ORF522 – Linear and Nonlinear Optimization

9. Sensitivity analysis for linear optimization

Ed Forum

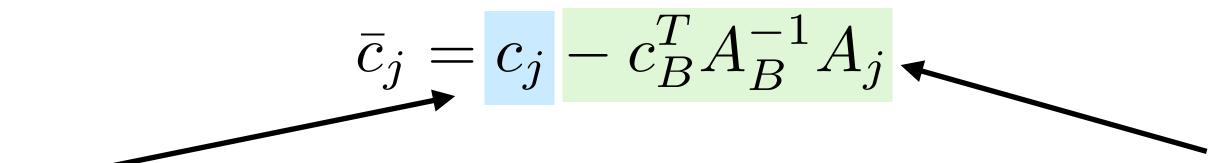
- Dual simplex applications?
- In the dual simplex part, we talked about in primal simplex, $X_B>0$ and $X_N=0$. However, I can confused about why in dual problem $ar c_B=0$ and $ar c_N>0$. Is there any intuition behind this?
- In the illustration of dual simplex method, we used the fact that if $y = -A_b^{-1}c_b$, then $A^Ty + c >= 0$ is equivalent to reduced cost >= 0. From there (page 32), we seem to be constantly using $A^Ty + c$ as the vector of reduced cost. However, I'm wondering why we can use this previous assumption in all our steps during the dual simplex. Why is $y = -A_b^{-1}c_b$ satisfied at all such middle steps or is this something only satisfied at the optimal solution?

Recap

Reduced costs

Interpretation

Change in objective/marginal cost of adding x_j to the basis



Cost per-unit increase of variable \boldsymbol{x}_j

Cost to change other variables compensating for x_j to enforce Ax = b

- $\bar{c}_j > 0$: adding x_j will increase the objective (bad)
- $\bar{c}_j < 0$: adding x_j will decrease the objective (good)

Reduced costs for basic variables is 0

$$\bar{c}_{B(i)} = c_{B(i)} - c_B^T A_B^{-1} A_{B(i)} = c_{B(i)} - c_B^T (A_B^{-1} A_B) e_i$$

$$= c_{B(i)} - c_B^T e_i = c_{B(i)} - c_{B(i)} = 0$$

Vector of reduced costs

Reduced costs

$$\bar{c}_j = c_j - c_B^T A_B^{-1} A_j$$

Isolate basis B-related components p (they are the same across j)

$$\bar{c}_j = c_j - A_j^T (A_B^{-1})^T c_B = c_j - A_j^T p$$

Full vector in one shot?

$$\bar{c} = (\bar{c}_1, \dots, \bar{c}_n)$$

Obtain p by solving linear system

$$p = (A_B^{-1})^T c_B \quad \Rightarrow \quad A_B^T p = c_B$$

Note: $(M^{-1})^T = (M^T)^{-1}$ for any square invertible M

Computing reduced cost vector

1. Solve
$$A_B^T p = c_B$$

2.
$$\bar{c} = c - A^T p$$

Primal and dual basic feasible solutions

Primal problem

Dual problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Given a basis matrix A_B

Primal feasible: $Ax = b, x \ge 0 \implies x_B = A_B^{-1}b \ge 0$

Reduced costs

Dual feasible:
$$A^Ty + c \ge 0$$
. If $y = -A_B^{-T}c_B \implies c - A^TA_B^{-T}c_B \ge 0$

If
$$y = -A_B^{-T} c_B \implies$$

$$c - A^T A_B^{-T} c_B \ge 0$$

Zero duality gap:
$$c^T x + b^T y = c_B^T x_B - b^T A_B^{-T} c_B = c_B^T x_B - c_B^T A_B^{-1} b = 0$$

Today's lecture [Chapter 5, LO]

Sensitivity analysis in linear optimization

- Adding new constraints and variables
- Change problem data
- Differentiable optimization

Adding new constraints and variables

minimize
$$c^Tx$$
 minimize $c^Tx + c_{n+1}x_{n+1}$ subject to $Ax = b$ subject to $Ax + A_{n+1}x_{n+1} = b$ $x \ge 0$ $x, x_{n+1} \ge 0$

Solution x^*, y^*

Solution $(x^*, 0), y^*$ optimal for the new problem?

