ORF522 – Linear and Nonlinear Optimization

16. Proximal methods

Recap

Fermat's optimality condition

For any (not necessarily convex) function f where $\partial f(x^*) \neq \emptyset$,

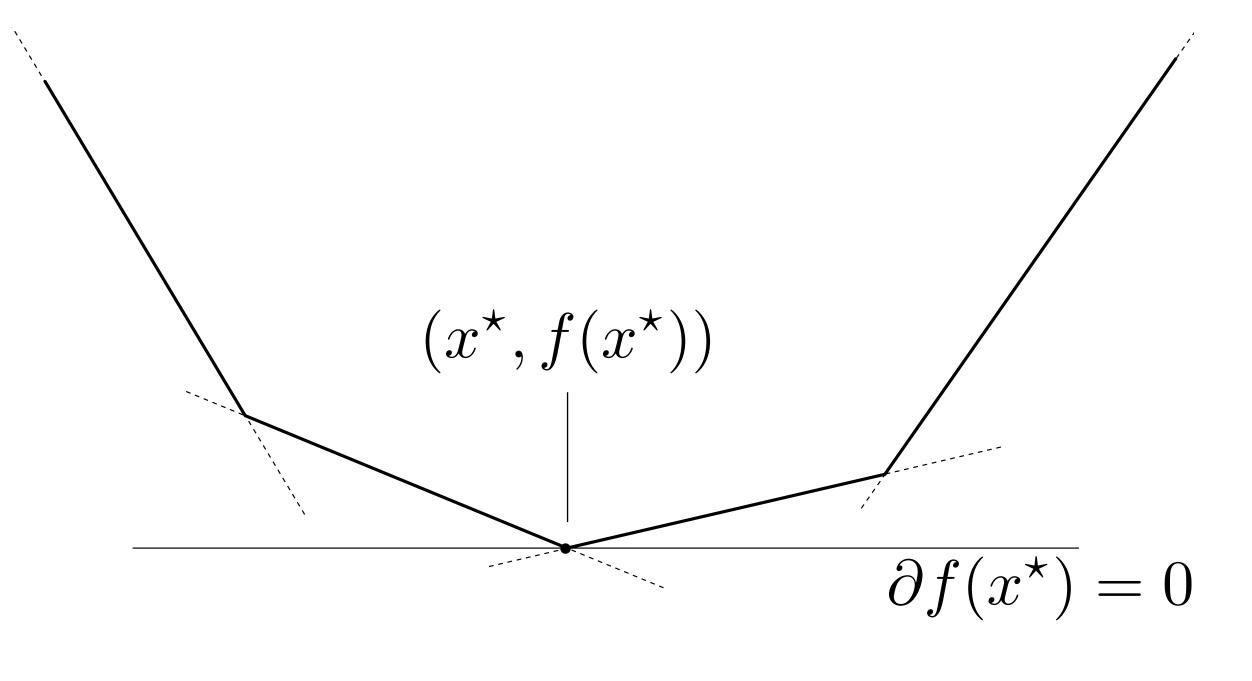
 x^{\star} is a global minimizer if and only if

$$0 \in \partial f(x^{\star})$$

Proof

A subgradient g=0 means that, for all y

$$f(y) \ge f(x^*) + 0^T (y - x^*) = f(x^*)$$



Note differentiable case with $\partial f(x) = \{\nabla f(x)\}$

Today's lecture [Chapter 3 and 6, FMO] [PA]

Proximal methods

- Optimality conditions with subdifferentials
- Subgradient method
- Proximal operators
- Proximal gradient method

Optimality conditions with subdifferentials

Constrained optimization

Indicator function

of a convex set

$$\mathcal{I}_C(x) = \begin{cases} 0 & x \in C \\ \infty & x \notin C \end{cases}$$

Constrained form

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in C \end{array}$

Unconstrained form

minimize $f(x) + \mathcal{I}_C(x)$

Subgradient of indicator function

 $\mathcal{N}_C(x)$

The subdifferential of the indicator function is the normal cone

$$\partial \mathcal{I}_C(x) = \mathcal{N}_C(x)$$

where,

$$\mathcal{N}_C(x) = \left\{ g \mid g^T(y - x) \le 0, \text{ for all } y \in C \right\}$$

