### **ORF522 – Linear and Nonlinear Optimization**

8. Linear optimization duality

### Ed Forum

- Why do we need to solve dual problem instead of the primal problem? When
  we have a LP problem, in what scenario does solving dual problem more
  efficient than primal problem?
- How does the definition of y imply nonnegative reduced costs?

# Recap

### Optimal objective values

#### **Primal**

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax < b \end{array}$ 

 $p^{\star}$  is the primal optimal value

Primal infeasible:  $p^* = +\infty$ Primal unbounded:  $p^* = -\infty$ 

#### Dual

 $\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$ 

 $d^{\star}$  is the dual optimal value

Dual infeasible:  $d^* = -\infty$ Dual unbounded:  $d^* = +\infty$ 

### Relationship between primal and dual

|                       | $p^{\star} = +\infty$    | $p^\star$ finite        | $p^{\star} = -\infty$   |
|-----------------------|--------------------------|-------------------------|-------------------------|
| $d^{\star} = +\infty$ | primal inf.<br>dual unb. |                         |                         |
| $d^\star$ finite      |                          | optimal values<br>equal |                         |
| $d^{\star} = -\infty$ | exception                |                         | primal unb.<br>dual inf |

- Upper-right excluded by weak duality
- (1,1) and (3,3) proven by weak duality
- (3,1) and (2,2) proven by strong duality

### Today's agenda

Readings: [Chapter 4, LO][Chapter 11, LP]

- Two-person zero-sum games
- Farkas lemma
- Complementary slackness
- Dual simplex method

# Two-person zero-sum games

### Rock paper scissors

#### Rules

At count to three declare one of: Rock, Paper, or Scissors

#### Winners

Identical selection is a draw, otherwise:

- Rock beats ("dulls") scissors
- Scissors beats ("cuts") paper
- Paper beats ("covers") rock

Extremely popular: world RPS society, USA RPS league, etc.

### Two-person zero-sum game

- Player 1 (P1) chooses a number  $i \in \{1, \ldots, m\}$  (one of m actions)
- Player 2 (P2) chooses a number  $j \in \{1, \dots, n\}$  (one of n actions)

Two players make their choice independently

### Two-person zero-sum game

- Player 1 (P1) chooses a number  $i \in \{1, \ldots, m\}$  (one of m actions)
- Player 2 (P2) chooses a number  $j \in \{1, \ldots, n\}$  (one of n actions)

Two players make their choice independently

#### Rule

Player 1 pays  $A_{ij}$  to player 2

 $A \in \mathbf{R}^{m \times n}$  is the payoff matrix

#### Rock, Paper, Scissors

### Mixed (randomized) strategies

Deterministic strategies can be systematically defeated

### Mixed (randomized) strategies

#### Deterministic strategies can be systematically defeated

#### Randomized strategies

- P1 chooses randomly according to distribution x:  $x_i = \text{probability that P1 selects action } i$
- P2 chooses randomly according to distribution y: y = probability that P2 selects action <math>j

### Mixed (randomized) strategies

#### Deterministic strategies can be systematically defeated

#### Randomized strategies

- P1 chooses randomly according to distribution x:  $x_i = \text{probability that P1 selects action } i$
- P2 chooses randomly according to distribution y:  $y_i = \text{probability that P2 selects action } j$

**Expected payoff** (from P1 P2), if they use mixed-strategies x and y,

$$\sum_{i=1}^{m} \sum_{j=1}^{n} x_i y_j A_{ij} = x^T A y$$

### Mixed strategies and probability simplex

#### Probability simplex in $\mathbf{R}^k$

$$P_k = \{ p \in \mathbf{R}^k \mid p \ge 0, \quad \mathbf{1}^T p = 1 \}$$

#### Mixed strategy

For a game player, a mixed strategy is a distribution over all possible deterministic strategies.

The set of all mixed strategies is the probability simplex  $\longrightarrow x \in P_m$ ,  $y \in P_n$ 

P1: optimal strategy  $x^*$  is the solution of

minimize 
$$\max_{y \in P_n} x^T A y$$

subject to  $x \in P_m$ 

P2: optimal strategy  $y^*$  is the solution of

$$\begin{array}{ll}
\text{maximize} & \min_{x \in P_m} x^T A y \\
\end{array}$$

subject to 
$$y \in P_n$$

P1: optimal strategy  $x^*$  is the solution of

minimize

subject to 
$$x \in P_m$$



$$((0,0)=e_{1})$$
  
 $(0,1,0)=e_{2}$   
 $(0,0,1)=e_{3}$ 

P2: optimal strategy  $y^*$  is the solution of

$$\begin{array}{lll} \text{maximize} & \min_{x \in P_m} x^T \boxed{Ay} \\ \text{subject to} & y \in P_n \end{array} \qquad \begin{array}{ll} \text{maximize} & \min_{i=1,\dots,m} (Ay)_i \\ \text{subject to} & y \in P_n \end{array}$$

P1: optimal strategy  $x^*$  is the solution of

minimize max

subject to  $x \in P_m$ 



P2: optimal strategy  $y^*$  is the solution of

$$\begin{array}{ll} \text{maximize} & \min\limits_{x \in P_m} x^T A y \\ \text{subject to} & y \in P_n \end{array}$$

maximize

subject to



Inner problem over

deterministic

strategies (vertices)

