ORF522 – Linear and Nonlinear Optimization

8. Linear optimization duality

Ed Forum

- Why do we need to solve dual problem instead of the primal problem? When
 we have a LP problem, in what scenario does solving dual problem more
 efficient than primal problem?
- How does the definition of y imply nonnegative reduced costs?

Recap

Optimal objective values

Primal

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax < b \end{array}$

 p^{\star} is the primal optimal value

Primal infeasible: $p^* = +\infty$ Primal unbounded: $p^* = -\infty$

Dual

 $\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$

 d^{\star} is the dual optimal value

Dual infeasible: $d^* = -\infty$ Dual unbounded: $d^* = +\infty$

Relationship between primal and dual

	$p^{\star} = +\infty$	p^\star finite	$p^{\star} = -\infty$
$d^{\star} = +\infty$	primal inf. dual unb.		
d^\star finite		optimal values equal	
$d^{\star} = -\infty$	exception		primal unb. dual inf

- Upper-right excluded by weak duality
- (1,1) and (3,3) proven by weak duality
- (3,1) and (2,2) proven by strong duality

Today's agenda

Readings: [Chapter 4, LO][Chapter 11, LP]

- Two-person zero-sum games
- Farkas lemma
- Complementary slackness
- Dual simplex method

Two-person zero-sum games

Rock paper scissors

Rules

At count to three declare one of: Rock, Paper, or Scissors

Winners

Identical selection is a draw, otherwise:

- Rock beats ("dulls") scissors
- Scissors beats ("cuts") paper
- Paper beats ("covers") rock

Extremely popular: world RPS society, USA RPS league, etc.

Two-person zero-sum game

- Player 1 (P1) chooses a number $i \in \{1, \ldots, m\}$ (one of m actions)
- Player 2 (P2) chooses a number $j \in \{1, \dots, n\}$ (one of n actions)

Two players make their choice independently

Two-person zero-sum game

- Player 1 (P1) chooses a number $i \in \{1, \ldots, m\}$ (one of m actions)
- Player 2 (P2) chooses a number $j \in \{1, \ldots, n\}$ (one of n actions)

Two players make their choice independently

Rule

Player 1 pays A_{ij} to player 2

 $A \in \mathbf{R}^{m \times n}$ is the payoff matrix

Rock, Paper, Scissors

Mixed (randomized) strategies

Deterministic strategies can be systematically defeated

Mixed (randomized) strategies

Deterministic strategies can be systematically defeated

Randomized strategies

- P1 chooses randomly according to distribution x: $x_i = \text{probability that P1 selects action } i$
- P2 chooses randomly according to distribution y: y = probability that P2 selects action <math>j

Mixed (randomized) strategies

Deterministic strategies can be systematically defeated

Randomized strategies

- P1 chooses randomly according to distribution x: $x_i = \text{probability that P1 selects action } i$
- P2 chooses randomly according to distribution y: $y_i = \text{probability that P2 selects action } j$

Expected payoff (from P1 P2), if they use mixed-strategies x and y,

$$\sum_{i=1}^{m} \sum_{j=1}^{n} x_i y_j A_{ij} = x^T A y$$

Mixed strategies and probability simplex

Probability simplex in \mathbf{R}^k

$$P_k = \{ p \in \mathbf{R}^k \mid p \ge 0, \quad \mathbf{1}^T p = 1 \}$$

Mixed strategy

For a game player, a mixed strategy is a distribution over all possible deterministic strategies.

The set of all mixed strategies is the probability simplex $\longrightarrow x \in P_m$, $y \in P_n$

P1: optimal strategy x^* is the solution of

minimize
$$\max_{y \in P_n} x^T A y$$

subject to $x \in P_m$

P2: optimal strategy y^* is the solution of

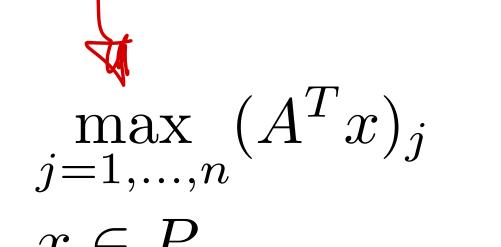
$$\begin{array}{ll}
\text{maximize} & \min_{x \in P_m} x^T A y \\
\end{array}$$

subject to
$$y \in P_n$$

P1: optimal strategy x^* is the solution of

minimize

subject to
$$x \in P_m$$



$$((0,0)=e_{1})$$

 $(0,1,0)=e_{2}$
 $(0,0,1)=e_{3}$

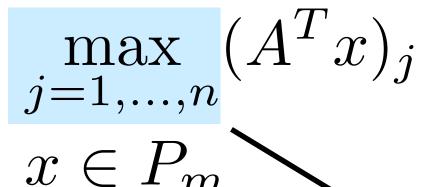
P2: optimal strategy y^* is the solution of

$$\begin{array}{lll} \text{maximize} & \min_{x \in P_m} x^T \boxed{Ay} \\ \text{subject to} & y \in P_n \end{array} \qquad \begin{array}{ll} \text{maximize} & \min_{i=1,\dots,m} (Ay)_i \\ \text{subject to} & y \in P_n \end{array}$$

P1: optimal strategy x^* is the solution of

minimize max

subject to $x \in P_m$

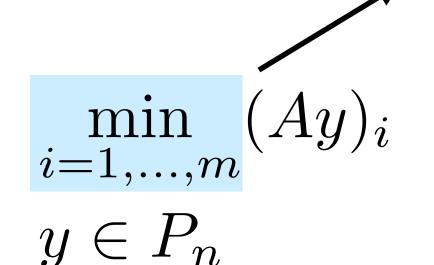


P2: optimal strategy y^* is the solution of

$$\begin{array}{ll} \text{maximize} & \min\limits_{x \in P_m} x^T A y \\ \text{subject to} & y \in P_n \end{array}$$

maximize

subject to



Inner problem over

deterministic

strategies (vertices)

P1: optimal strategy x^* is the solution of

minimize

subject to $x \in P_m$

$$\max_{j=1,\dots,n} (A^T x)_j$$

$$x \in P_m$$

Inner problem over deterministic strategies (vertices)

