monotone and cocoercive operators

* Fixed-point Iterations



Proximal gradient method



Remember: gradient descent interpretation

Problem
minimize f(x)

Ilterations
"t = oF —tVf(2")

1
Quadratic approximation, replacing Hessian V? f(z*) with ZI

1
T = argmin f(2%) + V(@) (z — 27) A 57 17— 2|3




Let’s exploit the smooth part

f(x) convex and smooth

minimize  f(z) + g(x) g(x) convex (may be not differentiable)

Quadratic approximation of f while keeping ¢
1

| . same as
"t = argmin g(2) + f(z") + V(") (z — ") - o7 |2 —2"[l5 +— gradient descent
Equivalent to Proximal operator
i = argmln tg(z HZ — (2" —tV f(x Hz prox;, (¢ —tV ("))
T !
make g stay close to

small gradient update



Proximal gradient method

f(x) convex and smooth

minimize  f(z) + g(x) g(x) convex (may be not differentiable)

Iterations
e prox,, (2" —tV f(a"))

Properties

» Alternates between gradient updates of f and proximal updates on ¢
» Usetul If prox,, Is inespensive
» Can handle nonsmooth and constrained problems



Problem
minimize f(x) + g(x)

Special cases

Generalized gradient descent Iterations
d pFT = prox,, (:ck — tVf(a:k))

Smooth Gradient descent

g(xr) =0 = prox,(r)==1x — gt = gF —tV (")
Constraints Projected gradient descent
g(x) =Zc(r) = prox,,(r)=Ic(x) — "t =TIo(2" — tV f(z"))
Non smooth Proximal minimization

f(x) =0 —>  z"t! = prox, (")

Note: useful if prox,, is cheap '



What happens if we cannot evaluate the prox?

At every Iteration, it can be very expensive to evaluate

, 1
prox,(z) = argmin ((2) + 5 = — 3)

Idea: solve it approximately!

If you precisely control the prox (x) evaluation errors

you can obtain the same convergence guarantees (and rates)
as the exact evaluations.

[Schmidt et al. (2011), “Convergence rates of inexact proximal-gradient methods for convex optimization”]



Example: Lasso
Iterative Soft Thresholding Algorithm (ISTA)

minimize (1/2)||Az — b||2 + \||z||;
f(z) g(x)

Proximal gradient descent Vf(z)=A"(Ax — b)

kA1 prox,, (2% — tV f(zF)) (component wise

PFOth(f) = Sxe () soft-thresholding)

Closed-form iterations
"t = Sy (27 — tAT (A" — b))



Example: Lasso
Iterative Soft Thresholding Algorithm (ISTA)

A e R°VUX100 Closed-form iterations
minimize (1/2)||Ax — b||5 + Aljz||: pF = Sy, (2% — tAT (AzF — b))
hgradient 0.001/v/k + 1
peradient LI/ Better convergence

Can we prove convergence
generally?

________________ — Can we combine different
operators?

_______________________
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Operators



Operators

An operator 1" maps each point in R" to a subset of R"

» set valued 7'(x) returns a set
- single-valued T'(x) (function) returns a singleton

The domain of T'is the set dom T = {x | T'(z) # ()}

Example

» The subdifferential 0f is a set-valued operator
» The gradient V f Is a single-valued operator

=
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Graph and inverse operators

Graph
The graph of an operator 7' is defined as

gphT = {(z,y) |y € T'(v)}

In other words, all the pairs of points (x,y) such that y € T'(x).

Inverse
The graph of the inverse operator 7! is defined as

gphT ™' = {(y,2) | (z,y) € gphT}

Therefore, y € T'(x) ifand only if x € T 1(y).
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Zero
x 1S a zero of 7' If

Zero set

0eT(x)

The setof allthe zeros  T71(0) ={x |0 T(x)}

Example
f T =0fand f : R" — R, then
0 € T'(x) means that x minimizes f

Many problems
can be posed as finding zeros
of an operator
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Fixed points

z IS a fixed-point of a single-valued operator 7' if

r="T(x)

Set of fixed points fix7T = {x € domT |z =T(z)} = (I —T) *(0)

Examples
» Identity 7'(x) = z. Any point is a fixed point
» Zero operator T'(x) = 0. Only 0 is a fixed point

15



Lipschitz operators

An operator 7' is L-Lipschitz if
|T(z) —T(y)|| < Lllz —yll, Vz,y€domT

Fact If 7" is Lipschitz, then it is single-valued
Proof If y = T'(z),z =T(z),then [ly — 2| < Lllz —z|| =0 =y =2 N