P1: optimal strategy  $x^*$  is the solution of

minimize

subject to  $x \in P_m$ 

$$\max_{j=1,\dots,n} (A^T x)_j$$

$$x \in P_m$$

Inner problem over deterministic strategies (vertices)

P2: optimal strategy  $y^*$  is the solution of

$$\begin{array}{ll} \text{maximize} & \min\limits_{x \in P_m} x^T A y \\ \text{subject to} & y \in P_n \end{array}$$

maximize

subject to

$$\min_{i=1,\ldots,m} (Ay)_i$$

 $y \in P_n$ 

Optimal strategies  $x^*$  and  $y^*$  can be computed using linear optimization

#### **Theorem**

$$\max_{y \in P_n} \min_{x \in P_m} x^T A y = \min_{x \in P_m} \max_{y \in P_n} x^T A y$$

#### **Theorem**

$$\max_{y \in P_n} \min_{x \in P_m} x^T A y = \min_{x \in P_m} \max_{y \in P_n} x^T A y$$

#### **Proof**

The optimal  $x^*$  is the solution of

```
minimize t subject to A^Tx \leq t\mathbf{1} \mathbf{1}^Tx = 1 x \geq 0
```

#### **Theorem**

$$\max_{y \in P_n} \min_{x \in P_m} x^T A y = \min_{x \in P_m} \max_{y \in P_n} x^T A y$$

#### **Proof**

The optimal  $x^*$  is the solution of

```
minimize t subject to A^Tx \leq t\mathbf{1} \mathbf{1}^Tx = 1 x \geq 0
```

The optimal  $y^*$  is the solution of maximize w subject to  $Ay \ge w\mathbf{1}$   $\mathbf{1}^T y = 1$   $y \ge 0$ 

#### **Theorem**

$$\max_{y \in P_n} \min_{x \in P_m} x^T A y = \min_{x \in P_m} \max_{y \in P_n} x^T A y$$





#### **Proof**

The optimal  $x^*$  is the solution of

minimize

subject to  $A^T x \leq t \mathbf{1}$ 

 ${\bf 1}^T x = 1$ 

x > 0

The optimal  $y^*$  is the solution of

maximize

subject to  $Ay \ge w\mathbf{1}$   $\mathbf{1}^T y = 1$ 

 $y \ge 0$ 





### Nash equilibrium

#### **Theorem**

$$\max_{y \in P_n} \min_{x \in P_m} x^T A y = \min_{x \in P_m} \max_{y \in P_n} x^T A y$$

#### Consequence

The pair of mixed strategies  $(x^*, y^*)$  attains the **Nash equilibrium** of the two-person matrix game, i.e.,

$$x^T A y^* \ge x^{*T} A y^* \ge x^{*T} A y, \quad \forall x \in P_m, \ \forall y \in P_n$$

### Example



### Example

$$A = \begin{bmatrix} 4 & 2 & 0 & -3 \\ -2 & -4 & -3 & 3 \\ -2 & -3 & 4 & 1 \end{bmatrix}$$

$$\min_{i} \max_{j} A_{ij} = 3 > -2 = \max_{j} \min_{i} A_{ij}$$

#### **Optimal mixed strategies**

$$x^* = (0.37, 0.33, 0.3), \quad y^* = (0.4, 0, 0.13, 0.47)$$

#### **Expected payoff**

$$x^{\star T}Ay^{\star} = 0.2$$

### Feasibility of polyhedra

$$P = \{x \mid Ax = b, \quad x \ge 0\}$$



### Feasibility of polyhedra

$$P = \{x \mid Ax = b, \quad x \ge 0\}$$



How to show that P is **feasible**?

Easy: we just need to provide an  $x \in P$ , i.e., a certificate

### Feasibility of polyhedra

$$P = \{x \mid Ax = b, \quad x \ge 0\}$$



How to show that P is **feasible**?

Easy: we just need to provide an  $x \in P$ , i.e., a certificate

How to show that P is **infeasible**?

#### **Theorem**

Given A and b, exactly one of the following statements is true:

- 1. There exists an x with Ax = b,  $x \ge 0$
- 2. There exists a y with  $A^Ty \ge 0$ ,  $b^Ty < 0$

#### Geometric interpretation

#### 1. First alternative

There exists an x with Ax = b,  $x \ge 0$ 

$$b = \sum_{i=1}^{n} x_i A_i, \quad x_i \ge 0, \ i = 1, \dots, n$$

b is in the cone generated by the columns of  $\cal A$ 



#### Geometric interpretation

#### 1. First alternative

There exists an x with Ax = b,  $x \ge 0$ 

$$b = \sum_{i=1}^{n} x_i A_i, \quad x_i \ge 0, \ i = 1, \dots, n$$

b is in the cone generated by the columns of  $\cal A$ 

#### 2. Second alternative

There exists a y with  $A^Ty \ge 0$ ,  $b^Ty < 0$ 

$$y^T A_i \ge 0, \quad i = 1, \dots, m, \qquad y^T b < 0$$

The hyperplane  $y^Tz=0$  separates b from  $A_1,\ldots,A_n$ 





There exists x with Ax = b,  $x \ge 0$ 

OR

There exists y with  $A^Ty \ge 0$ ,  $b^Ty < 0$ 

#### **Proof**

1 and 2 cannot be both true (easy)

$$x \ge 0$$
,  $Ax = b$  and  $y^T A \ge 0$ 

$$y^T b = y^T A x \ge 0$$

There exists x with Ax = b,  $x \ge 0$ 

OR

There exists y with  $A^Ty \ge 0$ ,  $b^Ty < 0$ 

#### **Proof**

1 and 2 cannot be both false (duality)

| Primal                 |  | Dual                   |  |
|------------------------|--|------------------------|--|
| minimize<br>subject to |  | maximize<br>subject to |  |