P2: optimal strategy y^* is the solution of

$$\begin{array}{ll} \text{maximize} & \min\limits_{x \in P_m} x^T A y \\ \text{subject to} & y \in P_n \end{array}$$

maximize

subject to

$$\min_{i=1,\ldots,m} (Ay)_i$$

 $y \in P_n$

Optimal strategies x^* and y^* can be computed using linear optimization

Theorem

$$\max_{y \in P_n} \min_{x \in P_m} x^T A y = \min_{x \in P_m} \max_{y \in P_n} x^T A y$$

Theorem

$$\max_{y \in P_n} \min_{x \in P_m} x^T A y = \min_{x \in P_m} \max_{y \in P_n} x^T A y$$

Proof

The optimal x^* is the solution of

```
minimize t subject to A^Tx \leq t\mathbf{1} \mathbf{1}^Tx = 1 x \geq 0
```

Theorem

$$\max_{y \in P_n} \min_{x \in P_m} x^T A y = \min_{x \in P_m} \max_{y \in P_n} x^T A y$$

Proof

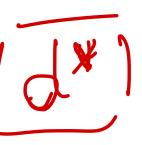
The optimal x^* is the solution of

```
minimize t subject to A^Tx \leq t\mathbf{1} \mathbf{1}^Tx = 1 x \geq 0
```

The optimal y^* is the solution of maximize w subject to $Ay \ge w\mathbf{1}$ $\mathbf{1}^T y = 1$ $y \ge 0$

Theorem

$$\max_{y \in P_n} \min_{x \in P_m} x^T A y = \min_{x \in P_m} \max_{y \in P_n} x^T A y$$



Proof

The optimal x^* is the solution of

minimize

subject to $A^T x \leq t \mathbf{1}$

 ${\bf 1}^T x = 1$

x > 0

The optimal y^* is the solution of

maximize

subject to $Ay \ge w\mathbf{1}$ $\mathbf{1}^T y = 1$

 $y \ge 0$

Nash equilibrium

Theorem

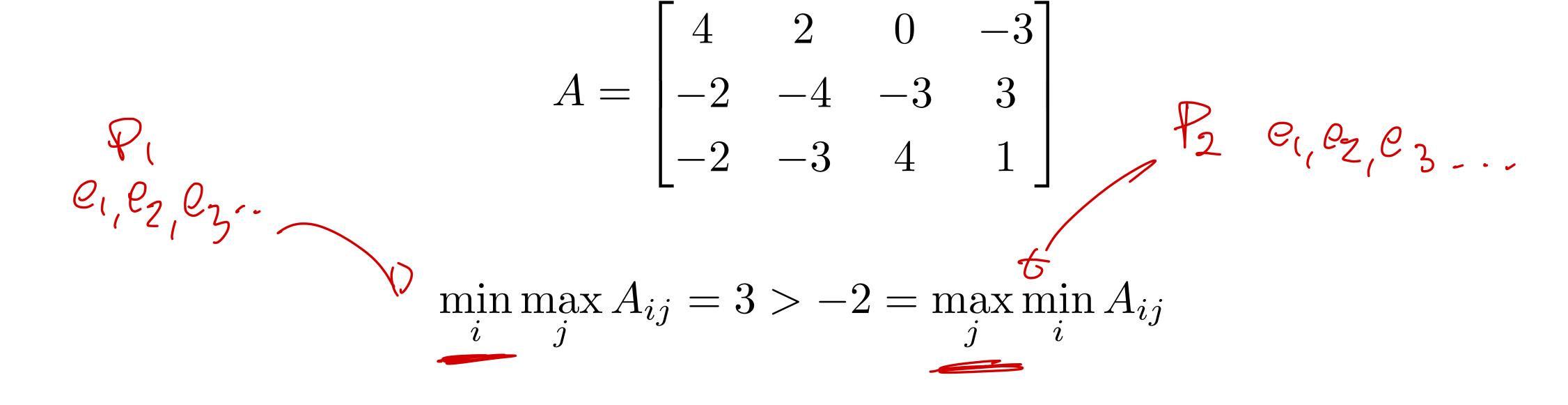
$$\max_{y \in P_n} \min_{x \in P_m} x^T A y = \min_{x \in P_m} \max_{y \in P_n} x^T A y$$

Consequence

The pair of mixed strategies (x^*, y^*) attains the **Nash equilibrium** of the two-person matrix game, i.e.,

$$x^T A y^* \ge x^{*T} A y^* \ge x^{*T} A y, \quad \forall x \in P_m, \ \forall y \in P_n$$

Example



Example

$$A = \begin{bmatrix} 4 & 2 & 0 & -3 \\ -2 & -4 & -3 & 3 \\ -2 & -3 & 4 & 1 \end{bmatrix}$$

$$\min_{i} \max_{j} A_{ij} = 3 > -2 = \max_{j} \min_{i} A_{ij}$$

Optimal mixed strategies

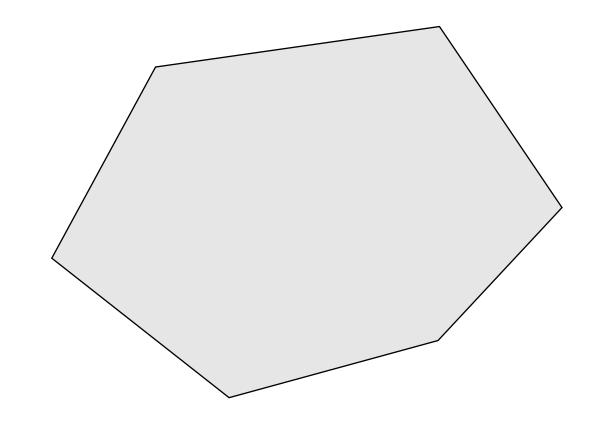
$$x^* = (0.37, 0.33, 0.3), \quad y^* = (0.4, 0, 0.13, 0.47)$$