Optimality conditions

Is y^* still dual feasible?

$$A_{n+1}^T y^* + c_{n+1} \ge 0$$

Yes Otherwise

 $(x^{\star},0)$ still **optimal** for new problem

Primal simplex

Example

minimize

$$-60x_1 - 30x_2 - 20x_3$$

subject to
$$8x_1 + 6x_2 + x_3 \le 48$$

$$4x_1 + 2x_2 + 1.5x_3 \le 20$$

$$2x_1 + 1.5x_2 + 0.5x_3 \le 8$$

-profit

material production quality control

$$x \ge 0$$

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array}$$

$$c = (-60, -30, -20, 0, 0, 0)$$

$$A = \begin{bmatrix} 8 & 6 & 1 & 1 & 0 & 0 \\ 4 & 2 & 1.5 & 0 & 1 & 0 \\ 2 & 1.5 & 0.5 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (48, 20, 8)$$

$$x^* = (2, 0, 8, 24, 0, 0), \quad y^* = (0, 10, 10), \quad c^T x^* = -280, \quad \text{basis } \{1, 3, 4\}$$

$$y^* = (0, 10, 10)$$

$$c^T x^* = -280$$

Example: add new product?

minimize
$$c^Tx+c_{n+1}x_{n+1}$$
 subject to
$$Ax+A_{n+1}x_{n+1}=b$$

$$x,x_{n+1}\geq 0$$

$$c = (-60, -30, -20, 0, 0, 0, -15)$$

$$A = \begin{bmatrix} 8 & 6 & 1 & 1 & 0 & 0 & 1 \\ 4 & 2 & 1.5 & 0 & 1 & 0 & 1 \\ 2 & 1.5 & 0.5 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$b = (48, 20, 8)$$

Previous solution

$$x^* = (2, 0, 8, 24, 0, 0), \quad y^* = (0, 10, 10), \quad c^T x^* = -280, \quad \text{basis } \{1, 3, 4\}$$

Still optimal

$$A_{n+1}^T y^* + c_{n+1} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{vmatrix} 0 \\ 10 \\ 10 \end{vmatrix} - 15 = 5 \ge 0$$

Shall we add a new product?

Adding new constraints

Dual

maximize
$$-b^Ty-b_{m+1}y_{m+1}$$
 subject to
$$A^Ty+a_{m+1}y_{m+1}+c\geq 0$$

Solution $x^*, (y^*, 0)$ optimal for the new problem?

Adding new constraints

Optimality conditions

maximize
$$-b^Ty-b_{m+1}y_{m+1}$$
 subject to $A^Ty+a_{m+1}y_{m+1}+c\geq 0$ — Solution $(y^\star,0)$ is still **dual feasible**

Is x^* still primal feasible?

$$Ax = b$$

$$a_{m+1}^T x = b_{m+1}$$

$$x > 0$$

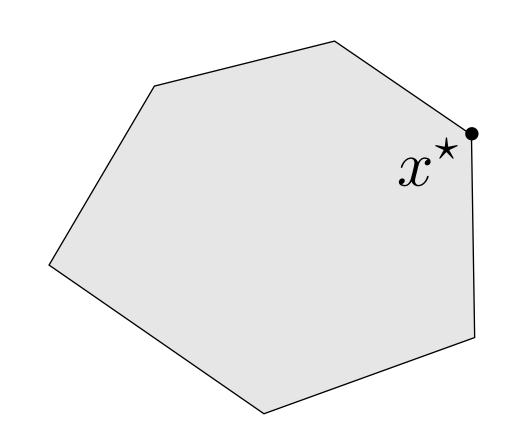
Yes

Otherwise

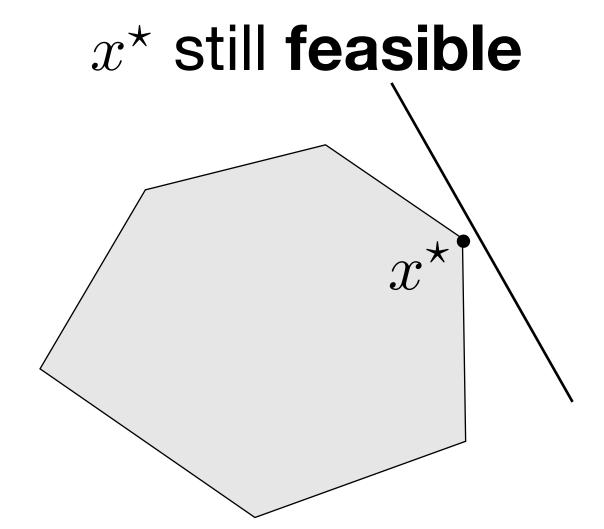
 x^{\star} still **optimal** for new problem