There exists x with Ax = b,  $x \ge 0$ 

OR

There exists y with  $A^Ty \ge 0$ ,  $b^Ty < 0$ 

#### **Proof**

#### 1 and 2 cannot be both false (duality)

# Primal

minimize (

subject to Ax = b

$$x \ge 0$$

#### Dual

 $\begin{array}{ccc} \text{maximize} & -b^T y \\ - & - \end{array}$ 

subject to  $A^T y \ge 0$ 



y=0 always feasible

#### Strong duality holds

$$d^* \neq -\infty, \quad p^* = d^*$$

There exists x with Ax = b,  $x \ge 0$ 

OR

There exists y with  $A^Ty \ge 0$ ,  $b^Ty < 0$ 

#### **Proof**

1 and 2 cannot be both false (duality)

| Primal |                                                                      | Dual                                                           |  |
|--------|----------------------------------------------------------------------|----------------------------------------------------------------|--|
| Ax = b | maximize<br>subject to                                               |                                                                |  |
|        | $\begin{array}{c} \mathbf{a} \\ 0 \\ Ax = b \\ x \geq 0 \end{array}$ | $\begin{array}{c} 0 \\ Ax = b \end{array}$ maximize subject to |  |

Alternative 1: primal feasible  $p^* = d^* = 0$ 

$$b^T y \ge 0$$
 for all  $y$  such that  $A^T y \ge 0$ 

# Farkas lemma

There exists x with Ax = b,  $x \ge 0$ 

OR

There exists y with  $A^Ty \ge 0$ ,  $b^Ty < 0$ 

#### **Proof**

1 and 2 cannot be both false (duality)

| Primal                 |            | Dual                   |  |
|------------------------|------------|------------------------|--|
| minimize<br>subject to |            | maximize<br>subject to |  |
|                        | $x \leq 0$ |                        |  |

Alternative 2: primal infeasible  $p^* = d^* = +\infty$ 

There exists y such that  $A^Ty \ge 0$  and  $b^Ty < 0$ 

# Farkas lemma

There exists x with Ax = b,  $x \ge 0$ 

OR

There exists y with  $A^Ty \ge 0$ ,  $b^Ty < 0$ 

#### **Proof**

1 and 2 cannot be both false (duality)

| Primal                 |  | Dual                   |  |
|------------------------|--|------------------------|--|
| minimize<br>subject to |  | maximize<br>subject to |  |

Alternative 2: primal infeasible  $p^* = d^* = +\infty$ 

There exists y such that  $A^Ty \geq 0$  and  $b^Ty < 0$ 

y is an infeasibility certificate

# Farkas lemma

## **Many variations**

There exists x with Ax = b,  $x \ge 0$ 

OR

There exists y with  $A^T y \ge 0$ ,  $b^T y < 0$ 

There exists x with  $Ax \leq b$ ,  $x \geq 0$ 

OR

There exists y with  $A^Ty \ge 0$ ,  $b^Ty < 0$ ,  $y \ge 0$ 

There exists x with  $Ax \leq b$ 

OR

There exists y with  $A^Ty=0,\ b^Ty<0,\ y\geq 0$ 

# Optimality conditions

#### **Primal**

minimize  $c^T x$ 

subject to  $Ax \leq b$ 

#### Dual

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \end{array}$$

$$y \ge 0$$

# **Optimality conditions**

#### **Primal**

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$ 

#### Dual

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$$

x and y are primal and dual optimal if and only if

- x is primal feasible:  $Ax \leq b$
- y is dual feasible:  $A^Ty + c = 0$  and  $y \ge 0$
- The duality gap is zero:  $c^T x + b^T y = 0$

# Optimality conditions

#### **Primal**

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$ 

#### **Dual**

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$$

x and y are primal and dual optimal if and only if

- x is primal feasible:  $Ax \leq b$
- y is dual feasible:  $A^Ty + c = 0$  and  $y \ge 0$
- The duality gap is zero:  $c^T x + b^T y = 0$

Can we relate x and y (not only the objective)?