By definition of subgradient g, $\mathcal{I}_C(y) \geq \mathcal{I}_C(x) + g^T(y-x)$, $\forall y$

$$y \notin C \implies \mathcal{I}_C(y) = \infty$$

$$y \in C \implies 0 \ge g^T(y-x)$$

First-order optimality conditions from subdifferentials

minimize
$$f(x) + \mathcal{I}_C(x)$$

f convex smooth, C convex

Fermat's optimality condition

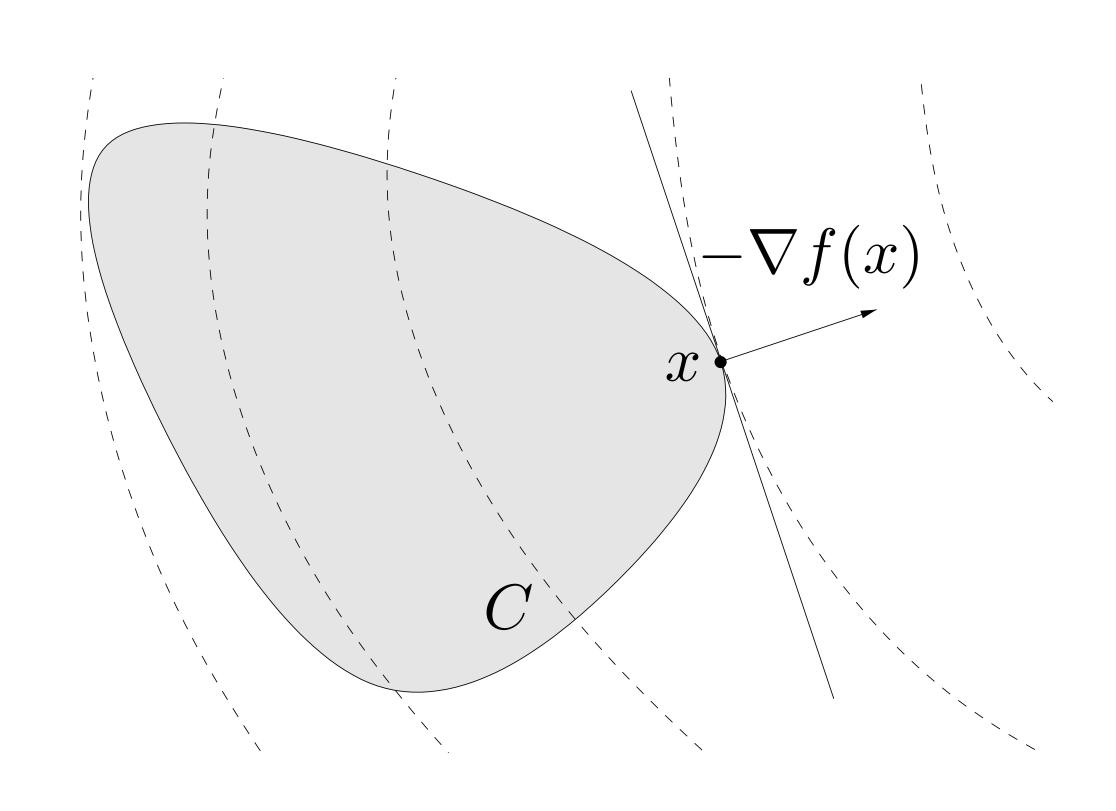
$$0 \in \partial(f(x) + \mathcal{I}_C(x))$$

$$\iff 0 \in \{\nabla f(x)\} + \mathcal{N}_C(x)$$

$$\iff -\nabla f(x) \in \mathcal{N}_C(x)$$

Equivalent to

$$\nabla f(x)^T (y - x) \ge 0, \quad \forall y \in C$$



Example: KKT of a quadratic program

Gradient

$$\nabla f(x) = Px + q$$

Normal cone to polyhedron Proof: [Theorem 6.46, Variational Analysis,

$$\mathcal{N}_{\{Ax < b\}}(x) = \{A^T y \mid y \ge 0 \text{ and } y_i(a_i^T x - b_i) = 0\}$$

First-order optimality condition

$-\nabla f(x) \in \partial \mathcal{I}_{\{Ax < b\}}(x) = \mathcal{N}_{\{Ax < b\}}(x)$

