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Ed Forum

Dual simplex applications?

In the dual simplex part, we talked about in primal simplex, Xp > 0 and Xy = 0. However, |
can confused about why in dual problem ¢g = 0 and ¢y > 0. Is there any intuition behind this?

In the illustration of dual simplex method, we used the fact thatif y = -A_bA(-T)c_b, then AATy + ¢
>=0 is equivalent to reduced cost >=0. From there (page 32), we seem to be constantly using
AATy + c as the vector of reduced cost. However, I'm wondering why we can use this previous
assumption in all our steps during the dual simplex. Why isy = -A_b”(-T)c_b satisfied at all such
middle steps or is this something only satisfied at the optimal solution?






Reduced costs
Interpretation

Change in objective/marginal cost of adding z; to the basis

— 1

/ \

Cost per-unit increase Cost to change other variables

- compensating for x
of variable z; to enF:‘orce Axg = b :

» ¢; > 0: adding z; will increase the objective (bad)
- ¢; < 0: adding z,; will decrease the objective (good)

Reduced costs for basic variables is O

CB(@) — CB(@) — CBA 1AB(@) — CB(@) — CB(A 1AB)

— CB(i) — cﬂei — CB(i) — CB(i) = 0 4



Vector of reduced costs

Reduced costs

T A-14
C; =cj —CgpAg A;

|Isolate basis B-related components p
(they are the same across )

Full vector in one shot?

c=(C1y...,Cn)

Obtain p by solving linear system

D = (Agl)TCB —> Agp — Cp

Note: (M—1)1 = (M*)~1!
for any square invertible M

Computing reduced cost vector
1. Solve Agp = CB

2. c=c— A'p



Primal and dual basic feasible solutions

Primal problem Dual problem
minimize clx maximize —bTy
subjectto Az = subjectto ATy + ¢ >0

r > 0

Given a basis matrix Ag

Primal feasible: Az =b, >0 = a23=A4,0>0 Reduced costs

/

Dual feasible: ATy + c > 0. If Yy = —AéTCB — C — ATAETCB > ()

Zero duality gap: ¢’ = + b’y = chap — bTAchB = CcRrIpB — chglb =0

T

(by construction)



Today'’s lecture
[Chapter 5, LO]

Sensitivity analysis in linear optimization
 Adding new constraints and variables

 Change problem data

» Differentiable optimization



Adding new constraints and
variables



Adding new variables

minimize ¢’z minimize  c'x + cpp1Tnid
subjectto Arxr=b —> subjectto Ax+ A, 1Tn11 =0
xr > 0 Ly Ln+1 > 0

Solution x*, y*

Solution (z*,0), y* optimal for the new problem?



Adding new variables

Optimality conditions

minimize ¢z + cp12n41
subjectto Ax + A, 112,41 =b ——— Solution (z*,0) is still primal feasible
Ly L1 > 0

Is y* still dual feasible?

AZ+1?J* + Cny1 2= 0

Yes Otherwise

(x*,0) still optimal for new problem Primal simplex
10



Adding new variables

Example

minimize  —60x; — 3025 — 20x3 -profit

subjectto 8x; + 6x9 + x3 < 48 material

minimize
subject to

r* = (2,0,8,24,0,0),

dr1 + 229 + 1.523 <20  production
221 + 1.0z + 0.523 < 8  quality control

xr > 0
c = (—60, —30,—-20,0,0,0)
clx 8 6 1 1 0 0
Axr = b A=14 2 15 0 1 0
x > 0 2 15 05 0 0 1T

b = (48, 20, 8)

y* = (0,10,10), c'2z* = —280, basis {1,3,4}
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minimize clz 4+ cp12041

SUbjeCt to Ax + An—l—lxn—l—l =%
Ly L1 > 0

Previous solution

Adding new variables

Example: add new product?

¢ = (—60, —30, —20,0,0,0, —15)

s 6 1 1 0 0 1
A=14 2 15 0 1 0 1

2 15 05 0 0 1 1
b = (48, 20, 8)

r* =(2,0,8,24,0,0), v*=(0,10,10), cla*= —280, basis{1,3,4}

Still optimal

AZ 1y* —|—Cn_|_1 =11 1 1 10
' 110

—10=952>0

Shall we add a
new product?
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Adding new constraints

minimize L minimize C" X

subjectto Az =0 — subjectto Ax =0
r 2> Ay 1T = by
. x > (

Solution z*, y*

Dual
maximize —bTy — bm—l—lym—l—l
SUbjeCt to ATy T+ Am+1Ym+1 T C > ()

Solution z*, (y*, 0) optimal for the new problem?
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Adding new constraints

Optimality conditions

subjectto ATy + ami1tyme1 +c>0 Solution (y*, 0) is still dual feasible

Is x* still primal feasible?

Axr =0

T _

r > 0
Yes Otherwise

™ still optimal for new problem Dual simplex
14



Adding new constraints

Example z* still feasible

x Add new constraint

.