Expected payoff

$$x^{\star T}Ay^{\star} = 0.2$$

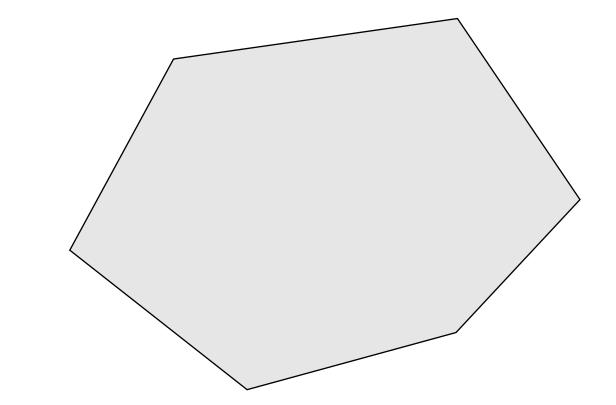
Feasibility of polyhedra

$$P = \{x \mid Ax = b, \quad x \ge 0\}$$



Feasibility of polyhedra

$$P = \{x \mid Ax = b, \quad x \ge 0\}$$

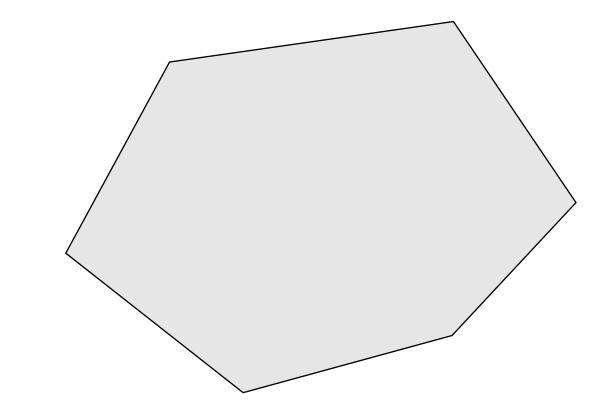


How to show that P is **feasible**?

Easy: we just need to provide an $x \in P$, i.e., a certificate

Feasibility of polyhedra

$$P = \{x \mid Ax = b, \quad x \ge 0\}$$



How to show that P is **feasible**?

Easy: we just need to provide an $x \in P$, i.e., a certificate

How to show that P is **infeasible**?

Theorem

Given A and b, exactly one of the following statements is true:

- 1. There exists an x with Ax = b, $x \ge 0$
- 2. There exists a y with $A^Ty \ge 0$, $b^Ty < 0$

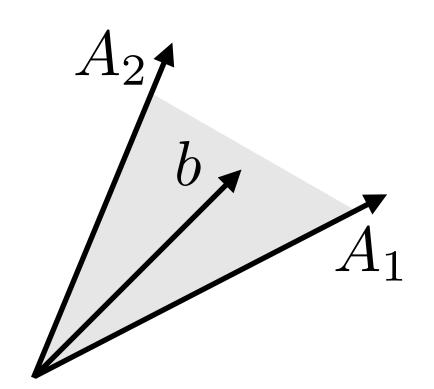
Geometric interpretation

1. First alternative

There exists an x with Ax = b, $x \ge 0$

$$b = \sum_{i=1}^{n} x_i A_i, \quad x_i \ge 0, \ i = 1, \dots, n$$

b is in the cone generated by the columns of $\cal A$



Geometric interpretation

1. First alternative

There exists an x with Ax = b, $x \ge 0$

$$b = \sum_{i=1}^{n} x_i A_i, \quad x_i \ge 0, \ i = 1, \dots, n$$

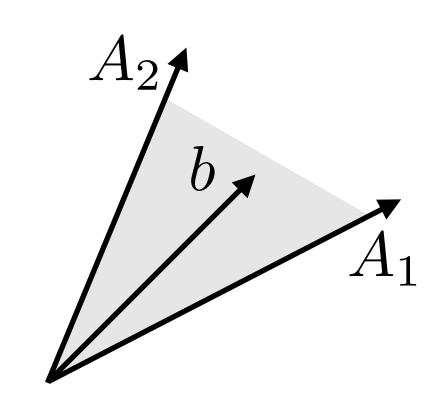
b is in the cone generated by the columns of $\cal A$

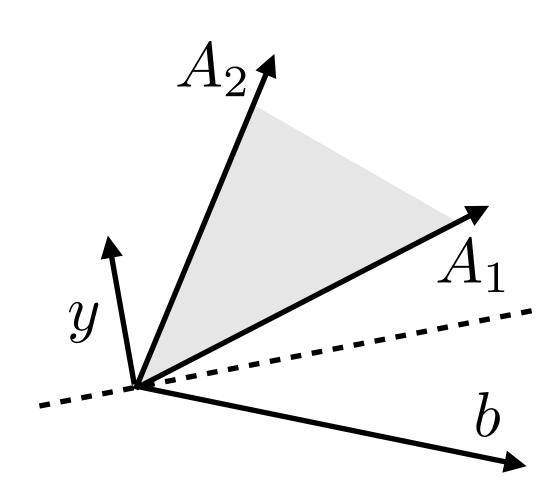
2. Second alternative

There exists a y with $A^Ty \ge 0$, $b^Ty < 0$

$$y^T A_i \ge 0, \quad i = 1, \dots, m, \qquad y^T b < 0$$

The hyperplane $y^Tz=0$ separates b from A_1,\ldots,A_n





There exists x with Ax = b, $x \ge 0$

OR

There exists y with $A^Ty \ge 0$, $b^Ty < 0$

Proof

1 and 2 cannot be both true (easy)

$$x \ge 0$$
, $Ax = b$ and $y^T A \ge 0$

$$y^T b = y^T A x \ge 0$$

There exists x with Ax = b, $x \ge 0$

OR

There exists y with $A^Ty \ge 0$, $b^Ty < 0$

Proof

1 and 2 cannot be both false (duality)

Primal		Dual	
minimize subject to		maximize subject to	

There exists x with Ax = b, $x \ge 0$

OR

There exists y with $A^Ty \ge 0$, $b^Ty < 0$

Proof

1 and 2 cannot be both false (duality)

Primal

minimize (

subject to Ax = b

$$x \ge 0$$

Dual

 $\begin{array}{ccc} \text{maximize} & -b^T y \\ - & - \end{array}$

subject to $A^T y \ge 0$



y=0 always feasible

Strong duality holds

$$d^* \neq -\infty, \quad p^* = d^*$$

There exists x with Ax = b, $x \ge 0$

OR

There exists y with $A^Ty \ge 0$, $b^Ty < 0$

Proof

1 and 2 cannot be both false (duality)