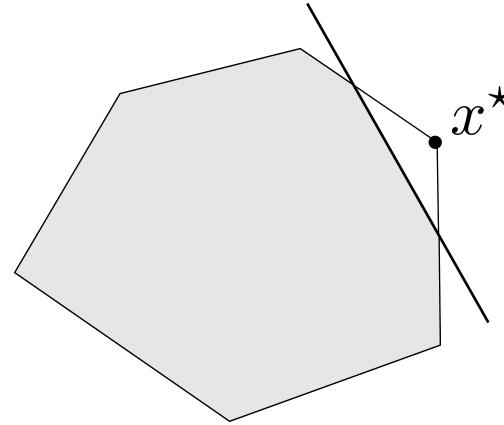
Dual simplex

Adding new constraints Example



Add new constraint





Global sensitivity analysis

Information from primal-dual solution

Goal: extract information from x^*, y^* about their sensitivity with respect to changes in problem data

Modified LP

$$\begin{array}{ll} \text{minimize} & c^Tx \\ \text{subject to} & Ax = b+u \\ & x \geq 0 \end{array}$$

Optimal cost $p^*(u)$

Global sensitivity

Dual of modified LP

$$\begin{array}{ll} \text{maximize} & -(b+u)^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Global lower bound

Given y^* a dual optimal solution for u=0, then

$$p^{\star}(u) \ge -(b+u)^T y^{\star}$$
 (from weak duality and $= p^{\star}(0) - u^T y^{\star}$ dual feasibility)