KKT Optimality conditions

$$Px + q + A^{T}y = 0$$

$$y \ge 0$$

$$Ax - b \le 0$$

$$y_{i}(a_{i}^{T}x - b_{i}) = 0, \quad i = 1, ..., m$$

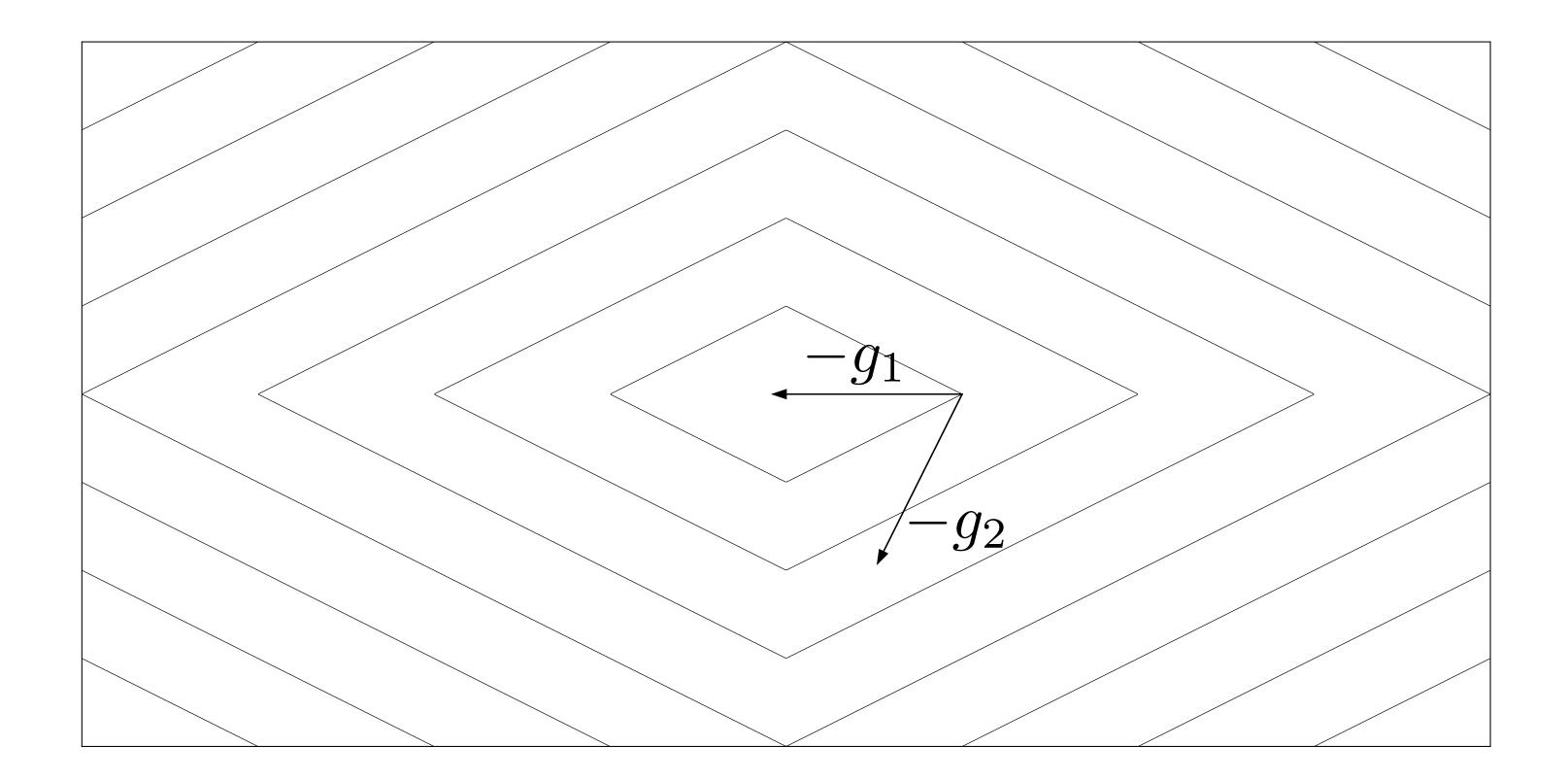
Idea: [Lecture 13].

Rockafellar & Wets]

Subgradient method

Negative subgradients are not necessarily descent directions

$$f(x) = |x_1| + 2|x_2|$$



$$x = (1, 0)$$

$$g_1=(1,0)\in\partial f(x)$$
 and $-g_1$ is a descent direction

$$g_2=(1,2)\in\partial f(x)$$
 and $-g_2$ is not a descent direction

Subgradient method

Convex optimization problem

minimize f(x) (optimal cost f^*)

Iterations

$$x^{k+1} = x^k - t_k g^k, \qquad g^k \in \partial f(x^k)$$

 g^k is any subgradient of f at x^k

Not a descent method, keep track of the best point

$$f_{\text{best}}^k = \min_{i=1,\dots,k} f(x^i)$$

Step sizes

Line search can lead to suboptimal points

Step sizes *pre-specified*, not adaptively computed (different than gradient descent)

Fixed:
$$t_k = t$$
 for $k = 0, \dots$

$$\sum_{k=0}^{\infty} t_k^2 < \infty, \quad \sum_{k=0}^{\infty} t_k = \infty$$

Square summable but not summable (goes to 0 but not too fast)

e.g.,
$$t_k = O(1/k)$$

Assumptions

- f is convex with $dom f = \mathbf{R}^n$
- $f(x^*) > -\infty$ (finite optimal value)
- f is Lipschitz continuous with constant G > 0, i.e.

$$|f(x) - f(y)| \le G||x - y||_2, \quad \forall x, y$$

which is equivalent to $||g||_2 \leq G$, $\forall g \in \partial f(x), \ \forall x$

Lipschitz continuity equivalence

f is Lipschitz continuous with constant G > 0, i.e.

$$|f(x) - f(y)| \le G||x - y||_2, \quad \forall x, y$$

which is equivalent to $||g||_2 \leq G$, $\forall g \in \partial f(x), \ \forall x$