Primal		Dual	
Ax = b	maximize subject to		
	$\begin{array}{c} \mathbf{a} \\ 0 \\ Ax = b \\ x \geq 0 \end{array}$	$\begin{array}{c} 0 \\ Ax = b \end{array}$ maximize subject to	

Alternative 1: primal feasible $p^* = d^* = 0$

$$b^T y \ge 0$$
 for all y such that $A^T y \ge 0$

Farkas lemma

There exists x with Ax = b, $x \ge 0$

OR

There exists y with $A^Ty \ge 0$, $b^Ty < 0$

Proof

1 and 2 cannot be both false (duality)

Primal		Dual	
minimize subject to		maximize subject to	
	$x \leq 0$		

Alternative 2: primal infeasible $p^* = d^* = +\infty$

There exists y such that $A^Ty \ge 0$ and $b^Ty < 0$

Farkas lemma

There exists x with Ax = b, $x \ge 0$

OR

There exists y with $A^Ty \ge 0$, $b^Ty < 0$

Proof

1 and 2 cannot be both false (duality)

Primal		Dual	
minimize subject to		maximize subject to	

Alternative 2: primal infeasible $p^* = d^* = +\infty$

There exists y such that $A^Ty \geq 0$ and $b^Ty < 0$

y is an infeasibility certificate

Farkas lemma

Many variations

There exists x with Ax = b, $x \ge 0$

OR

There exists y with $A^T y \ge 0$, $b^T y < 0$

There exists x with $Ax \leq b$, $x \geq 0$

OR

There exists y with $A^Ty \ge 0$, $b^Ty < 0$, $y \ge 0$

There exists x with $Ax \leq b$

OR

There exists y with $A^Ty=0,\ b^Ty<0,\ y\geq 0$

Optimality conditions

Primal

minimize $c^T x$

subject to $Ax \leq b$

Dual

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \end{array}$$

$$y \ge 0$$

Optimality conditions

Primal

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$

Dual

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$$

x and y are primal and dual optimal if and only if

- x is primal feasible: $Ax \leq b$
- y is dual feasible: $A^Ty + c = 0$ and $y \ge 0$
- The duality gap is zero: $c^T x + b^T y = 0$

Optimality conditions

Primal

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$

Dual

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$$

x and y are primal and dual optimal if and only if

- x is primal feasible: $Ax \leq b$
- y is dual feasible: $A^Ty + c = 0$ and $y \ge 0$
- The duality gap is zero: $c^T x + b^T y = 0$

Can we relate x and y (not only the objective)?

Primal

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$

Dual

maximize $-b^Ty$ subject to $A^Ty+c=0$ $y\geq 0$

Theorem

Primal, dual feasible x, y are optimal if and only if

$$y_i(b_i - a_i^T x) = 0, \quad i = 1, \dots, m$$

i.e., at optimum, b - Ax and y have a complementary sparsity pattern:

$$y_i > 0 \implies a_i^T x = b_i$$

$$a_i^T x < b_i \implies y_i = 0$$

Primal

minimize $c^T x$

subject to $Ax \leq b$

Dual

maximize $-b^T y$

subject to $A^Ty + c = 0$

$$y \ge 0$$

Proof

The duality gap at primal feasible \boldsymbol{x} and dual feasible \boldsymbol{y} can be written as

$$c^{T}x + b^{T}y = (-A^{T}y)^{T}x + b^{T}y = (b - Ax)^{T}y = \sum_{i=1}^{m} y_{i}(b_{i} - a_{i}^{T}x) = 0$$

Primal

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array} \bigg|$

Dual

maximize
$$-b^Ty$$
 subject to $A^Ty+c=0$
$$y\geq 0$$

Proof

The duality gap at primal feasible x and dual feasible y can be written as

$$c^{T}x + b^{T}y = (-A^{T}y)^{T}x + b^{T}y = (b - Ax)^{T}y = \sum_{i=1}^{m} y_{i}(b_{i} - a_{i}^{T}x) = 0$$

Since all the elements of the sum are nonnegative, they must all be 0

Primal

minimize $c^T x$ subject to $Ax \leq b$

Dual

maximize
$$-b^Ty$$
 subject to $A^Ty+c=0$ $y\geq 0$

Proof

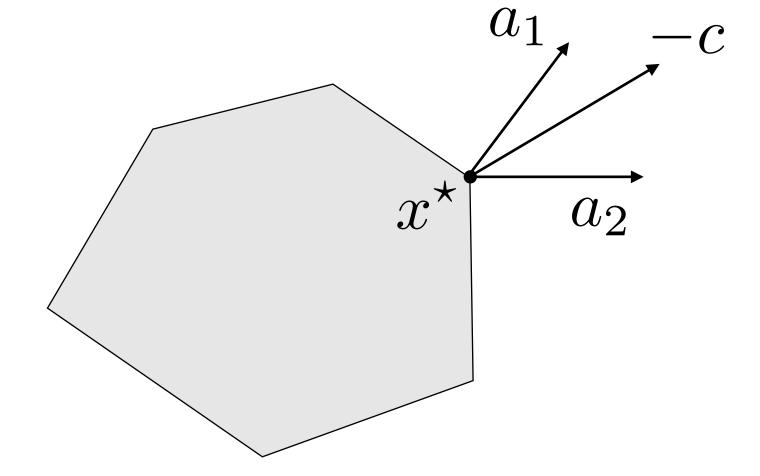
The duality gap at primal feasible x and dual feasible y can be written as

$$c^{T}x + b^{T}y = (-A^{T}y)^{T}x + b^{T}y = (b - Ax)^{T}y = \sum_{i=1}^{T} y_{i}(b_{i} - a_{i}^{T}x) = 0$$