#### **Primal**

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$ 

#### **Dual**

maximize  $-b^Ty$  subject to  $A^Ty+c=0$   $y\geq 0$ 

#### **Theorem**

Primal, dual feasible x, y are optimal if and only if

$$y_i(b_i - a_i^T x) = 0, \quad i = 1, \dots, m$$

i.e., at optimum, b - Ax and y have a complementary sparsity pattern:

$$y_i > 0 \implies a_i^T x = b_i$$

$$a_i^T x < b_i \implies y_i = 0$$

#### **Primal**

minimize  $c^T x$ 

subject to  $Ax \leq b$ 

#### Dual

maximize  $-b^T y$ 

subject to  $A^Ty + c = 0$ 

$$y \ge 0$$

#### **Proof**

The duality gap at primal feasible  $\boldsymbol{x}$  and dual feasible  $\boldsymbol{y}$  can be written as

$$c^{T}x + b^{T}y = (-A^{T}y)^{T}x + b^{T}y = (b - Ax)^{T}y = \sum_{i=1}^{m} y_{i}(b_{i} - a_{i}^{T}x) = 0$$

#### **Primal**

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array} \bigg|$ 

#### **Dual**

maximize 
$$-b^Ty$$
 subject to  $A^Ty+c=0$  
$$y\geq 0$$

#### **Proof**

The duality gap at primal feasible x and dual feasible y can be written as

$$c^{T}x + b^{T}y = (-A^{T}y)^{T}x + b^{T}y = (b - Ax)^{T}y = \sum_{i=1}^{m} y_{i}(b_{i} - a_{i}^{T}x) = 0$$

Since all the elements of the sum are nonnegative, they must all be 0

#### **Primal**

minimize  $c^T x$  subject to  $Ax \leq b$ 

#### Dual

maximize 
$$-b^Ty$$
 subject to  $A^Ty+c=0$   $y\geq 0$ 

#### **Proof**

The duality gap at primal feasible x and dual feasible y can be written as

$$c^{T}x + b^{T}y = (-A^{T}y)^{T}x + b^{T}y = (b - Ax)^{T}y = \sum_{i=1}^{T} y_{i}(b_{i} - a_{i}^{T}x) = 0$$

Since all the elements of the sum are nonnegative, they must all be 0



# Geometric interpretation

Example in  ${f R}^2$ 



Two active constraints at optimum:  $a_1^T x^* = b_1, \quad a_2^T x^* = b_2$ 

# Geometric interpretation

Example in  ${f R}^2$ 



Two active constraints at optimum:  $a_1^T x^* = b_1, \quad a_2^T x^* = b_2$ 

Optimal dual solution *y* satisfies:

$$A^T y + c = 0, \quad y \ge 0, \quad y_i = 0 \text{ for } i \ne \{1, 2\}$$

In other words,  $-c = a_1y_1 + a_2y_2$  with  $y_1, y_2 \ge 0$ 

# Geometric interpretation

Example in  ${f R}^2$ 



Two active constraints at optimum:  $a_1^T x^* = b_1, \quad a_2^T x^* = b_2$ 

Optimal dual solution *y* satisfies:

$$A^T y + c = 0, \quad y \ge 0, \quad y_i = 0 \text{ for } i \ne \{1, 2\}$$

In other words,  $-c = a_1y_1 + a_2y_2$  with  $y_1, y_2 \ge 0$ 

**Geometric interpretation:** -c lies in the cone generated by  $a_1$  and  $a_2$ 

minimize 
$$-4x_1 - 5x_2$$
 subject to 
$$\begin{bmatrix} -1 & 0 \\ 2 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 0 \\ 3 \\ 0 \\ 3 \end{bmatrix}$$

Let's **show** that feasible x = (1, 1) is optimal

minimize 
$$-4x_1 - 5x_2$$

subject to 
$$\begin{bmatrix} -1 & 0 \\ 2 & 1 \\ 0 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq \begin{bmatrix} 0 \\ 3 \\ 0 \\ 3 \end{bmatrix}$$

Let's **show** that feasible x = (1, 1) is optimal

Second and fourth constraints are active at  $x \longrightarrow y = (0, y_2, 0, y_4)$ 

$$A^T y = -c \quad \Rightarrow \quad \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} y_2 \\ y_4 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix} \qquad \text{and} \qquad \quad y_2 \ge 0, \quad y_4 \ge 0$$

minimize 
$$-4x_1 - 5x_2$$

subject to 
$$\begin{bmatrix} -1 & 0 \\ 2 & 1 \\ 0 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 0 \\ 3 \\ 0 \\ 3 \end{bmatrix}$$

Let's **show** that feasible x = (1, 1) is optimal

Second and fourth constraints are active at  $x \longrightarrow y = (0, y_2, 0, y_4)$ 

$$A^Ty=-c \quad \Rightarrow \quad egin{bmatrix} 2 & 1 \ 1 & 2 \end{bmatrix} egin{bmatrix} y_2 \ y_4 \end{bmatrix} = egin{bmatrix} 4 \ 5 \end{bmatrix} \qquad \text{and} \qquad y_2 \geq 0, \quad y_4 \geq 0$$

y=(0,1,0,2) satisfies these conditions and proves that x is optimal

minimize 
$$-4x_1 - 5x_2$$

subject to 
$$\begin{bmatrix} -1 & 0 \\ 2 & 1 \\ 0 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 0 \\ 3 \\ 0 \\ 3 \end{bmatrix}$$

Let's **show** that feasible x = (1, 1) is optimal

Second and fourth constraints are active at  $x \longrightarrow y = (0, y_2, 0, y_4)$ 

$$A^Ty=-c \quad \Rightarrow \quad egin{bmatrix} 2 & 1 \ 1 & 2 \end{bmatrix} egin{bmatrix} y_2 \ y_4 \end{bmatrix} = egin{bmatrix} 4 \ 5 \end{bmatrix} \qquad \text{and} \qquad y_2 \geq 0, \quad y_4 \geq 0$$

y=(0,1,0,2) satisfies these conditions and proves that x is optimal

Complementary slackness is useful to recover  $y^*$  from  $x^*$ 

# The dual simplex

#### **Primal problem**

### **Dual problem**

minimize 
$$c^Tx$$
 maximize  $-b^Ty$  subject to  $Ax = b$  subject to  $A^Ty + c \ge 0$ 