For L =1 we say 7' Is nonexpansive
For L. < 1 we say T’ is contractive (with contraction factor L)

16



Lipschitz operators examples

Lipschitz affine functions

maximum singular value

T(z) = Az +b L= A = \/Auax(ATA)

Lipschitz differentiable functions
T such that there exists derivative DI’ +——

derivative is bounded
|DT||s < L

17



Lipschitz operators and fixed points

Given a L-Lipschitz operator T and a fixed point r = T'z,
|Te —z|| = ||[Te — Tz| < Lijr — z|

A contractive operator (L < 1) can have at most
one fixed point, i.e., fixT = {z}

Proof
If z,y € fixT and x # y then

|z =yl = IT(z) =T(y)|l <l -yl (contradiction)

A nonexpansive operator (L = 1) need not
have a fixed point

Example T'(x) = x + 2

18



Combining Lipschitz operators

17 1s L1-Lipschitz and 15 Is Lo-Lipschitz

The composition 7,75 Is L L,-Lipschitz
Proof ||111Tox — TiToy|l2 < Ly||Tex — Toyl|ls < LiLao|lz —yll2 IR

» Composition of nonexpansive is nhonexpansive
« Composition of nonexpansive and contractive is contractive

The weighted average 017 + (1 —0)15, 0 € (0,1) is (AL, 4+ (1—60)L-)-Lipschitz
Proof (exercise)

» Weighted average of nonexpansive is nonexpansive
» Weighted average of nonexpansive and contractive is contractive

19



Mlonotone cocoercive operators



Monotone operators

An operator 7' on R"™ is monotone if

(u—v) (x—y) >0, V(zx,u),(y,v) € gphT

T 1s maximal monotone if
B(z,u) ¢ gphT such that

(. —u)" (2 —2x) >0

Equivalently: # monotone R
such that gph T’ C gphR

21



Monotone operators in 1D Let's fill the table

Monotone Max Monotone

A T'(z) B I'(x)
<N

N
J

C T(x) D T(x) Monotonicity

~ J y>z = T(y)=2T(x)

Continuity

- If T single-valued,
/ continuous and monotone,

s . 22
then 1it’s maximal monotone




Monotone operator properties

* sum 7" + R Is monotone
* nhonnegative scaling o7 with o > 0 Is monotone

 inverse 7! is monotone

- congruence for M € R"*™, then M T (M=) is monotone on R™

Affine function 7'(x) = Ax + b is maximal monotone
— A+A' =0

23



Strongly monotone operators

An operator 7' on R" is u-strongly monotone if
(u—v)" (x—y) > pllz —yl]?, pu>0 (also called p~-coercive)

V(z,u), (y,v) € gphT

Let’s fill the table

Monotone Strongly Monotone

- o

v B

b /
/ The slopeisatleast u o4



Cocoercive operators

An operator T' is 5-cocoercive, 5 > 0, If
(T(z) = T(y))" (x —y) > BIT(x) = T(y)|I”

If T"is -cocoercive, then T'is (1/3)-Lipschitz

Proof f|T(z) —T(y)|I* < (T(z) = T(y)) (z —y) < |T(z) = T(y)ll[lz -yl
= ||T(x) =T(y)ll =< (1/8)llz =y _

If T is u-strongly monotone if andonlyif 7! is u-cocoercive

Proof (1'(z) — T(SE))T(x —y) > pllr — yHQ
Inverse: v =T(x)and v =T(y) ifandonlyifz € T-'(u) and y € T (v)
(w=v) (T w) =T (w) > p T (w) =T "
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Cocoercive and nonexpansive operators

If T is S-cocoercive ifandonlyif [ — 257 is nonexpansive

= ||y — 28T (y) — x — 28T (x)||”
2 —4B(T(y) — T(x))" (y — z) + 48°| T (y) — T'(z)||?
)

y —z||* =48 (T(y) = T(x))" (y — ) = B|T(y) = T(2)|)
|2

|
<

|

S

A
<
|
S

B (cocoercive)

20



Summary of monotone and cocoercive operators

Monotone Lipschitz
(T(@) = T) (@ —y) 20 |F(z) - F(y)| < Lz — ]
p=20 | L=1/p
Strongly monotone Cocoercive
(T(x) = T(y))" (z —y) > pllz -y ﬁl (F(z) — F(y))" (x —y) > pl|F(z) — F(y)|°
G=1-2uF

Nonexpansive
|G(z) -G <z —yll =



Fixed point iterations



Fixed point iteration

Apply operator

until you reach r € fix T

Main approach

1. Find a suitable 7" such that x € fix T’ solve your problem
2. Show that the fixed point iteration converges

Fixed point residual to terminate
r® =T (z") — 2"