Since all the elements of the sum are nonnegative, they must all be 0

Geometric interpretation

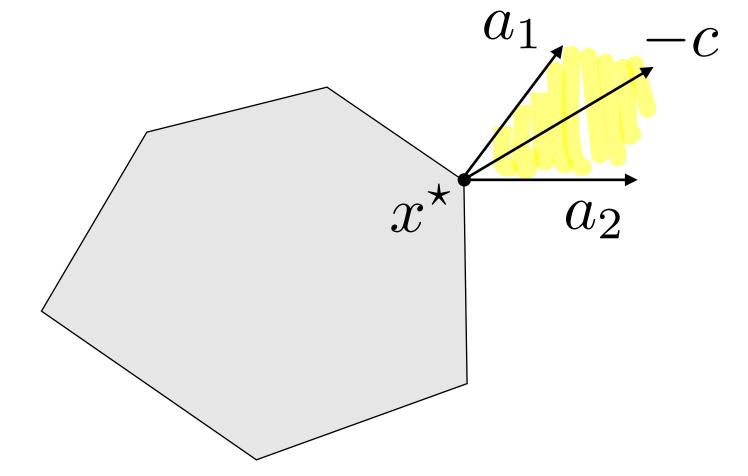
Example in ${f R}^2$



Two active constraints at optimum: $a_1^T x^* = b_1, \quad a_2^T x^* = b_2$

Geometric interpretation

Example in ${f R}^2$



Two active constraints at optimum: $a_1^T x^* = b_1, \quad a_2^T x^* = b_2$

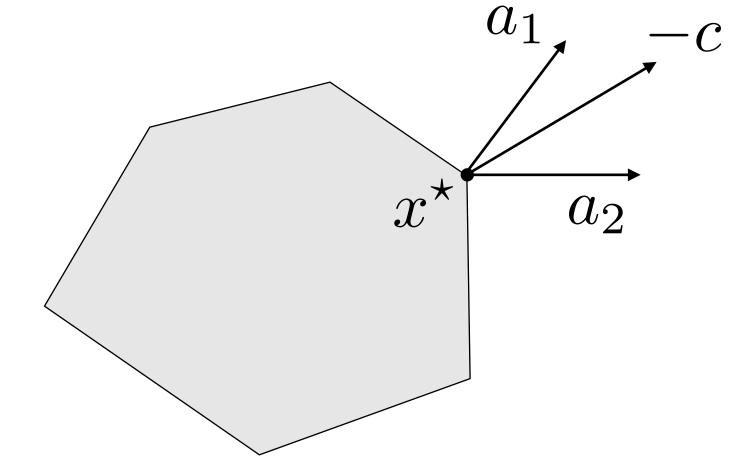
Optimal dual solution *y* satisfies:

$$A^T y + c = 0, \quad y \ge 0, \quad y_i = 0 \text{ for } i \ne \{1, 2\}$$

In other words, $-c = a_1y_1 + a_2y_2$ with $y_1, y_2 \ge 0$

Geometric interpretation

Example in ${f R}^2$



Two active constraints at optimum: $a_1^T x^* = b_1, \quad a_2^T x^* = b_2$

Optimal dual solution *y* satisfies:

$$A^T y + c = 0, \quad y \ge 0, \quad y_i = 0 \text{ for } i \ne \{1, 2\}$$

In other words, $-c = a_1y_1 + a_2y_2$ with $y_1, y_2 \ge 0$

Geometric interpretation: -c lies in the cone generated by a_1 and a_2

minimize
$$-4x_1 - 5x_2$$
 subject to
$$\begin{bmatrix} -1 & 0 \\ 2 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 0 \\ 3 \\ 0 \\ 3 \end{bmatrix}$$

Let's **show** that feasible x = (1, 1) is optimal

minimize
$$-4x_1 - 5x_2$$

subject to
$$\begin{bmatrix} -1 & 0 \\ 2 & 1 \\ 0 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq \begin{bmatrix} 0 \\ 3 \\ 0 \\ 3 \end{bmatrix}$$

Let's **show** that feasible x = (1, 1) is optimal

Second and fourth constraints are active at $x \longrightarrow y = (0, y_2, 0, y_4)$

$$A^T y = -c \quad \Rightarrow \quad \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} y_2 \\ y_4 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix} \qquad \text{and} \qquad \quad y_2 \ge 0, \quad y_4 \ge 0$$

minimize
$$-4x_1 - 5x_2$$

subject to
$$\begin{bmatrix} -1 & 0 \\ 2 & 1 \\ 0 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 0 \\ 3 \\ 0 \\ 3 \end{bmatrix}$$

Let's **show** that feasible x = (1, 1) is optimal

Second and fourth constraints are active at $x \longrightarrow y = (0, y_2, 0, y_4)$

$$A^Ty=-c \quad \Rightarrow \quad egin{bmatrix} 2 & 1 \ 1 & 2 \end{bmatrix} egin{bmatrix} y_2 \ y_4 \end{bmatrix} = egin{bmatrix} 4 \ 5 \end{bmatrix} \qquad \text{and} \qquad y_2 \geq 0, \quad y_4 \geq 0$$

y=(0,1,0,2) satisfies these conditions and proves that x is optimal

minimize
$$-4x_1 - 5x_2$$

subject to
$$\begin{bmatrix} -1 & 0 \\ 2 & 1 \\ 0 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 0 \\ 3 \\ 0 \\ 3 \end{bmatrix}$$

Let's **show** that feasible x = (1, 1) is optimal

Second and fourth constraints are active at $x \longrightarrow y = (0, y_2, 0, y_4)$

$$A^Ty=-c \quad \Rightarrow \quad egin{bmatrix} 2 & 1 \ 1 & 2 \end{bmatrix} egin{bmatrix} y_2 \ y_4 \end{bmatrix} = egin{bmatrix} 4 \ 5 \end{bmatrix} \qquad \text{and} \qquad y_2 \geq 0, \quad y_4 \geq 0$$

y=(0,1,0,2) satisfies these conditions and proves that x is optimal

Complementary slackness is useful to recover y^* from x^*

The dual simplex

Primal problem

Dual problem

minimize
$$c^Tx$$
 maximize $-b^Ty$ subject to $Ax = b$ subject to $A^Ty + c \ge 0$

Given a basis matrix A_B

Primal problem

Dual problem

minimize
$$c^Tx$$
 maximize $-b^Ty$ subject to $Ax = b$ subject to $A^Ty + c \geq 0$ $x \geq 0$

Given a basis matrix A_B

Primal feasible:
$$Ax = b, x \ge 0 \implies x_B = A_B^{-1}b \ge 0$$

Primal problem

Dual problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Given a basis matrix A_B

Primal feasible: $Ax = b, x \ge 0 \implies x_B = A_B^{-1}b \ge 0$

Dual feasible: $A^Ty + c \ge 0$.

