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Fermat’s optimality condition

For any (not necessarily convex) function f where 0 f(x*) # 0,
x* Is a global minimizer if and only if

0€df(x™)

Proof
A subgradient ¢ = 0 means that, for all y

f(y) = f(z*) + 0" (y — 2%) = f(27)

Note differentiable case with 0f(z) = {V f(x)} 3



Today'’s lecture
[Chapter 3 and 6, FMO] [PA]

Proximal methods

Optimality conditions with subdifferentials
Subgradient method
Proximal operators

Proximal gradient method



Optimality conditions with
subdifferentials




Constrained optimization

Indicator function
of a convex set

S

Constrained form Unconstrained form
minimize  f(x)

minimize T
subjectto xzeC inimize  f(z) + Zc(x)



Subgradient of indicator function

The subdifferential of the indicator
functon is the normal cone

0Zc(x) = Ne(o) )

where,

Ne(x)={g|g"(y—x) <0, forallyec C}

Proof

By definition of subgradient g, Z(y) > Ze(z) + ¢* (y — x), Wy
ytC = Ic(y) =
yeC = 0>gqg (y—2x)




First-order optimality conditions from subdifferentials

f convex smooth,
C' convex

minimize f(x) + Zo(x)

Fermat’s optimality condition
0€0(f(z)+Zc(x))

— 0e€{Vf(x)} +Nc(z)
— —Vf(.il}) C Nc(aj)

Equivalent to
Vi) (y—2)>0, VyeC




Example: KKT of a quadratic program

minimize  (1/2)z? Pz + q''z
subjectto Az <b

—— minimize (1/2)z" Pz 4+ q' = + Ly ap<pr (@)

|dea: [Lecture 13].

N0rm3| Cone tO p0|yh6dr0n Proof: [Theorem 6.46, Variational Analysis,

Gradient Rockafellar & Wets]
Vf(x) = Px+q Niaz<py(z) = {A%yly>0 and y(a; x—b;) =0}
First-order optimality condition KKT Optimality conditions
Pr+q+ A"y =0
y =0
—Vf(z) € 0L{az<ty(z) = N{az<py () +—— Ar —b <0

yilalz—b;)=0, i=1,....m
9



Subgradient method



Negative subgradients are not necessarily descent directions

f(x) = |x1| + 2|22

r = (1,0)

g1 = (1,0) € 0f(x) and
—g1 IS a descent direction

g2 = (1,2) € 0f(x) and
— (g9 IS Not a descent direction
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Subgradient method

Convex optimization problem
minimize f(x) (optimal cost f*)

Iterations

el = 2F — 1 g", g € 0f(z™)

g" is any subgradient of f at x"

Not a descent method, keep track of the best point

12



Step sizes

Line search can lead to suboptimal points

Step sizes pre-specified, not adaptively computed
(different than gradient descent)

Fixed: tp =tfork=0,...

(goes to 0 but not too fast)
e.g., tp = 0(1/]{7)

O O
Diminishing: th < 00, Zt’f — ~o Square summable but not summable
k=0 k=0
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Convergence

Assumptions
» fis convex with dom f = R"

* f(x*) > —oo (finite optimal value)

» f Is Lipschitz continuous with constant GG > 0, I.e.

f(2) = fW)l < Gllz —yll2, Va,y

which is equivalent to ||g||o < G, Vg € df(x), Vo
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Convergence

Lipschitz continuity equivalence

f 1s Lipschitz continuous with constant GG > 0, I.e.

f(z) = f(y)| < Gllz —yll2,

which is equivalent to ||g||lo < G, Vg € df(x), Vo

Proof

If |g|| < G for all subgradients, pick x,g, € 0f(x)and y,g, € 0f(y). Then,

9y (x —y) > f(z) = f(y) > g, (. —y)
—  Gllz—yl2 > f(z) — f(y) = —Gllz —yl2

If |lg|lo > G for some g € 0f(x). Take y = x

fly)> flx)+g (y—x) = f(z)+]

g/

g
g

v,y

5 such that || — y||. = 1:

0> f(z) +G
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Convergence

Theorem
Given a convex, GG-Lipschitz continuous f with finite optimal value,
the subgradient method obeys

where ||z° — 2*||s < R

16



Convergence

Proof

Key quantity: euclidean distance to optimal set
(not function value since it can go up and down)

|2FH — 2% |2 = ||z — trg® — 2¥||3
— ||2® — 2* % — th(gk)T(ka — ) + tngng
< ||z" — 2|5 — 2tk (f(2") — ) + t2llg"]I3

using subgradient definition f* = f(a*) > f(z") + (¢*)* (x* — z*)