Given a basis matrix  $A_B$ 

### **Primal problem**

### **Dual problem**

minimize 
$$c^Tx$$
 maximize  $-b^Ty$  subject to  $Ax = b$  subject to  $A^Ty + c \geq 0$   $x \geq 0$ 

Given a basis matrix  $A_B$ 

Primal feasible: 
$$Ax = b, x \ge 0 \implies x_B = A_B^{-1}b \ge 0$$

### **Primal problem**

### **Dual problem**

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Given a basis matrix  $A_B$ 

Primal feasible:  $Ax = b, x \ge 0 \implies x_B = A_B^{-1}b \ge 0$ 

Dual feasible:  $A^Ty + c \ge 0$ .

### **Primal problem**

## **Dual problem**

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Given a basis matrix  $A_B$ 

Primal feasible: 
$$Ax = b, x \ge 0 \implies x_B = A_B^{-1}b \ge 0$$

Dual feasible: 
$$A^Ty + c \ge 0$$
. If  $y = -A_B^{-T}c_B \implies c - A^TA_B^{-T}c_B \ge 0$ 

### Primal problem

### **Dual problem**

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Given a **basis** matrix  $A_B$ 

Primal feasible:  $Ax = b, x \ge 0 \implies x_B = A_B^{-1}b \ge 0$ 

Dual feasible:  $A^Ty + c \ge 0$ . If  $y = -A_B^{-T}c_B \implies c - A^TA_B^{-T}c_B \ge 0$ 

If 
$$y = -A_B^{-T} c_B \implies$$

Reduced costs 
$$c - A^T A_B^{-T} c_B \ge 0$$

### Primal problem

### **Dual problem**

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Given a **basis** matrix  $A_B$ 

Primal feasible:  $Ax = b, x \ge 0 \implies x_B = A_B^{-1}b \ge 0$ 

$$\Rightarrow$$

$$x_B = A_B^{-1}b \ge 0$$



**Reduced costs** 

Dual feasible:  $A^Ty + c \ge 0$ . If  $y = -A_B^{-T}c_B \implies c - A^TA_B^{-T}c_B \ge 0$ 

If 
$$y = -A_B^{-T} c_B \implies$$

$$c - A^T A_B^{-T} c_B \ge 0$$

**Zero duality gap:** 
$$c^T x + b^T y = c_B^T x_B - b^T A_B^{-T} c_B = c_B^T x_B - c_B^T A_B^{-1} b = 0$$

### Primal problem

### **Dual problem**

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Given a basis matrix  $A_B$ 

Primal feasible:  $Ax = b, x \ge 0 \implies x_B = A_B^{-1}b \ge 0$ 

Reduced costs

Dual feasible: 
$$A^Ty + c \ge 0$$
. If  $y = -A_B^{-T}c_B \implies c - A^TA_B^{-T}c_B \ge 0$ 

If 
$$y = -A_B^{-T} c_B \implies$$

$$c - A^T A_B^{-T} c_B \ge 0$$

**Zero duality gap:** 
$$c^T x + b^T y = c_B^T x_B - b^T A_B^{-T} c_B = c_B^T x_B - c_B^T A_B^{-1} b = 0$$

# The primal (dual) simplex method

### **Primal problem**

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

### Primal simplex

- Primal feasibility
- Zero duality gap



### **Dual problem**

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

### **Dual simplex**

- Dual feasibility
- Zero duality gap



Primal feasibility

## Feasible dual directions

#### **Conditions**

$$P = \{ y \mid A^T y + c \ge 0 \}$$

Given a basis matrix 
$$A_B = \begin{bmatrix} A_{B(1)} & \dots & A_{B(m)} \end{bmatrix}$$
 we have dual feasible solution  $y$ :

$$\bar{c} = A^T y + c \ge 0$$

## Feasible dual directions

#### **Conditions**

$$P = \{ y \mid A^T y + c \ge 0 \}$$

Given a basis matrix 
$$A_B = \begin{bmatrix} A_{B(1)} & \dots & A_{B(m)} \end{bmatrix}$$
 we have dual feasible solution  $y$ :

$$\bar{c} = A^T y + c \ge 0$$

$$y + \theta d$$

## Feasible dual directions

#### **Conditions**

$$P = \{ y \mid A^T y + c \ge 0 \}$$

Given a basis matrix 
$$A_B = \begin{bmatrix} A_{B(1)} & \dots & A_{B(m)} \end{bmatrix}$$
 we have dual feasible solution  $y$ :

$$\bar{c} = A^T y + c \ge 0$$

#### Feasible direction d

$$y + \theta d$$

#### Reduced cost change

$$c + A^T(y + \theta d) \ge 0 \quad \Rightarrow \quad \bar{c} + \theta z \ge 0$$
 
$$A^T d = z \text{ (subspace restriction)}$$

## Computation

### **Subspace restriction**

$$\begin{array}{c}
 \bar{c} + \theta z \ge 0 \\
 A^T d = z
 \end{array}$$

$$A_B^T d = z_B$$

$$A_N^T d = z_N$$

## Computation

### Subspace restriction

$$\begin{array}{c}
 \bar{c} + \theta z \ge 0 \\
 A^T d = z
 \end{array}
 \qquad \qquad \qquad \qquad \qquad A_B^T d = z_B$$