Primal problem

Dual problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Given a basis matrix A_B

Primal feasible:
$$Ax = b, x \ge 0 \implies x_B = A_B^{-1}b \ge 0$$

Dual feasible:
$$A^Ty + c \ge 0$$
. If $y = -A_B^{-T}c_B \implies c - A^TA_B^{-T}c_B \ge 0$

Primal problem

Dual problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Given a **basis** matrix A_B

Primal feasible: $Ax = b, x \ge 0 \implies x_B = A_B^{-1}b \ge 0$

Dual feasible: $A^Ty + c \ge 0$. If $y = -A_B^{-T}c_B \implies c - A^TA_B^{-T}c_B \ge 0$

If
$$y = -A_B^{-T} c_B \implies$$

Reduced costs
$$c - A^T A_B^{-T} c_B \ge 0$$

Primal problem

Dual problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Given a **basis** matrix A_B

Primal feasible: $Ax = b, x \ge 0 \implies x_B = A_B^{-1}b \ge 0$

$$\Rightarrow$$

$$x_B = A_B^{-1}b \ge 0$$

Reduced costs

Dual feasible: $A^Ty + c \ge 0$. If $y = -A_B^{-T}c_B \implies c - A^TA_B^{-T}c_B \ge 0$

If
$$y = -A_B^{-T} c_B \implies$$

$$c - A^T A_B^{-T} c_B \ge 0$$

Zero duality gap:
$$c^T x + b^T y = c_B^T x_B - b^T A_B^{-T} c_B = c_B^T x_B - c_B^T A_B^{-1} b = 0$$

Primal problem

Dual problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Given a basis matrix A_B

Primal feasible: $Ax = b, x \ge 0 \implies x_B = A_B^{-1}b \ge 0$

Reduced costs

Dual feasible:
$$A^Ty + c \ge 0$$
. If $y = -A_B^{-T}c_B \implies c - A^TA_B^{-T}c_B \ge 0$

If
$$y = -A_B^{-T} c_B \implies$$

$$c - A^T A_B^{-T} c_B \ge 0$$

Zero duality gap:
$$c^T x + b^T y = c_B^T x_B - b^T A_B^{-T} c_B = c_B^T x_B - c_B^T A_B^{-1} b = 0$$

The primal (dual) simplex method

Primal problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

Primal simplex

- Primal feasibility
- Zero duality gap

Dual problem

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Dual simplex

- Dual feasibility
- Zero duality gap



Primal feasibility

Feasible dual directions

Conditions

$$P = \{ y \mid A^T y + c \ge 0 \}$$

Given a basis matrix
$$A_B = \begin{bmatrix} A_{B(1)} & \dots & A_{B(m)} \end{bmatrix}$$
 we have dual feasible solution y :

$$\bar{c} = A^T y + c \ge 0$$

Feasible dual directions

Conditions

$$P = \{ y \mid A^T y + c \ge 0 \}$$

Given a basis matrix
$$A_B = \begin{bmatrix} A_{B(1)} & \dots & A_{B(m)} \end{bmatrix}$$
 we have dual feasible solution y :

$$\bar{c} = A^T y + c \ge 0$$

$$y + \theta d$$

Feasible dual directions

Conditions

$$P = \{ y \mid A^T y + c \ge 0 \}$$

Given a basis matrix
$$A_B = \begin{bmatrix} A_{B(1)} & \dots & A_{B(m)} \end{bmatrix}$$
 we have dual feasible solution y :

$$\bar{c} = A^T y + c \ge 0$$

Feasible direction d

$$y + \theta d$$

Reduced cost change

$$c + A^T(y + \theta d) \ge 0 \quad \Rightarrow \quad \bar{c} + \theta z \ge 0$$

$$A^T d = z \text{ (subspace restriction)}$$

Computation

Subspace restriction

$$\begin{array}{c}
 \bar{c} + \theta z \ge 0 \\
 A^T d = z
 \end{array}$$

$$A_B^T d = z_B$$

$$A_N^T d = z_N$$

Computation

Subspace restriction

$$\begin{array}{c}
 \bar{c} + \theta z \ge 0 \\
 A^T d = z
 \end{array}
 \qquad \qquad \qquad \qquad \qquad A_B^T d = z_B$$

$$A_N^T d = z_N$$

Basic indices

$$z_B = e_i \longrightarrow B(\ell) = i$$
 exits the basis

Get
$$d$$
 by solving $A_B^T d = z_B$

Computation

Subspace restriction

$$\bar{c} + \theta z \ge 0
A^T d = z
A^T d = z_N$$

$$A_N^T d = z_N$$

Basic indices

$$z_B = e_i \longrightarrow B(\ell) = i$$
 exits the basis

Get
$$d$$
 by solving $A_B^T d = z_B$

Nonbasic indices

$$z_N = A_N^T d - A_N^T A_B^{-T} e_i$$

Computation

Subspace restriction

a PRIMAL JMACX $X_{B} > 0$ $X_{N} = 0$

$$A_B^T d = z_B$$
$$A_B^T d = z_M$$

Basic indices

$$z_B = e_i \longrightarrow B(\ell) = i$$
 exits the basis

Get
$$d$$
 by solving $A_B^T d = z_B$

Nonbasic indices

$$z_N = A_N^T d = A_N^T A_B^{-T} e_i$$

Non-negativity of reduced costs (non-degenerate assumption)

- Basic variables: $\bar{c}_B = 0$. Nonnegative direction $z_B > 0$.
- Nonbasic variables: $\bar{c}_N > 0$. Therefore $\exists \theta > 0$ such that $\bar{c}_N + \theta z_N \geq 0$

Stepsize

How far can we go?

$$\theta^* = \max\{\theta \mid \theta \ge 0 \text{ and } \bar{c} + \theta z \ge 0\}$$

Stepsize

How far can we go?

$$\theta^* = \max\{\theta \mid \theta \ge 0 \text{ and } \bar{c} + \theta z \ge 0\}$$

Unbounded

If $z \ge 0$, then $\theta^* = \infty$. The dual problem is unbounded (primal infeasible).

Stepsize

How far can we go?

$$\theta^* = \max\{\theta \mid \theta \ge 0 \text{ and } \bar{c} + \theta z \ge 0\}$$

Unbounded

If $z \geq 0$, then $\theta^* = \infty$. The dual problem is unbounded (primal infeasible).