Proof

If $||g|| \leq G$ for all subgradients, pick $x, g_x \in \partial f(x)$ and $y, g_y \in \partial f(y)$. Then,

$$g_x^T(x - y) \ge f(x) - f(y) \ge g_y^T(x - y)$$

$$\implies G||x - y||_2 \ge f(x) - f(y) \ge -G||x - y||_2$$

If $||g||_2 > G$ for some $g \in \partial f(x)$. Take $y = x + g/||g||_2$ such that $||x - y||_2 = 1$:

$$f(y) \ge f(x) + g^{T}(y - x) = f(x) + ||g||_{2} > f(x) + G$$

Theorem

Given a convex, G-Lipschitz continuous f with finite optimal value, the subgradient method obeys

$$f_{\text{best}}^k - f^* \le \frac{R^2 + G^2 \sum_{i=0}^k t_i^2}{2 \sum_{i=0}^k t_i}$$

where $||x^0 - x^*||_2 \le R$

Proof

Key quantity: euclidean distance to optimal set (not function value since it can go up and down)

$$||x^{k+1} - x^*||_2^2 = ||x^k - t_k g^k - x^*||_2^2$$

$$= ||x^k - x^*||_2^2 - 2t_k (g^k)^T (x^k - x^*) + t_k^2 ||g^k||_2^2$$

$$\leq ||x^k - x^*||_2^2 - 2t_k (f(x^k) - f^*) + t_k^2 ||g^k||_2^2$$

using subgradient definition $f^* = f(x^*) \ge f(x^k) + (g^k)^T (x^* - x^k)$

Proof (continued)

Combine inequalities for i = 0, ..., k

$$||x^{k+1} - x^{\star}||_{2}^{2} \le ||x^{0} - x^{\star}||_{2}^{2} - 2\sum_{i=0}^{k} t_{i}(f(x^{i}) - f^{\star}) + \sum_{i=0}^{k} t_{i}^{2}||g^{i}||_{2}^{2}$$

$$\leq R^2 - 2\sum_{i=0}^k t_i (f(x^i) - f^*) + G^2 \sum_{i=0}^k t_i^2$$

Using $||x^{k+1} - x^*||_2^2 \ge 0$ we get

$$2\sum_{i=0}^{k} t_i (f(x^i) - f^*) \le R^2 + G^2 \sum_{i=0}^{k} t_i^2$$

Proof (continued)

$$2\sum_{i=0}^{k} t_i (f(x^i) - f^*) \le R^2 + G^2 \sum_{i=0}^{k} t_i^2$$

Combine it with

$$\sum_{i=0}^{k} t_i (f(x^i) - f(x^*)) \ge \left(\sum_{i=0}^{k} t_i\right) \min_{i=0,\dots,k} (f(x^i) - f^*) = \left(\sum_{i=0}^{k} t_i\right) (f_{\text{best}}^k - f^*)$$

to get

$$f_{\text{best}}^k - f^* \le \frac{R^2 + G^2 \sum_{i=0}^k t_i^2}{2 \sum_{i=0}^k t_i}$$

Implications for step size rules

$$f_{\text{best}}^k - f^* \le \frac{R^2 + G^2 \sum_{i=0}^k t_i^2}{2 \sum_{i=0}^k t_i}$$

Fixed:

$$t_k = t$$
 for $k = 0, \dots$

$$f_{\text{best}}^k - f^* \le \frac{R^2 + G^2(k+1)t^2}{2(k+1)t}$$

May be suboptimal

$$\lim_{k \to \infty} f_{\text{best}}^k \le f^* + \frac{G^2 t}{2}$$

Diminishing:
$$\sum_{k=0}^{\infty} t_k^2 < \infty, \quad \sum_{k=0}^{\infty} t_k = \infty$$

e.g.,
$$t_k = \tau/(k+1)$$
 or $t_k = \tau/\sqrt{k+1}$

Optimal

$$\lim_{k \to \infty} f_{\text{best}}^k = f^*$$

Optimal step size and convergence rate

For a tolerance $\epsilon > 0$, let's find the optimal t_k for a fixed k:

$$\frac{R^2 + G^2 \sum_{i=0}^{k} t_i^2}{2 \sum_{i=0}^{k} t_i} \le \epsilon$$

Convex and symmetric in (t_0, \ldots, t_k) Hence, minimum when $t_i = t$

$$\frac{R^2 + G^2(k+1)t^2}{2(k+1)t}$$

Optimal choice
$$t = \frac{R}{G\sqrt{k+1}}$$

Convergence rate

$$f_{\text{best}}^k - f^* \le \frac{RG}{\sqrt{k+1}}$$

Iterations required

$$k = O(1/\epsilon^2)$$

(gradient descent $k = O(1/\epsilon)$)

Stopping criterion

Terminating when

$$\frac{R^2 + G^2 \sum_{i=0}^{k} t_i^2}{2 \sum_{i=0}^{k} t_i} \le \epsilon$$

is really, really slow.