$$A_N^T d = z_N$$

#### **Basic indices**

$$z_B = e_i \longrightarrow B(\ell) = i$$
 exits the basis

Get 
$$d$$
 by solving  $A_B^T d = z_B$ 

## Computation

### Subspace restriction

$$\bar{c} + \theta z \ge 0 
A^T d = z 
A^T d = z_N$$

$$A_N^T d = z_N$$

#### **Basic indices**

$$z_B = e_i \longrightarrow B(\ell) = i$$
 exits the basis

Get 
$$d$$
 by solving  $A_B^T d = z_B$ 

## Nonbasic indices

$$z_N = A_N^T d - A_N^T A_B^{-T} e_i$$

## Computation

## Subspace restriction

## a PRIMAL JMACX $X_{B} > 0$ $X_{N} = 0$

$$A_B^T d = z_B$$
$$A_B^T d = z_M$$

#### **Basic indices**

$$z_B = e_i \longrightarrow B(\ell) = i$$
 exits the basis

Get 
$$d$$
 by solving  $A_B^T d = z_B$ 

#### Nonbasic indices

$$z_N = A_N^T d = A_N^T A_B^{-T} e_i$$

## Non-negativity of reduced costs (non-degenerate assumption)

- Basic variables:  $\bar{c}_B = 0$ . Nonnegative direction  $z_B > 0$ .
- Nonbasic variables:  $\bar{c}_N > 0$ . Therefore  $\exists \theta > 0$  such that  $\bar{c}_N + \theta z_N \geq 0$

# Stepsize

## How far can we go?

$$\theta^* = \max\{\theta \mid \theta \ge 0 \text{ and } \bar{c} + \theta z \ge 0\}$$

# Stepsize

#### How far can we go?

$$\theta^* = \max\{\theta \mid \theta \ge 0 \text{ and } \bar{c} + \theta z \ge 0\}$$

#### Unbounded

If  $z \ge 0$ , then  $\theta^* = \infty$ . The dual problem is unbounded (primal infeasible).

### Stepsize

### How far can we go?

$$\theta^* = \max\{\theta \mid \theta \ge 0 \text{ and } \bar{c} + \theta z \ge 0\}$$

#### Unbounded

If  $z \geq 0$ , then  $\theta^* = \infty$ . The dual problem is unbounded (primal infeasible).

#### Bounded

If 
$$z_j < 0$$
 for some  $j$ , then

If 
$$z_j < 0$$
 for some  $j$ , then  $\theta^\star = \min_{\{j \mid z_j < 0\}} \left( -\frac{\bar{c}_j}{z_j} \right) = \min_{\{j \in N \mid z_j < 0\}} \left( -\frac{\bar{c}_j}{z_j} \right)$  (Since  $z_j \geq 0, \ j \in B$ )

### Moving to a new basis

#### Next reduced cost

$$\bar{c} + \theta^{\star} z$$

Let 
$$j \notin \{B(1),\dots,B(m)\}$$
 be the index such that  $\theta^\star=-\frac{\overline{c}_j}{z_j}$ . Then,  $\overline{c}_j+\theta^\star z_j=0$ 

### Moving to a new basis

#### Next reduced cost

$$\bar{c} + \theta^{\star} z$$

Let 
$$j \notin \{B(1),\dots,B(m)\}$$
 be the index such that  $\theta^*=-\frac{\bar{c}_j}{z_j}$ . Then,  $\bar{c}_j+\theta^*z_j=0$ 

#### **New basis**

$$A_{\bar{B}} = \begin{bmatrix} A_{B(1)} & \dots & A_{B(\ell-1)} & A_j & A_{B(\ell+1)} & \dots & A_{B(m)} \end{bmatrix}$$

### Moving to a new basis

#### Next reduced cost

$$\bar{c} + \theta^* z$$

Let 
$$j \notin \{B(1),\dots,B(m)\}$$
 be the index such that  $\theta^\star = -\frac{\bar{c}_j}{z_j}$ . Then,  $\bar{c}_j + \theta^\star z_j = 0$ 

#### **New basis**

$$A_{\bar{B}} = \begin{bmatrix} A_{B(1)} & \dots & A_{B(\ell-1)} & A_j & A_{B(\ell+1)} & \dots & A_{B(m)} \end{bmatrix}$$

#### **New solution**

$$A_{\bar{B}}x_{\bar{B}} = b$$

### An iteration of the dual simplex method

#### Initialization

- a basic dual feasible solution y, i.e.  $A^Ty+c\geq 0$
- a basis matrix  $A_B = \begin{bmatrix} A_{B(1)} & \dots, A_{B(m)} \end{bmatrix}$

### An iteration of the dual simplex method

#### Initialization

- a basic dual feasible solution y, i.e.  $A^Ty+c\geq 0$
- a basis matrix  $A_B = \begin{bmatrix} A_{B(1)} & \dots, A_{B(m)} \end{bmatrix}$