Bounded

If
$$z_j < 0$$
 for some j , then

If
$$z_j < 0$$
 for some j , then $\theta^\star = \min_{\{j \mid z_j < 0\}} \left(-\frac{\bar{c}_j}{z_j} \right) = \min_{\{j \in N \mid z_j < 0\}} \left(-\frac{\bar{c}_j}{z_j} \right)$ (Since $z_j \geq 0, \ j \in B$)

Moving to a new basis

Next reduced cost

$$\bar{c} + \theta^{\star} z$$

Let
$$j \notin \{B(1),\dots,B(m)\}$$
 be the index such that $\theta^\star=-\frac{\overline{c}_j}{z_j}$. Then, $\overline{c}_j+\theta^\star z_j=0$

Moving to a new basis

Next reduced cost

$$\bar{c} + \theta^{\star} z$$

Let
$$j \notin \{B(1),\dots,B(m)\}$$
 be the index such that $\theta^*=-\frac{\bar{c}_j}{z_j}$. Then, $\bar{c}_j+\theta^*z_j=0$

New basis

$$A_{\bar{B}} = \begin{bmatrix} A_{B(1)} & \dots & A_{B(\ell-1)} & A_j & A_{B(\ell+1)} & \dots & A_{B(m)} \end{bmatrix}$$

Moving to a new basis

Next reduced cost

$$\bar{c} + \theta^* z$$

Let
$$j \notin \{B(1),\dots,B(m)\}$$
 be the index such that $\theta^\star = -\frac{\bar{c}_j}{z_j}$. Then, $\bar{c}_j + \theta^\star z_j = 0$

New basis

$$A_{\bar{B}} = \begin{bmatrix} A_{B(1)} & \dots & A_{B(\ell-1)} & A_j & A_{B(\ell+1)} & \dots & A_{B(m)} \end{bmatrix}$$

New solution

$$A_{\bar{B}}x_{\bar{B}} = b$$

An iteration of the dual simplex method

Initialization

- a basic dual feasible solution y, i.e. $A^Ty+c\geq 0$
- a basis matrix $A_B = \begin{bmatrix} A_{B(1)} & \dots, A_{B(m)} \end{bmatrix}$

An iteration of the dual simplex method

Initialization

- a basic dual feasible solution y, i.e. $A^Ty+c\geq 0$
- a basis matrix $A_B = \begin{bmatrix} A_{B(1)} & \dots, A_{B(m)} \end{bmatrix}$

Iteration steps

- 1. Get *x*
 - Solve $A_B x_B = b (O(m^2))$
 - Set $x_i = 0$ if $i \notin B$
- 2. If $x \ge 0$, x feasible. break
- 3. Choose i such that $x_i < 0$
- 4. Compute each direction z with $z_i=1$, $A_B^T d=e_i$ and $z_N=A_N^T d$ ($O(m^2)$)

- 5. If $z_N \ge 0$, the dual problem is **unbounded** and the optimal value is $+\infty$. **break**
- 6. Compute step length $\theta^{\star} = \min_{\{j \in N \mid z_j < 0\}} \left(-\frac{\bar{c}_j}{z_j} \right)$
- 7. Compute new point $y + \theta^* d$
- 8. Get new basis $A_{\bar{B}} = A_B + (A_j A_i)e_\ell^T$ perform rank-1 factor update (j enters, i exists) $O(m^2)$

An iteration of the dual simplex method

Initialization

- a basic dual feasible solution y, i.e. $A^Ty+c\geq 0$
- a basis matrix $A_B = \begin{bmatrix} A_{B(1)} & \dots, A_{B(m)} \end{bmatrix}$

Remark Reduced costs nonnegative objective non-decreasing

Iteration steps

- 1. Get *x*
 - Solve $A_B x_B = b (O(m^2))$
 - Set $x_i = 0$ if $i \notin B$
- 2. If $x \ge 0$, x feasible. break
- 3. Choose i such that $x_i < 0$
- 4. Compute each direction z with $z_i=1$, $A_B^T d=e_i$ and $z_N=A_N^T d$ ($O(m^2)$)

- 5. If $z_N \ge 0$, the dual problem is **unbounded** and the optimal value is $+\infty$. **break**
- 6. Compute step length $\theta^\star = \min_{\{j \in N \mid z_j < 0\}} \left(-\frac{\bar{c}_j}{z_j} \right)$
- 7. Compute new point $y + \theta^* d$
- 8. Get new basis $A_{\bar{B}} = A_B + (A_j A_i)e_\ell^T$ perform rank-1 factor update (j enters, i exists) $O(m^2)$

From lecture 6

minimize $c^T x$

subject to Ax = b

$$x \ge 0$$

Dual problem

 $\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = egin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \ 2 & 1 & 2 & 0 & 1 & 0 \ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Initialize

$$y = (10, 0, 0)$$
 $B = \{1, 5, 6\}$

$$c + A^T y = (0, 8, 8, 10, 0, 0) \ge 0$$

$$y = (10, 0, 0)$$

$$-b^{T}y = -200$$

$$c + A^{T}y = (0, 8, 8, 10, 0, 0)$$

$$B = \{1, 5, 6\}$$

$$A_{B} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$
 $b = (20, 20, 20)$

$$y = (10, 0, 0)$$

$$-b^{T}y = -200$$

$$c + A^{T}y = (0, 8, 8, 10, 0, 0)$$

$$B = \{1, 5, 6\}$$

$$A_{B} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Primal solution
$$x = (20, 0, 0, 0, -20, -20)$$

Solve
$$Ax_B = b \implies x_B = (20, -20, -20)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$(0,0,0)$$
 $A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$ $b = (20, 20, 20)$

$$b = (20, 20, 20)$$

$$y = (10, 0, 0)$$

$$-b^{T}y = -200$$

$$c + A^{T}y = (0, 8, 8, 10, 0, 0)$$

$$B = \{1, 5, 6\}$$

$$A_{B} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Primal solution
$$x = (20, 0, 0, 0, -20, -20)$$