Bad news

There is not really a good stopping criterion for the subgradient method

Optimal step size when f^* is known

Polyak step size

$$t_k = \frac{f(x^k) - f^*}{\|g^k\|_2^2}$$

Motivation: minimize righthand side of

$$||x^{k+1} - x^*||_2^2 \le ||x^k - x^*||_2^2 - 2t_k(f(x^k) - f^*) + t_k^2||g^k||_2^2$$

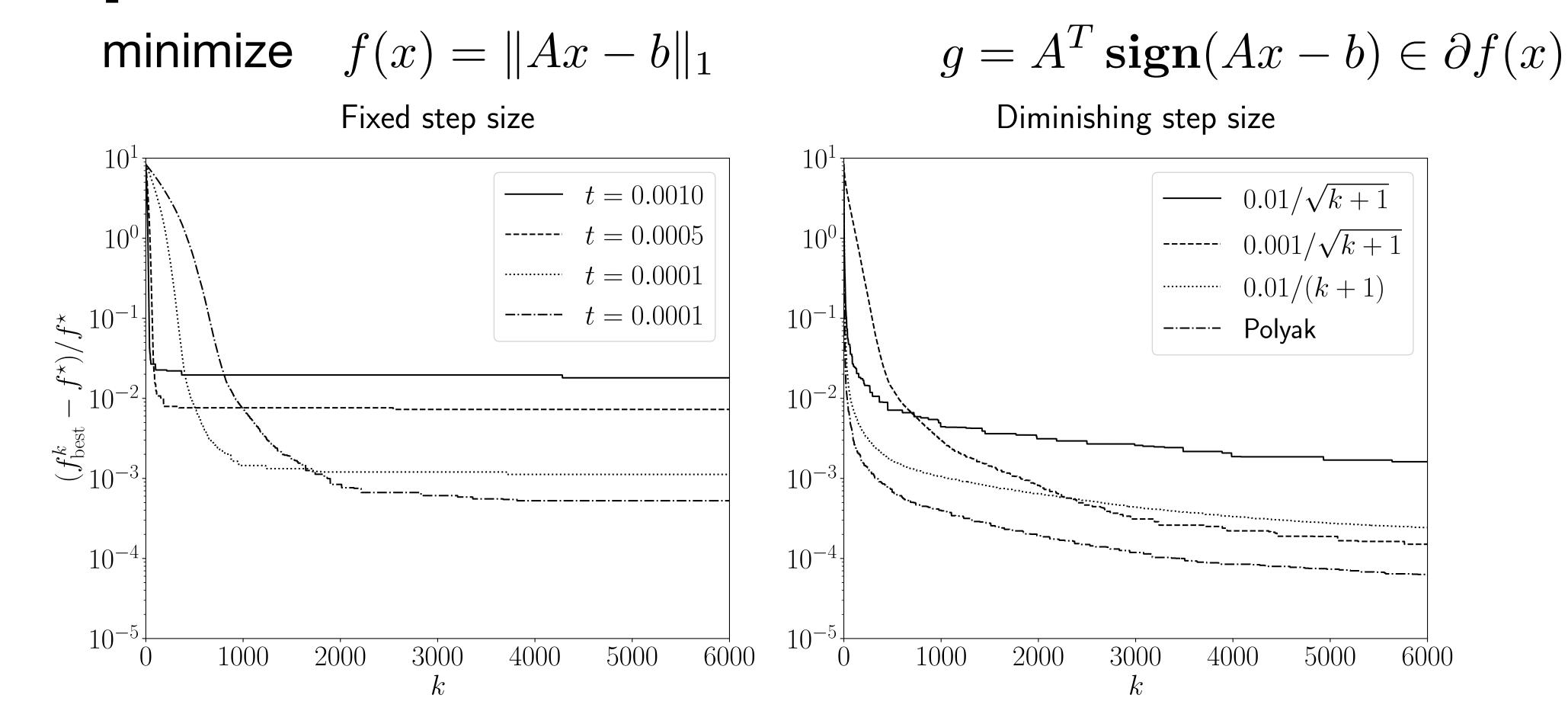
Obtaining
$$(f(x^k) - f^*)^2 \le (\|x^{k+1} - x^*\|_2^2 - \|x^k - x^*\|_2^2) G^2$$

Applying recursively,
$$f_{\mathrm{best}}^k - f^\star \leq \frac{GR}{\sqrt{k+1}}$$

Iterations required

$$k = O(1/\epsilon^2)$$
still slow

Example: 1-norm minimization



Efficient packages to automatically compute (sub)gradients: *Python:* JAX, PyTorch *Julia:* Zygote.jl, ForwardDiff.jl, ReverseDiff.jl

Summary subgradient method

- Simple
- Handles general nondifferentiable convex functions
- Very slow convergence $O(1/\epsilon^2)$
- No good stopping criterion

Can we do better?

Can we incorporate constraints?