### **Iteration steps**

- 1. Get *x* 
  - Solve  $A_B x_B = b (O(m^2))$
  - Set  $x_i = 0$  if  $i \notin B$
- 2. If  $x \ge 0$ , x feasible. break
- 3. Choose i such that  $x_i < 0$
- 4. Compute each direction z with  $z_i=1$ ,  $A_B^T d=e_i$  and  $z_N=A_N^T d$  ( $O(m^2)$ )

- 5. If  $z_N \ge 0$ , the dual problem is **unbounded** and the optimal value is  $+\infty$ . **break**
- 6. Compute step length  $\theta^{\star} = \min_{\{j \in N \mid z_j < 0\}} \left( -\frac{\bar{c}_j}{z_j} \right)$
- 7. Compute new point  $y + \theta^* d$
- 8. Get new basis  $A_{\bar{B}} = A_B + (A_j A_i)e_\ell^T$  perform rank-1 factor update (j enters, i exists)  $O(m^2)$

### An iteration of the dual simplex method

#### Initialization

- a basic dual feasible solution y, i.e.  $A^Ty+c\geq 0$
- a basis matrix  $A_B = \begin{bmatrix} A_{B(1)} & \dots, A_{B(m)} \end{bmatrix}$

# Remark Reduced costs nonnegative objective non-decreasing

### **Iteration steps**

- 1. Get *x* 
  - Solve  $A_B x_B = b (O(m^2))$
  - Set  $x_i = 0$  if  $i \notin B$
- 2. If  $x \ge 0$ , x feasible. break
- 3. Choose i such that  $x_i < 0$
- 4. Compute each direction z with  $z_i=1$ ,  $A_B^T d=e_i$  and  $z_N=A_N^T d$  ( $O(m^2)$ )

- 5. If  $z_N \ge 0$ , the dual problem is **unbounded** and the optimal value is  $+\infty$ . **break**
- 6. Compute step length  $\theta^\star = \min_{\{j \in N \mid z_j < 0\}} \left( -\frac{\bar{c}_j}{z_j} \right)$
- 7. Compute new point  $y + \theta^* d$
- 8. Get new basis  $A_{\bar{B}} = A_B + (A_j A_i)e_\ell^T$  perform rank-1 factor update (j enters, i exists)  $O(m^2)$

### From lecture 6

### minimize $c^T x$

subject to Ax = b

$$x \ge 0$$

### **Dual problem**

 $\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$ 

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = egin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \ 2 & 1 & 2 & 0 & 1 & 0 \ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

#### Initialize

$$y = (10, 0, 0)$$
  $B = \{1, 5, 6\}$ 

$$c + A^T y = (0, 8, 8, 10, 0, 0) \ge 0$$

$$y = (10, 0, 0)$$

$$-b^{T}y = -200$$

$$c + A^{T}y = (0, 8, 8, 10, 0, 0)$$

$$B = \{1, 5, 6\}$$

$$A_{B} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$
 $b = (20, 20, 20)$ 

$$y = (10, 0, 0)$$

$$-b^{T}y = -200$$

$$c + A^{T}y = (0, 8, 8, 10, 0, 0)$$

$$B = \{1, 5, 6\}$$

$$A_{B} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Primal solution 
$$x = (20, 0, 0, 0, -20, -20)$$

Solve 
$$Ax_B = b \implies x_B = (20, -20, -20)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$(0,0,0)$$
  $A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$   $b = (20, 20, 20)$ 

$$b = (20, 20, 20)$$

$$y = (10, 0, 0)$$

$$-b^{T}y = -200$$

$$c + A^{T}y = (0, 8, 8, 10, 0, 0)$$

$$B = \{1, 5, 6\}$$

$$A_{B} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Primal solution 
$$x = (20, 0, 0, 0, -20, -20)$$

Solve 
$$Ax_B = b \implies x_B = (20, -20, -20)$$

Direction 
$$z = (0, -3, -2, -2, 1, 0), i = 5$$

Solve 
$$A_B^T d = e_i \quad \Rightarrow \quad d = (-2, 1, 0)$$

Get 
$$z_N = A_N^T d = (-3, -2, -2)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

$$y = (10, 0, 0)$$

$$-b^{T}y = -200$$

$$c + A^{T}y = (0, 8, 8, 10, 0, 0)$$

$$B = \{1, 5, 6\}$$

$$A_{B} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Primal solution 
$$x = (20, 0, 0, 0, -20, -20)$$
  
Solve  $Ax_B = b \Rightarrow x_B = (20, -20, -20)$ 

**Direction** 
$$z = (0, -3, -2, -2, 1, 0), i = 5$$
  
Solve  $A_B^T d = e_i \Rightarrow d = (-2, 1, 0)$   
Get  $z_N = A_N^T d = (-3, -2, -2)$ 

Step 
$$\theta^{\star} = 2.66, \quad j = 2$$
 $\theta^{\star} = \min_{\{j \mid z_j < 0\}} (-\bar{c}_j/z_j) = \{2.66, 4, 5\}$ 
New  $y \leftarrow y + \theta^{\star}d = (4.66, 2.66, 0)$ 

$$c = (-10, -12, -12, 0, 0, 0)$$
 $A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$ 

$$b = (20, 20, 20)$$

$$y = (4.66, 2.66, 0)$$

$$-b^{T}y = -146.66$$

$$c + A^{T}y = (0, 0, 2.66, 4.66, 2.66, 0)$$

$$B = \{1, 2, 6\}$$

$$A_{B} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 2 & 2 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