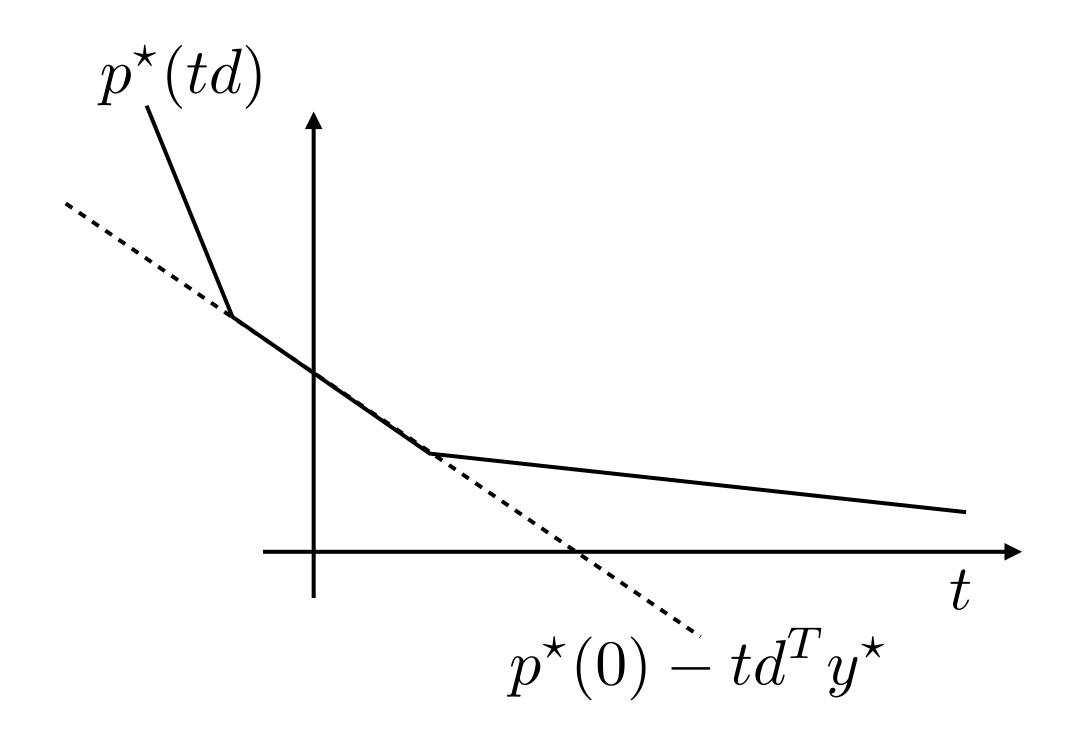
It holds for any \boldsymbol{u}

Global sensitivity

Example

Take u=td with $d\in\mathbf{R}^m$ fixed minimize c^Tx subject to Ax=b+td $x\geq 0$

 $p^{\star}(td)$ is the optimal value as a function of t



Sensitivity information (assuming $d^T y^* \ge 0$)

- t < 0 the optimal value increases
- t>0 the optimal value decreases (not so much if t is small)

Optimal value function

$$p^{\star}(u) = \min\{c^{T}x \mid Ax = b + u, \ x \ge 0\}$$

Assumption: $p^*(0)$ is finite

Properties

- $p^{\star}(u) > -\infty$ everywhere (from global lower bound)
- the domain $\{u \mid p^{\star}(u) < +\infty\}$ is a polyhedron
- $p^{\star}(u)$ is piecewise-linear on its domain

Optimal value function is piecewise linear

Proof

$p^{\star}(u) = \min\{c^{T}x \mid Ax = b + u, \ x \ge 0\}$

Dual feasible set

$$D = \{ y \mid A^T y + c \ge 0 \}$$

Assumption: $p^*(0)$ is finite

If
$$p^{\star}(u)$$
 finite
$$p^{\star}(u) = \max_{y \in D} -(b+u)^T y = \max_{k=1,...,r} -y_k^T u - b^T y_k$$

 y_1, \ldots, y_r are the extreme points of D

Local sensitivity analysis

Local sensitivity

u in neighborhood of the origin

Original LP

minimize $c^T x$

subject to Ax = b

$$x \ge 0$$

Optimal solution

Primal $x_i = 0, \quad i \notin B \\ x_B^\star = A_B^{-1} b$

$$x_B^{\star} = A_B^{-1}b$$

Dual $y^* = -A_B^{-T} c_B$

Modified LP

minimize $c^{T}x$

$$c^T x$$

subject to
$$Ax = b + u$$

$$x \ge 0$$

Modified dual

maximize $-(b+u)^T y$

subject to $A^Ty + c > 0$

Optimal basis does not change

Modified optimal solution

$$x_B^*(u) = A_B^{-1}(b+u) = x_B^* + A_B^{-1}u$$

 $y^*(u) = y^*$

Derivative of the optimal value function

Modified optimal solution

$$x_B^*(u) = A_B^{-1}(b+u) = x_B^* + A_B^{-1}u$$

 $y^*(u) = y^*$

Optimal value function

$$p^{\star}(u) = c^{T}x^{\star}(u)$$

$$= c^{T}x^{\star} + c_{B}^{T}A_{B}^{-1}u$$

$$= p^{\star}(0) - y^{\star T}u \qquad \text{(affine for small } u\text{)}$$

Local derivative

$$\frac{\partial p^{\star}(u)}{\partial u} = -y^{\star} \qquad (y^{\star} \text{ are the shadow prices})$$

Sensitivity example

minimize
$$-60x_1-30x_2-20x_3 \qquad \text{-profit}$$
 subject to
$$8x_1+6x_2+x_3\leq 48 \qquad \text{material}$$

$$4x_1+2x_2+1.5x_3\leq 20 \qquad \text{production}$$

$$2x_1+1.5x_2+0.5x_3\leq 8 \qquad \text{quality control}$$

$$x\geq 0$$

$$x^* = (2, 0, 8, 24, 0, 0), \quad y^* = (0, 10, 10), \quad c^T x^* = -280, \quad \text{basis } \{1, 3, 4\}$$

What does $y_3^* = 10$ mean?