Convergence

Proof (continued)

Combine inequalities for: = 0, ... .k

[ A o —l’HQ—QZt z') = f*)

1=0
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Convergence

Proof (continued)

Combine it with

> ti(f(@h) = )

to get

[V




Implications for step size rules

fkes o f* <
. 21 o t
Fixed: t, =tfork=0,... May be suboptimal
2
R% + G2(k + 1)1 o fE <oy G
ko fx < lim fbestéf |
fbest f — 2(]‘6 n 1)t k— o0 2
> > Optimal
= = = = . 2 L
Diminishing: Y th<oo, » tp=o0 fim fE — f

e.g.,tk:T/(k+1)ortk:7/\/k+1 20



Optimal step size and convergence rate

For a tolerance ¢ > 0, let’s find the optimal ¢, for a fixed &:
k
R+ G?Y 7  t

P S €
2 S:z’—() Ly
Convex and symmetric in (to, ..., ts) R? + G?(k + 1)t?
Hence, minimum when t; =t 2(k + 1)t
Optimal choice t = .
GvVEk+1
Convergence rate Ilterations required
RG k= O(1/¢)

fkl)cest R f* < ,
Vk+1 (gradient descent £ = O(1/¢))
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Stopping criterion

Terminating when

IS really, really slow.

Bad news

There is not really a good stopping criterion for the subgradient method
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Optimal step size when f* is known
Polyak step size
fa*) = £

[idlE:

t =

Motivation: minimize righthand side of

|27 = 2¥[[3 < 2" — 22 = 2t (f(2%) = F) + L llg" 13

Obtaining  (f(z%) = f)* < (=™ —2*[3 — [|l2" — 2"[|3) G*

QR Ilterations required

: . k *
Applying recursively, 7 . — f* < i k= O(1/€)

still slow
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Example: 1-norm minimization

C e T
minimize f(x) = ||Az — b||; g= A" sign(Ax —b) € 0f(x)
Fixed step size Diminishing step size
10*;
—— ¢ =10.0010 —— 0.01/VEk+1
-------- t = 0.0005 1090} == 0.001/vk +1
"""""""" t = 0.0001 ‘\“ 0.01/0{j i 1)
) T t — 00001 \ o Polyak
_\
"“‘““"\T\f """"""""""""""""""""""""""""""""
. B —
5 , , | , | 5. . . . . .
10 0 1000 2000 3000 4000 5000 6000 10 0 1000 2000 3000 4000 5000 6000
k k

Efficient packages to automatically compute (sub)gradients:
Python: JAX, PyTorch
Julia: Zygote.jl, ForwardDift.jl, ReverseDift.]l



Summary subgradient method

« Simple
- Handles general nondifferentiable convex functions
- Very slow convergence O(1/¢?)

* No good stopping criterion

Can we do better?

Can we incorporate constraints?
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Proximal operators



Composite models

minimize f(x) 4+ g(x)

f(x) convex and smooth
g(x) convex (may be not differentiable)

Examples

» Regularized regression: g(x) = ||z|1
» Constrained optimization: g(z) = Z¢(x)

27



Proximal operator

Definition
The proximal operator of the function g : R — R Is

, 1
prox,(z) — argmin ((2) + 3 = - 3)

Optimality conditions of prox

0€0g(z)+2z—2 =— x—2z¢€0g(z)

Properties
» [t involves solving an optimization problem (not always easy!)

» Easy to evaluate for many standard functions, i.e. proxable functions

» Generalizes many well-known algorithms

28



Generalized projection

The prox operator of the indicator function Z. is the projection onto C

proxrs_(v) = argnéin |z — v =1 (v)
T C

Example projectionontoabox C' ={z || <z < u}

Remarks

» Easy for many common sets (e.g., closed form)
» Can be “hard” for surprisingly simple lets, e.g., C = {Ax < b}  ruojections at [p. 156, Fmo] 29



Quadratic functions

If g(x) = (1/2)x" Pz + ¢* x + r with P = 0, then

prox, (v) = (I + P) (v —q)

g

Remarks

» Closed-form always solvable (even with P not full rank)
« Symmetric, positive definite and usually sparse linear system
« Can prefactor I + P and solve for different v