29



Contractive fixed point iterations

Contraction mapping theorem
If T'is L-Lipschitz with L < 1 (contraction), the iteration

ph = T(xk) >
3
converges to x, the unique fixed point of T° /B T
Properties "
» Distance to ¥ decreases at each step
|z" —z|| < L|j2" — 7|
30

(iteration is Fejer monotone)

 Linear convergence rate L



Contraction mapping theorem

Proof
The sequence z* is Cauchy

< (Lé_1 + - 1)ka+1 — ka

(Lipschitz constant)

1 k+1 _ _k
< | (geometric series)

L" 1 0 (Lipschitz constant)
——[|la" —o°|

Therefore it converges to a point £ which must be the (unique) fixed point of T’

VA

The convergence is linear (geometric) with rate L

|z¥ — | = |T(«"") = T(@)]| < Lll«"" — 2| < L2 — 27| g



Nonexpansive fixed point iterations

If T'is L-Lipschitz with L = 1 (honexpansive), the iteration
et = T (2")

need not converge to a fixed point, even if one exists.

Example X
» Let T be a rotation around the origin

+ T is nonexpansive and has a fixed point z = 0 0
- ||2*|| never decreases

32



Averaged operators

We say that an operator T' is a—averaged with o € (0, 1) if
T=(1—-a)l+aR

and R IS honexpansive.
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Averaged operators fixed points

We say that an operator 1" is a—averaged with o € (0, 1) if
T=(1—-a)l+aR

Fact If ' is a«-averaged, then fixT' = fix R
Proof z=T(z)=(1—a)l(Z)+ aR(Z)
= (1-a)z + aR(z)

ar = aR(Z)

T = R(Z) B

<
<

34



Averaged fixed point iterations

If T"'= (1 - a)l + aR is a-averaged
(a € (0,1) and R nonexpansive), the iteration \
k+1 T(Cbk) ; 1

converges to r € fix 7T

(also called damped, averaged
or Mann-Krasnosel’skii iteration)

Properties
» Distance to x decreases at each step (Fejer monotone)

» Sublinear convergence to fixed-point residual

1 _
|R(z") — 2| < |27 — 7 35

- \/(k + 1Da(l — a)




Averaged fixed point iterations

Proof
Use the identity (proof by expanding)

(1 -a)a+ad|® = (1-a)lall* + albp|* — a(l - a)la - b]*
and apply it to

a b
obtaining
|27 = 2)* = (1 = a)[la" — Z||* + a|R(z") — 2||* — a(1 - a)||2" — R(z")|]
< (1 — Oz) ® — Z||? + al|z" — CI_ZHQ — a(l — Oz)H.ﬁEk — R(x )|| (honexpansive)
= [|2" - 2|* = a(l = a)llz" — R(z")|]

lterations are Fejer monotone

36



Averaged fixed point iterations

Proof (continued
( ) iterate righthand side over kksteps

[" ! =z < ]2 = z2]* —a(l —a) ) _ [a* — R(z")|?

1=0
- 1
Since ||z — z|* > 0, we have ; |2' — R(z")|” < ol — o) |27 — 2|7
k
Using » [|z' — R(z")|> > (k+1) min ||z" - R(z%)||?, we obtain
P 1=0,...,
. . 1
: b _ R(x* 2 < 0 =112
2o I T RO S a1
: : . L kN 112 1 O — |12
(R is nonexpansive — min at k) |[|z" — R(z")||* < |z” — || Il 37

~ (E+1Da(l —a)



Average fixed point iteration convergence rates

1 _
|R(z") — 2| < |27 — 7

~ V(k+1a(l = a)

Iterations

IR@*) — 2] < —=|a” — 2] = (1/2)ak + (1/2)R(ab)

Remarks

» Sublinear convergence (same as subgrad method),
INn general not the actual rate
- o = 1/2 is very common for averaged operators 38



How to design an algorithm

Problem
minimize  f(x)

Algorithm (operator) construction

1. Find a suitable 7" such that x € fix T’ solve your problem
2. Show that the fixed point iteration converges

If T" is contractive — linear convergence
If T'Is averaged — sublinear convergence

Most first order algorithms can be constructed in this way

39



Operator theory

Today, we learned to:

Define and evaluate proximal operators for various common functions

Apply proximal operators to generalize gradient descent (vanilla, projected,
proximal)

Define monotone and cocoercive operators and their relations

Use operator theory to construct general fixed-point iterations and prove
their convergence

40



Next lecture

* Operators in optimization algorithms
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