Proximal operators

Composite models

minimize
$$f(x) + g(x)$$

f(x) convex and smooth g(x) convex (may be not differentiable)

Examples

- Regularized regression: $g(x) = ||x||_1$
- Constrained optimization: $g(x) = \mathcal{I}_C(x)$

Proximal operator

Definition

The proximal operator of the function $g: \mathbf{R}^n \to \mathbf{R}$ is

$$\mathbf{prox}_g(x) = \operatorname*{argmin}_z \left(g(z) + \frac{1}{2} ||z - x||_2^2 \right)$$

Optimality conditions of prox

$$0 \in \partial g(z) + z - x \implies x - z \in \partial g(z)$$

Properties

- It involves solving an optimization problem (not always easy!)
- Easy to evaluate for many standard functions, i.e. proxable functions
- · Generalizes many well-known algorithms

Generalized projection

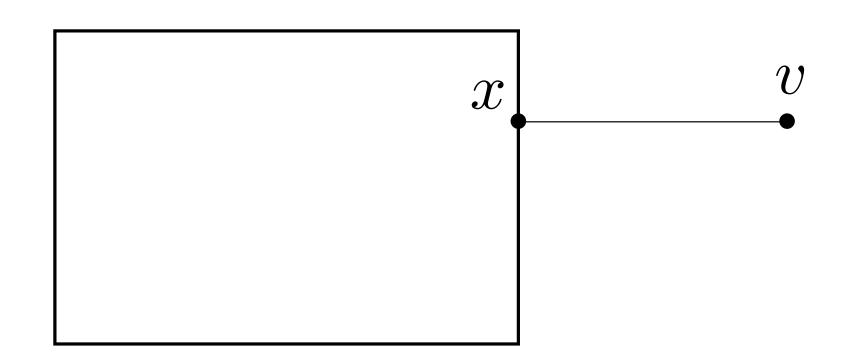
The prox operator of the indicator function \mathcal{I}_C is the projection onto C

$$\mathbf{prox}_{\mathcal{I}_C}(v) = \underset{x \in C}{\operatorname{argmin}} \|x - v\|_2 = \Pi_C(v)$$

Example projection onto a box $C = \{x \mid l \le x \le u\}$

$$\Pi_C(v)_i = \begin{cases} l_i & v_i \le l_i \\ v_i & l_i \le v_i \le u_i \end{cases}$$

$$u_i & v_i \ge u_i$$



Remarks

- Easy for many common sets (e.g., closed form)
- Can be "hard" for surprisingly simple lets, e.g., $C = \{Ax \leq b\}$

Quadratic functions

If
$$g(x) = (1/2)x^T P x + q^T x + r$$
 with $P \succeq 0$, then

$$\mathbf{prox}_g(v) = (I+P)^{-1}(v-q)$$

Remarks

- Closed-form always solvable (even with P not full rank)
- Symmetric, positive definite and usually sparse linear system
- Can prefactor I+P and solve for different v

Separable sum

If
$$g(x)$$
 is block separable, i.e., $g(x) = \sum_{i=1}^{N} g_i(x_i)$

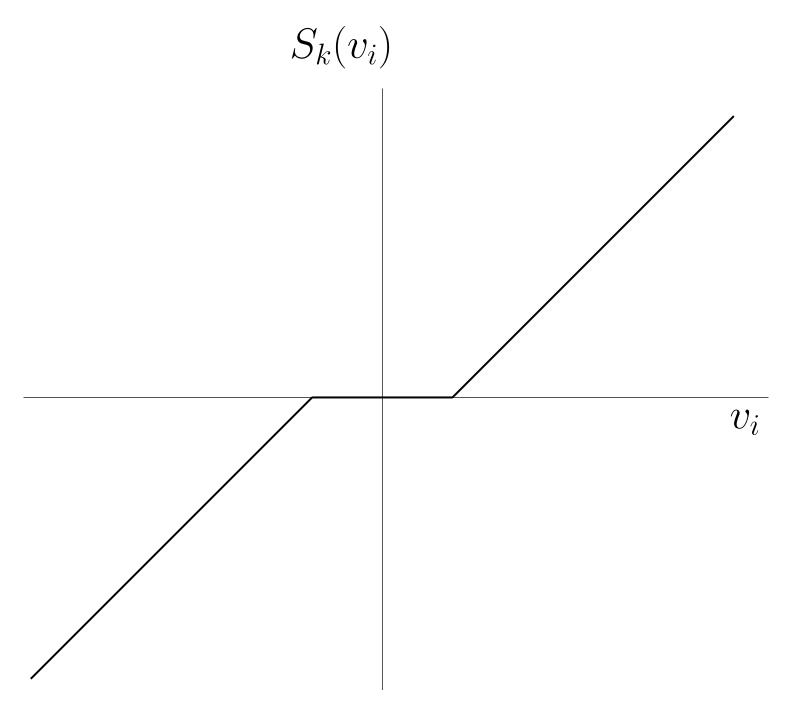
then,
$$(\mathbf{prox}_g(v))_i = \mathbf{prox}_{g_i}(v_i), \quad i = 1, \dots, N$$