30



Separable sum .
f g(x) is block separable, i.e., g(z) = gi(z;)

then, (prox,(v)); = prox, (v;), i=1,...,N

n

Example: g(z) = A||z||1 = ) _._; Az

soft-thresholding

Vi — A U; > A
(Prox,(v)); = proxy . (vi) = Sx(vi) = {0 ;] < A

Vi + A v < —A

(key to parallel/distributed
proximal algorithms)




Basic rules

» Scaling and translation: g¢(x) = ah(x) + b with @ > 0, then
prOXg (ZE) — ProX,; (ZE)
Examples - Affine addition: ¢(x) = h(z) + a’ x + b, then
prox, (r) = prox,(z — a)

» Affine transformation: ¢(x) = h(axz +b), witha # 0,a € R,

1
prox,(r) = - (prox 2, (ax + b) — b)

Proofs (exercise):

- Rearrange proximal term: (1/2)||z — z||5
* Apply prox optimality conditions

Many more examples at [p. 156, FMO] 32



Proximal gradient method



Remember: gradient descent interpretation

Problem
minimize f(x)

Ilterations
"t = oF —tVf(2")

1
Quadratic approximation, replacing Hessian V? f(z*) with ZI

1
T = argmin f(2%) + V(@) (z — 27) A 57 17— 2|3

34



Let’s exploit the smooth part

f(x) convex and smooth

minimize  f(z) + g(x) g(x) convex (may be not differentiable)

Quadratic approximation of f while keeping ¢
1

| . same as
"t = argmin g(2) + f(z") + V(") (z — ") - o7 |2 —2"[l5 +— gradient descent
Equivalent to Proximal operator
i = argmln tg(z HZ — (2" —tV f(x Hz prox;, (¢ —tV ("))
T !
make g stay close to

small gradient update >



Proximal gradient method

f(x) convex and smooth

minimize  f(z) + g(x) g(x) convex (may be not differentiable)

Iterations
e prox,, (2" —tV f(a"))

Properties

» Alternates between gradient updates of f and proximal updates on ¢
» Usetul If prox,, Is inespensive

» Can handle nonsmooth and constrained problems
36



Special cases

Generalized gradient descent

Smooth
g(xr) =0 = prox,(r)==1x

Constraints

g(x) =1Zc(x) — proxtg(x) = Il ()

Non smooth

flz) =0

Problem
minimize f(x) + g(x)

Ilterations
I prox,, (:ck — tVf(a:k))

Gradient descent
— Pl = 2k ¢tV f(2F)

Projected gradient descent
— "t =TIo(2" — tV f(z"))

Proximal minimization
—>  z"t! = prox, (")
Note: useful if prox,, is cheap '



What happens if we cannot evaluate the prox?

At every Iteration, it can be very expensive to evaluate

, 1
prox,(z) = argmin ((2) + 5 = — 3)

Idea: solve it approximately!

If you precisely control the prox (x) evaluation errors

you can obtain the same convergence guarantees (and rates)
as the exact evaluations.

38

[Schmidt et al. (2011), “Convergence rates of inexact proximal-gradient methods for convex optimization”]



Example: Lasso
Iterative Soft Thresholding Algorithm (ISTA)

minimize (1/2)||Az — b||2 + \||z||;
f(z) g(x)

Proximal gradient descent Vf(z)=A"(Ax — b)

kA1 prox,, (2% — tV f(zF)) (component wise

PFOth(f) = Sxe () soft-thresholding)

Closed-form iterations

"t = Sy (27 — tAT (A" — b))
39



Example: Lasso
Iterative Soft Thresholding Algorithm (ISTA)

A e R°VUX100 Closed-form iterations
minimize (1/2)||Ax — b||5 + Aljz||: pF = Sy, (2% — tAT (AzF — b))
hgradient 0.001/v/k + 1
peradient LI/ Better convergence

Can we prove convergence
generally?

________________ — Can we combine different
operators?

_______________________

0 100 200 300 400 500 40



Proximal methods and introduction to operators

Today, we learned to:
* Define subgradient method and analyze its convergence

* Derive optimality conditions for constrained optimization problems using
subdifferentials

 Define and evaluate proximal operators for various common functions
* Apply proximal operators to generalize gradient descent (vanilla, projected,

proximal)
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Next lecture

* Operator theory

42