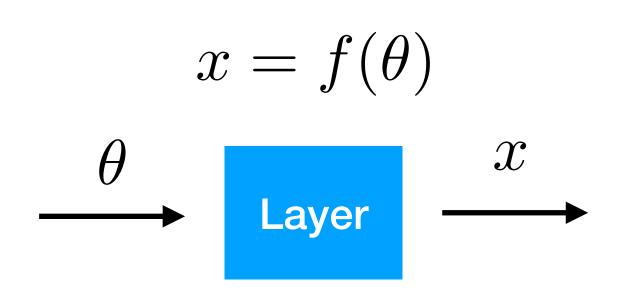
Let's increase the quality control budget by 1, i.e., u = (0, 0, 1)

$$p^{\star}(10) = p^{\star}(0) - y^{\star T}u = -280 - 10 = -290$$

Differentiable optimization

Training a neural network

Single layer model



Training

minimize $\mathcal{L}(\theta)$

Gradient descent (more on this later)

$$\theta \leftarrow \theta - t \nabla_{\theta} \mathcal{L}(\theta)$$

Sensitivity
$$\nabla_{\theta} \mathcal{L} = \left(\frac{\partial \mathcal{L}}{\partial \theta}\right)^{T} = \left(\frac{\partial \mathcal{L}}{\partial x} \frac{\partial x}{\partial \theta}\right)^{T} = \left(\frac{\partial x}{\partial \theta}\right)^{T} \nabla_{x} \mathcal{L}$$

Can f be an optimization problem?

Implicit layers

https://implicit-layers-tutorial.org/

find
$$x(\theta)$$
 subject to
$$r(\theta, x(\theta)) = 0$$

 $(x(\theta))$ is implicitly defined by r

How do we compute derivatives?

$$\frac{\partial x(\theta)}{\partial \theta}$$

Implicit function theorem

Under mild assumptions (non-singularity),

$$\frac{\partial r(\theta, x(\theta))}{\partial x} \frac{\partial x(\theta)}{\partial \theta} + \frac{\partial r(\theta, x(\theta))}{\partial \theta} = 0 \longrightarrow \frac{\partial x(\theta)}{\partial \theta} = -\left(\frac{\partial r(\theta, x(\theta))}{\partial x}\right)^{-1} \frac{\partial r(\theta, x(\theta))}{\partial \theta}$$

Optimization layers

$$x^\star(\theta) = \underset{x}{\operatorname{argmin}} \quad c^T x$$
 Parameters: $\theta = \{c, A, b\}$ subject to $Ax \leq b$ Solution $x^\star(\theta)$

Features

- Add domain knowledge and hard constraints
- End-to-end training and optimization
- Nice theory and algorithms for general convex optimization
- Applications in RL, control, meta-learning, game theory, etc.

Goal

Compute
$$\frac{\partial x^{\star}(\theta)}{\partial \theta}$$

Optimality conditions

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$$

Parameters: $\theta = \{c, A, b\}$ Solution $x^*(\theta)$

Solve and obtain primal-dual pair x^*, y^* (forward-pass)

Optimality conditions

$$A^{T}y + c = 0$$

$$\mathbf{diag}(y)(Ax - b) = 0$$

$$y \ge 0, \ b - Ax \ge 0$$

Mapping $r(\theta, x(\theta)) = 0$

Computing derivatives

Take differentials

$$A^{T}y^{*} + c = 0$$
$$\mathbf{diag}(y^{*})(Ax - b) = 0$$

$$A^{T}y^{*} + c = 0$$

$$\operatorname{diag}(y^{*})(Ax - b) = 0$$

$$\operatorname{diag}(Ax - b)dy + \operatorname{diag}(y^{*})(dAx^{*} + Adx - db) + dc = 0$$

Linear system

$$\begin{bmatrix} 0 & A^T \\ \mathbf{diag}(y^*)A & \mathbf{diag}(Ax^* - b) \end{bmatrix} \begin{bmatrix} dx \\ dy \end{bmatrix} = - \begin{bmatrix} dA^Ty^* + dc \\ \mathbf{diag}(y^*)(dAx^* - db) \end{bmatrix}$$

Example: How does x^* change with b_1 ?

Set $db = e_1, dA = 0, dc = 0$ and solve the linear system.

The solution $\mathrm{d}x$ will correspond to

Is it always differentiable?