### Example **Iteration 2**

$$y = (4.66, 2.66, 0)$$

$$-b^{T}y = -146.66$$

$$c + A^{T}y = (0, 0, 2.66, 4.66, 2.66, 0)$$

$$B = \{1, 2, 6\}$$

$$A_{B} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 2 & 2 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Primal solution 
$$x = (6.66, 6.66, 0, 0, 0, -6.66)$$
  
Solve  $Ax_B = b \Rightarrow x_B = (6.66, 6.66, -6.66)$ 

$$c = (-10, -12, -12, 0, 0, 0)$$
 $A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$ 
 $b = (20, 20, 20)$ 

$$y = (4.66, 2.66, 0)$$

$$-b^{T}y = -146.66$$

$$c + A^{T}y = (0, 0, 2.66, 4.66, 2.66, 0)$$

$$B = \{1, 2, 6\}$$

$$A_{B} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 2 & 2 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Primal solution 
$$x = (6.66, 6.66, 0, 0, 0, -6.66)$$
  
Solve  $Ax_B = b \Rightarrow x_B = (6.66, 6.66, -6.66)$ 

**Direction** 
$$z=(0,0,-1.66,-0.66,-0.66,1), \quad i=6$$
 Solve  $A_B^T d=e_i \quad \Rightarrow \quad d=(-0.66,-0.66,1)$  Get  $z_N=A_N^T d=(-1.66,-0.66,-0.66)$ 

$$y = (4.66, 2.66, 0)$$

$$-b^{T}y = -146.66$$

$$c + A^{T}y = (0, 0, 2.66, 4.66, 2.66, 0)$$

$$B = \{1, 2, 6\}$$

$$A_{B} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 2 & 2 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Primal solution 
$$x = (6.66, 6.66, 0, 0, 0, -6.66)$$
  
Solve  $Ax_B = b \Rightarrow x_B = (6.66, 6.66, -6.66)$ 

$$\begin{array}{ll} \textbf{Direction} & z=(0,0,-1.66,-0.66,-0.66,1), & i=6\\ \textbf{Solve} & A_B^T d=e_i & \Rightarrow & d=(-0.66,-0.66,1)\\ \textbf{Get} & z_N=A_N^T d=(-1.66,-0.66,-0.66) & \end{array}$$

Step 
$$\theta^{\star} = 1.6, \quad j = 3$$
 $\theta^{\star} = \min_{\{j \mid z_j < 0\}} (-\bar{c}_j/z_j) = \{1.6, 7, 4\}$ 
New  $y \leftarrow y + \theta^{\star}d = (3.6, 1.6, 1.6)$ 

$$y = (3.6, 1.6, 1.6)$$

$$-b^{T}y = -136$$

$$c + A^{T}y = (0, 0, 0, 3.6, 1.6, 1.6)$$

$$B = \{1, 2, 3\}$$

$$A_{B} = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

### Example **Iteration 3**

$$y = (3.6, 1.6, 1.6)$$

$$-b^{T}y = -136$$

$$c + A^{T}y = (0, 0, 0, 3.6, 1.6, 1.6)$$

$$B = \{1, 2, 3\}$$

$$A_{B} = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

b = (20, 20, 20)

Primal solution 
$$x = (4, 4, 4, 0, 0, 0)$$

Solve 
$$Ax_B = b \Rightarrow x_B = (4, 4, 4)$$

# **Iteration 3**

$$y = (3.6, 1.6, 1.6)$$

$$-b^{T}y = -136$$

$$c + A^{T}y = (0, 0, 0, 3.6, 1.6, 1.6)$$

$$B = \{1, 2, 3\}$$

$$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \end{bmatrix}$$

$$A_{B} = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \end{bmatrix}$$

$$b = (20, 20, 20)$$

### **Primal solution**

Solve 
$$Ax_B = b \Rightarrow x_B = (4, 4, 4)$$

$$x \ge 0$$

x = (4, 4, 4, 0, 0, 0)

### **Optimal solution**

$$x^* = (4, 4, 4, 0, 0, 0)$$

### Same as primal simplex!

### Equivalence and symmetry

The dual simplex is equivalent to the primal simplex applied to the dual problem.

#### **Dual problem**

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

#### **Standard form**

minimize 
$$\begin{bmatrix} b & -b & 0 \end{bmatrix} w$$
 subject to  $\begin{bmatrix} A^T & -A^T & -I \end{bmatrix} w = -c$   $w \geq 0$   $w = (y^+, y^-, s)$ 

### Dual simplex efficiency

Sequence of problems with varying feasible region

previous y still dual feasible ——— warm-start

### Dual simplex efficiency

Sequence of problems with varying feasible region

previous y still dual feasible —— warm-start

Applied in many different contexts, for example:

- 1. sequential decision-making
- 2. mixed-integer optimization to solve subproblems

(more later in the course...)

### Linear optimization duality

#### Today, we learned to:

- Interpret linear optimization duality using game theory
- Prove Farkas lemma using duality
- Geometrically link primal and dual solutions with complementary slackness
- Implement the dual simplex method

### Next lecture

Sensitivity analysis