™ Infeasible




Global sensitivity analysis



Information from primal-dual solution

Goal: extract information from x*,y* about their sensitivity with respect to
changes in problem data

Modified LP
minimize ¢!z
subjectto Az =0+ u

r >0

Optimal cost p* (u)
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Global sensitivity

Dual of modified LP
maximize —(b+u)'y
subjectto ATy +c¢ >0

Global lower bound

Given y* a dual optimal solution for u = 0, then

p*(u) > —(b+u)"y*
=p*(0) —u'y*

It holds for any u

(from weak duality and
dual feasibility)
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Global sensitivity

Example

Take u = td with d € R™ fixed
minimize iz
subjectto Ax =b+td

r > 0

p*(td) is the optimal value as a function of ¢

Sensitivity information (assuming d* y* > 0)

» ¢t < 0 the optimal value increases
« t > 0 the optimal value decreases (hot so much if ¢ is small)
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Optimal value function
p*(vw) =min{c' z | Az =b+u, x >0}

Assumption: p*(0) is finite

Properties
* p*(u) > —oo everywhere (from global lower bound)

» the domain {u | p*(u) < +o0} is a polyhedron

+ p*(u) is piecewise-linear on its domain

20



Optimal value function is piecewise linear

Proof
Dual feasible set

p*(u) = min{c'z | Az =b+u, x> 0} D={y|A'y+c>0}

Assumption: p*(0) is finite

If p*(u) finite

X (0 (b T, _ T — pT
pr(u) =max—(b+u)'y = max —y,u-—b y

v1,...,Y, are the extreme points of D

21



Local sensitivity analysis



Local sensitivity

uw In neighborhood of the origin

Original LP Optimal solution
minimize ¢’z Primal ri=0, i¢B
subjectto Arxr=6 —— TR = Aélb

r > 0 Dual y* = —Ag5 cp
Modified LP Modified dual
minimize ¢’z maximize —(b+u)"y
subjectto Az =0+ u subjectto ATy +c >0
x > 0

Modified optimal solution
rp(u) = A (b+u) = a5 + Az'u
y (u) =y

Optimal basis
does not change
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Derivative of the optimal value function

Modified optimal solution
v (u) = A (b+u) = 2% + Ag'u
y (u) =y

Optimal value function

p*(u) = ¢ z*(u)
=c'a* + cg ALl u

= p*(0) — y*Tu (affine for small u)

Local derivative

5’1?8 iu) — (y* are the shadow prices)
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Sensitivity example

minimize  —60x; — 3022 — 20x3 -profit
subjectto 8z + 6x2 + x3 < 48 material
dr1 + 220 + 1.023 <20  production

221 + L.oxo + 0.023 <8 quality control
xr > 0

r* =(2,0,8,24,0,0), v*=(0,10,10), cla*= —280, basis{1,3,4}
What does y; = 10 mean?

Let’s increase the quality control budget by 1, i.e., u = (0,0, 1)
p*(10) = p*(0) — y* 'u = —280 — 10 = —290
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Differentiable optimization



Training a neural network

Single layer model

v = f(0)

Training

minimize L(0)
0 T

—_—p Vg —

Gradient descent (more on this later)
0 < 0 —tVeLl(0)

Sensitivity
!
oL\  [oLOx\ [Ox\
vot=(5) ~(acar) ~ (@) v

Can f be an optimization problem?

27



Implicit layers
https://implicit-layers-tutorial.org/
find z(6)
subjectto r(6,xz(0)) =0

(x(0) is implicitly defined by r)

How do we compute derivatives?
O0x(0)
00

Implicit function theorem
Under mild assumptions (non-singularity),

or(0,x(0)) 0x(0)  Or(6,z(0)) 0 - 0x(0) _ ar(0,z(0))\ " ar(0,z(0))

O 00 00 00 _< O ) 00

[Theorem 1. B.1, Dontchev and Rockafellar 2009] 28



Optimization layers

x"(0) = argmin c' Parameters: 6 = {c, A, b}
subjectto Ax <b Solution z* ()

Features

 Add domain knowledge and hard constraints
 End-to-end training and optimization

* Nice theory and algorithms for general convex optimization
* Applications in RL, control, meta-learning, game theory, etc.

Goal
Ox™*(0)
00

Compute

29



Optimality conditions

minimize L r Parameters: 6 = {c, A, b}
subjectto Ax <b Solution x* ()

Solve and obtain primal-dual pair z*, y* (forward-pass)

Optimality conditions

Aty+c=0
diag(y)(Axz — b) =0
y>0,0—Ax >0

Mapping (6, z(6)) = 0

30



Computing derivatives

Take differentials
At y* + ¢ = dAT y* + Atdy =0
diag(y™)(Ax — b) = diag(Ax — b)dy + diag(y™)(dAz™ + Adz — db) +dc =0

Linear system
0 At | [dx _ dAty* + dc

diag(y*)A diag(Axz* —b)| |dy diag(y*)(dAz™ —db)

Example: How does z* change with 6,7

Set db = e;,dA = 0,dc = 0 and solve the linear system.

The solution dx will correspond to ng 31
1



Is it always differentiable?

The linear system matrix must be invertible
(the problem must have unigue solution)

0 At | [dx] B _ dATy* + de
diag(y*)A diag(Az* —0b)| |dy|  |diag(y*)(dAx™ —db)
M q
Remember. implicit function theorem If not, least squares “subdifferential”

2

Dul) (0O OAO) iz [ 1] 4
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Example
Learning to play Sudoku

Sudoku constraint satisfaction problem
minimize 0

subjectto Az = b

r >0, xeZ

1072 :

SE

Linear optimization layer (parameters 6 = {A,b}) *

1073 :

*

r* = argmin 0

subjectto Az =0
r > 0

[OptNet: Differentiable Optimization as a Layer in Neural Networks, B. Amos and J. Z. Kolter ICML 2017]

.

104 :




Sensitivity analysis in linear optimization

Today, we learned to:
 Use the most appropriate primal/dual simplex algorithm when variables and/
or constraints are added

* Analyze sensitivity of the cost with respect to change in the data

* Apply sensitivity analysis to differentiable linear optimization layers

34



Next lecture

 Barrier methods for linear optimization
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