(key to parallel/distributed proximal algorithms)

Example:
$$g(x) = \lambda ||x||_1 = \sum_{i=1}^{n} \lambda |x_i|$$

soft-thresholding

$$(\mathbf{prox}_g(v))_i = \mathbf{prox}_{\lambda|\cdot|}(v_i) = S_{\lambda}(v_i) = \begin{cases} v_i - \lambda & v_i > \lambda \\ 0 & |v_i| \le \lambda \\ v_i + \lambda & v_i < -\lambda \end{cases}$$



Basic rules

• Scaling and translation: g(x) = ah(x) + b with a > 0, then $\mathbf{prox}_{q}(x) = \mathbf{prox}_{ah}(x)$

Examples

- Affine addition: $g(x) = h(x) + a^T x + b$, then $\mathbf{prox}_{q}(x) = \mathbf{prox}_{h}(x-a)$
- Affine transformation: g(x) = h(ax + b), with $a \neq 0, a \in \mathbb{R}$,

$$\mathbf{prox}_g(x) = \frac{1}{a} \left(\mathbf{prox}_{a^2h}(ax+b) - b \right)$$

Proofs (exercise):

- Rearrange proximal term: $(1/2)||z-x||_2^2$
- Apply prox optimality conditions

Proximal gradient method

Remember: gradient descent interpretation

Problem

minimize f(x)

Iterations

$$x^{k+1} = x^k - t\nabla f(x^k)$$

Quadratic approximation, replacing Hessian $\nabla^2 f(x^k)$ with $\frac{1}{t}I$ $x^{k+1} = \operatorname*{argmin}_z f(x^k) + \nabla f(x^k)^T (z-x^k) + \frac{1}{2t} \|z-x^k\|_2^2$

Let's exploit the smooth part

minimize
$$f(x) + g(x)$$

f(x) convex and smooth g(x) convex (may be not differentiable)

Quadratic approximation of f while keeping g

$$x^{k+1} = \operatorname*{argmin}_z g(z) + f(x^k) + \nabla f(x^k)^T (z-x^k) + \frac{1}{2t} \|z-x^k\|_2^2 \hspace{0.2cm} \longleftarrow \hspace{0.2cm} \underset{\text{gradient descent}}{\operatorname{same as}}$$

Equivalent to

Proximal operator

$$x^{k+1} = \underset{z}{\operatorname{argmin}} \frac{tg(z)}{t} + \frac{1}{2} \frac{\left\|z - (x^k - t\nabla f(x^k))\right\|_2^2}{1} = \underset{z}{\operatorname{prox}}_{tg} \left(x^k - t\nabla f(x^k)\right)$$

$$\underset{z}{\text{make } g} \quad \text{stay close to} \quad \text{gradient update}$$

Proximal gradient method

minimize
$$f(x) + g(x)$$

f(x) convex and smooth g(x) convex (may be not differentiable)

Iterations

$$x^{k+1} = \mathbf{prox}_{tg} \left(x^k - t\nabla f(x^k) \right)$$

Properties

- Alternates between gradient updates of f and proximal updates on g
- Useful if \mathbf{prox}_{tg} is inespensive
- Can handle nonsmooth and constrained problems

Special cases

Generalized gradient descent

Problem

minimize f(x) + g(x)

Iterations

$$x^{k+1} = \mathbf{prox}_{tg} \left(x^k - t \nabla f(x^k) \right)$$

Smooth

$$g(x) = 0 \implies \mathbf{prox}_{tg}(x) = x$$

Constraints

$$g(x) = \mathcal{I}_C(x) \implies \mathbf{prox}_{tg}(x) = \Pi_C(x)$$

Non smooth

$$f(x) = 0$$

Gradient descent

$$\implies x^{k+1} = x^k - t\nabla f(x^k)$$

Projected gradient descent

$$\implies x^{k+1} = \Pi_C(x^k - t\nabla f(x^k))$$

Proximal minimization

$$\implies x^{k+1} = \mathbf{prox}_{tq}(x^k)$$

Note: useful if \mathbf{prox}_{tq} is cheap ³⁷

What happens if we cannot evaluate the prox?

At every iteration, it can be very expensive to evaluate

$$\mathbf{prox}_g(x) = \operatorname*{argmin}_z \left(g(z) + \frac{1}{2} ||z - x||_2^2 \right)$$

Idea: solve it approximately!

If you precisely control the $\mathbf{prox}_g(x)$ evaluation errors you can obtain the same convergence guarantees (and rates) as the exact evaluations.