The linear system matrix must be invertible (the problem must have unique solution)

$$\begin{bmatrix} 0 & A^T \\ \mathbf{diag}(y^*)A & \mathbf{diag}(Ax^* - b) \end{bmatrix} \begin{bmatrix} dx \\ dy \end{bmatrix} = -\begin{bmatrix} dA^Ty^* + dc \\ \mathbf{diag}(y^*)(dAx^* - db) \end{bmatrix}$$

$$M$$

Remember. implicit function theorem

$$\frac{\partial x(\theta)}{\partial \theta} = -\left(\frac{\partial r(\theta, x(\theta))}{\partial x}\right)^{-1} \frac{\partial r(\theta, x(\theta))}{\partial \theta}$$

If not, least squares "subdifferential"

minimize
$$\left\| M \begin{bmatrix} \mathrm{d}x \\ \mathrm{d}y \end{bmatrix} + q \right\|_2^2$$

Example

Learning to play Sudoku

		3
1		
	4	
4		1

2	4	1	3
1	3	2	4
3	1	4	2
4	2	3	1

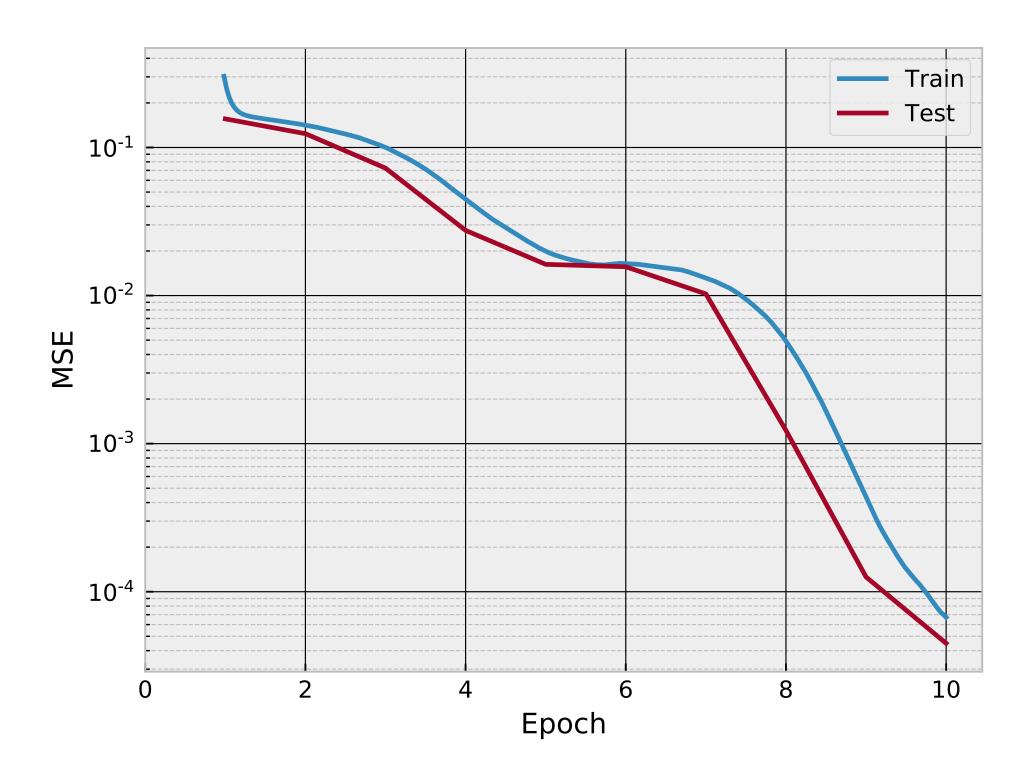
Sudoku constraint satisfaction problem

subject to
$$Ax = b$$

$$x > 0, x \in \mathbf{Z}^d$$

Linear optimization layer (parameters $\theta = \{A, b\}$)

$$x^{\star} = \underset{x}{\operatorname{argmin}} 0$$
 subject to $Ax = b$ $x \geq 0$



Sensitivity analysis in linear optimization

Today, we learned to:

 Use the most appropriate primal/dual simplex algorithm when variables and/ or constraints are added

- Analyze sensitivity of the cost with respect to change in the data
- Apply sensitivity analysis to differentiable linear optimization layers

Next lecture

Barrier methods for linear optimization