Solve
$$Ax_B = b \implies x_B = (20, -20, -20)$$

Direction
$$z = (0, -3, -2, -2, 1, 0), i = 5$$

Solve
$$A_B^T d = e_i \quad \Rightarrow \quad d = (-2, 1, 0)$$

Get
$$z_N = A_N^T d = (-3, -2, -2)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

$$y = (10, 0, 0)$$

$$-b^{T}y = -200$$

$$c + A^{T}y = (0, 8, 8, 10, 0, 0)$$

$$B = \{1, 5, 6\}$$

$$A_{B} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Primal solution
$$x = (20, 0, 0, 0, -20, -20)$$

Solve $Ax_B = b \Rightarrow x_B = (20, -20, -20)$

Direction
$$z = (0, -3, -2, -2, 1, 0), i = 5$$

Solve $A_B^T d = e_i \Rightarrow d = (-2, 1, 0)$
Get $z_N = A_N^T d = (-3, -2, -2)$

Step
$$\theta^{\star} = 2.66, \quad j = 2$$
 $\theta^{\star} = \min_{\{j \mid z_j < 0\}} (-\bar{c}_j/z_j) = \{2.66, 4, 5\}$
New $y \leftarrow y + \theta^{\star}d = (4.66, 2.66, 0)$

$$c = (-10, -12, -12, 0, 0, 0)$$
 $A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$

$$b = (20, 20, 20)$$

$$y = (4.66, 2.66, 0)$$

$$-b^{T}y = -146.66$$

$$c + A^{T}y = (0, 0, 2.66, 4.66, 2.66, 0)$$

$$B = \{1, 2, 6\}$$

$$A_{B} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 2 & 2 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Example **Iteration 2**

$$y = (4.66, 2.66, 0)$$

$$-b^{T}y = -146.66$$

$$c + A^{T}y = (0, 0, 2.66, 4.66, 2.66, 0)$$

$$B = \{1, 2, 6\}$$

$$A_{B} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 2 & 2 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Primal solution
$$x = (6.66, 6.66, 0, 0, 0, -6.66)$$

Solve $Ax_B = b \Rightarrow x_B = (6.66, 6.66, -6.66)$

$$c = (-10, -12, -12, 0, 0, 0)$$
 $A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$
 $b = (20, 20, 20)$

$$y = (4.66, 2.66, 0)$$

$$-b^{T}y = -146.66$$

$$c + A^{T}y = (0, 0, 2.66, 4.66, 2.66, 0)$$

$$B = \{1, 2, 6\}$$

$$A_{B} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 2 & 2 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Primal solution
$$x = (6.66, 6.66, 0, 0, 0, -6.66)$$

Solve $Ax_B = b \Rightarrow x_B = (6.66, 6.66, -6.66)$

Direction
$$z=(0,0,-1.66,-0.66,-0.66,1), \quad i=6$$
 Solve $A_B^T d=e_i \quad \Rightarrow \quad d=(-0.66,-0.66,1)$ Get $z_N=A_N^T d=(-1.66,-0.66,-0.66)$

$$y = (4.66, 2.66, 0)$$

$$-b^{T}y = -146.66$$

$$c + A^{T}y = (0, 0, 2.66, 4.66, 2.66, 0)$$

$$B = \{1, 2, 6\}$$

$$A_{B} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 2 & 2 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Primal solution
$$x = (6.66, 6.66, 0, 0, 0, -6.66)$$

Solve $Ax_B = b \Rightarrow x_B = (6.66, 6.66, -6.66)$

$$\begin{array}{ll} \textbf{Direction} & z=(0,0,-1.66,-0.66,-0.66,1), & i=6\\ \textbf{Solve} & A_B^T d=e_i & \Rightarrow & d=(-0.66,-0.66,1)\\ \textbf{Get} & z_N=A_N^T d=(-1.66,-0.66,-0.66) & \end{array}$$

Step
$$\theta^{\star} = 1.6, \quad j = 3$$
 $\theta^{\star} = \min_{\{j \mid z_j < 0\}} (-\bar{c}_j/z_j) = \{1.6, 7, 4\}$
New $y \leftarrow y + \theta^{\star}d = (3.6, 1.6, 1.6)$

$$y = (3.6, 1.6, 1.6)$$

$$-b^{T}y = -136$$

$$c + A^{T}y = (0, 0, 0, 3.6, 1.6, 1.6)$$

$$B = \{1, 2, 3\}$$

$$A_{B} = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Example **Iteration 3**

$$y = (3.6, 1.6, 1.6)$$

$$-b^{T}y = -136$$

$$c + A^{T}y = (0, 0, 0, 3.6, 1.6, 1.6)$$

$$B = \{1, 2, 3\}$$

$$A_{B} = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

b = (20, 20, 20)

Primal solution
$$x = (4, 4, 4, 0, 0, 0)$$

Solve
$$Ax_B = b \Rightarrow x_B = (4, 4, 4)$$

Iteration 3

$$y = (3.6, 1.6, 1.6)$$

$$-b^{T}y = -136$$

$$c + A^{T}y = (0, 0, 0, 3.6, 1.6, 1.6)$$

$$B = \{1, 2, 3\}$$

$$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \end{bmatrix}$$

$$A_{B} = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Primal solution

Solve
$$Ax_B = b \Rightarrow x_B = (4, 4, 4)$$

$$x \ge 0$$

x = (4, 4, 4, 0, 0, 0)

Optimal solution

$$x^* = (4, 4, 4, 0, 0, 0)$$

Same as primal simplex!

Equivalence and symmetry

The dual simplex is equivalent to the primal simplex applied to the dual problem.

Dual problem

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Standard form

minimize
$$\begin{bmatrix} b & -b & 0 \end{bmatrix} w$$
 subject to $\begin{bmatrix} A^T & -A^T & -I \end{bmatrix} w = -c$ $w \geq 0$ $w = (y^+, y^-, s)$

Dual simplex efficiency

Sequence of problems with varying feasible region

previous y still dual feasible ——— warm-start

Dual simplex efficiency

Sequence of problems with varying feasible region

previous y still dual feasible —— warm-start

Applied in many different contexts, for example:

- 1. sequential decision-making
- 2. mixed-integer optimization to solve subproblems

(more later in the course...)

Linear optimization duality

Today, we learned to:

- Interpret linear optimization duality using game theory
- Prove Farkas lemma using duality
- Geometrically link primal and dual solutions with complementary slackness
- Implement the dual simplex method

Next lecture

Sensitivity analysis