Example: Lasso

Iterative Soft Thresholding Algorithm (ISTA)

minimize
$$(1/2) ||Ax - b||_2^2 + \lambda ||x||_1$$
 $f(x)$ $g(x)$

Proximal gradient descent

$$x^{k+1} = \mathbf{prox}_{tg} \left(x^k - t\nabla f(x^k) \right)$$

$$\nabla f(x) = A^T (Ax - b)$$

$$\mathbf{prox}_{tg}(x) = S_{\lambda t}(x)$$
 (component wise soft-thresholding)

Closed-form iterations

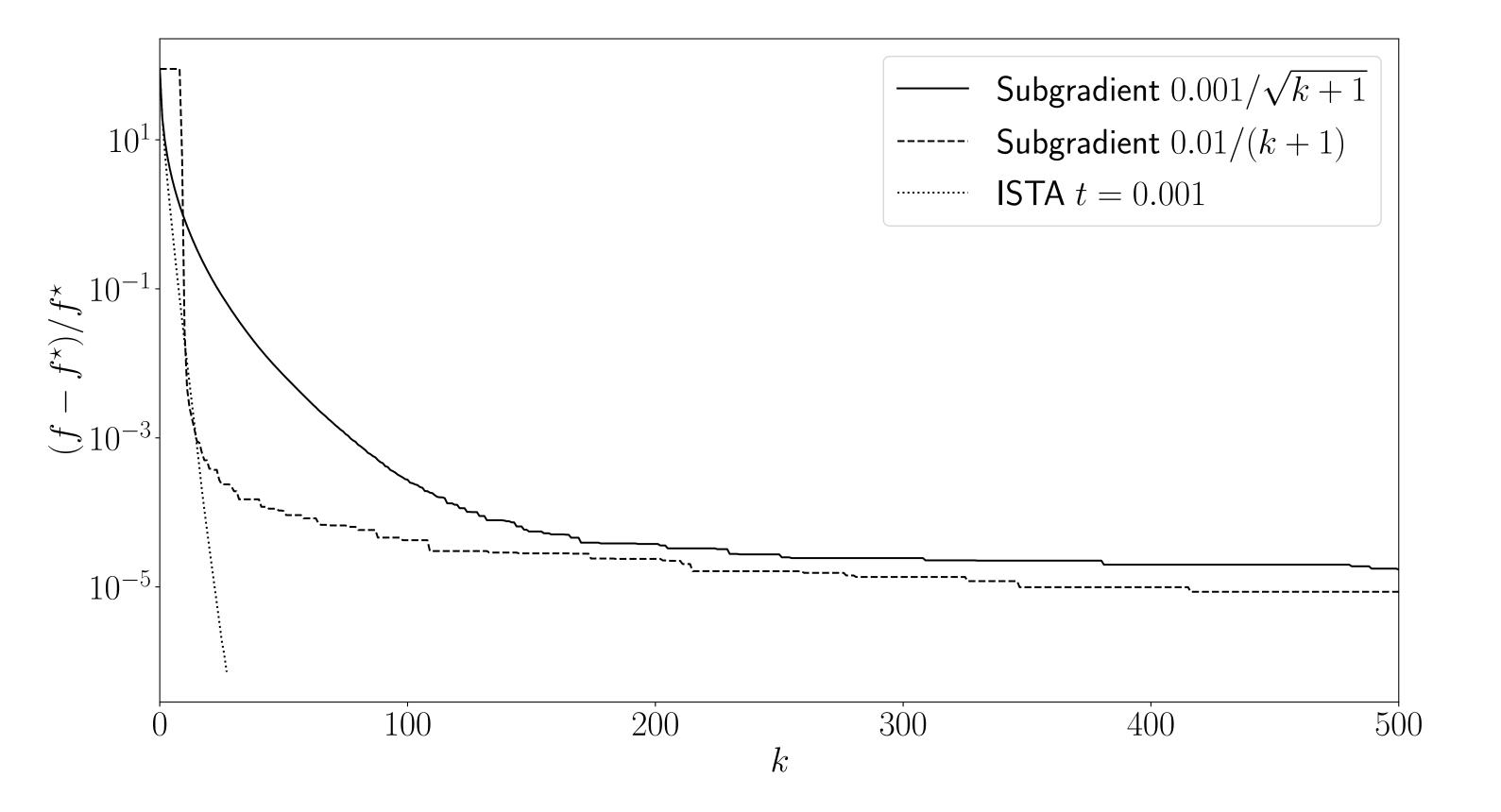
$$x^{k+1} = S_{\lambda t} (x^k - tA^T (Ax^k - b))$$

Example: Lasso

Iterative Soft Thresholding Algorithm (ISTA)

 $A \in \mathbf{R}^{500 \times 100}$

minimize
$$(1/2)||Ax - b||_2^2 + \lambda ||x||_1$$



Closed-form iterations

$$x^{k+1} = S_{\lambda t} \left(x^k - tA^T (Ax^k - b) \right)$$

Better convergence

Can we prove convergence generally?

Can we combine different operators?

Proximal methods and introduction to operators

Today, we learned to:

- Define subgradient method and analyze its convergence
- Derive optimality conditions for constrained optimization problems using subdifferentials
- Define and evaluate proximal operators for various common functions
- Apply proximal operators to generalize gradient descent (vanilla, projected, proximal)

Next lecture

Operator theory