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Decisions



FInance

Variables
Amounts invested In each asset

Constraints

Budget, investment per asset,
minimum return, etc.

Objective
Maximize profit, minus risk




Optimal control

Variables
Inputs: thrust, flaps, etc.

Constraints
System limitations, obstacles, etc.

Objective
Minimize distance to target and
fuel consumption




Machine learning

Variables
Model parameters

Constraints
Prior information, parameter limits

Objective
Minimize prediction error, plus
regularization




Mathematical optimization

minimize  f(x)
subjectto g¢g;(x) <0, i=1,...,m

r=(x1,...,T,) Variables

™ Solution/Optimal point
f:R" =R Objective function

f(z™) Optimal value
g, : R" = R Constraint functions



Most optimization problems
cannot be solved
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Solving optimization problems

Compromises

* | ong computation times

General case Very hard!

* Not finding the solution
(in practice it may not matter)

Exceptions

e |Linear optimization Can be solved very

efficiently and reliably

—_—

e Convex optimization



Meet your teachlng staff

Bartolomeo Stellato

| am a Professor at ORFE. | obtained my PhD from
Oxford and | was a postdoc at MIT.

Instructor
email: bstellato@princeton.edu
office hours: Thu 2pm—4pm EST, Sherred 323
website: stellato.io
Irina Wang

Assistant

in PhD student at ORFE.
instruction email: iywang@princeton.edu

office hours: Mon 1:00pm—3:00pm EST, at Sherrerd 003
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Meet your classmates!

Name? Year?

Oipd0

What is your department? .

#n'

What do you want to use optimization for?

https://www.menti.com/5jp334nxuj

10



Today’s agenda

* Optimization problems
* History of optimization
* Course contents and information

* A glance into modern optimization
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Linear optimization

minimize ¢z
subjectto alz <b;, i=1....,m

No analytical formula (99% of the time there will be none in this course!)

Efficient algorithms and software we can solve problems with several
thousands of variables and constraints

Extensive theory (duality, degeneracy, sensitivity)
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Linear optimization

Example: resource allocation

maximize ) ., ¢zl
SUbjeCt o S:?—l aj@g bj, 17=1,....m

r; >0, 1=1,...,n

» ¢;. profit per unit of product ¢ shipped
* b;: units of raw material ;7 on hand
* aj;: units of raw materia}j yequired to produce on unit of produo@
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Nonlinear optimization

minimize  f(x)

subjectto ¢;(z) <0, i=1,...

Hard to solve in general

 multiple local minima
 discrete variables x € Z"
* hard to certify optimality

p
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Convex optimization ]

Convex functions

minimize f/ /7

subject to g,

All local minima are global!

Efficient algorithms and software
Extensive theory (convex analysis and conic optimization) [ORF523]

Used to solve non convex problems
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Prehistory of optimization

Calculus of variations

Fermat/Newton Euler Lagrange
minimize f(z), x € R minimize f(x), x € R" minimize  f(x)
df(z) ] Vf(z) =0 subjectto g(z) =0

der
—————

1670 1755 1797  Time
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History of optimization

Algorithms
Origin of
linear optimization I | |
(Kantorovich, Simplex nterior-point ]
Koopmans,  algorithm methods cl)_a’:igrre]izsa?[?cl)i
von Neumann) (Dantzig) (Karmarkar) P
e ——————————
1930s 1947 1984 2000s
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History of optimization

Age of computers

Algorithms
Origin of
linear optimization I | |
(Kantorovich, Simplex nterior-point _
Koopmans,  algorithm methods !)_S’:igr’re]izsa?t?cﬁ
von Neumann) (Dantzig) (Karmarkar)
e ————————————
1930s 1947 1984 2000s
Applications
Machine learning
| Image processing
Operations Research Engineering Communication systems
Economics Statistics Embedded intelligent systems

————————————————————————————————————————————
1990s 2000s 17



Lots of data
easy storage
and

Technological innovations

ISSION

transm
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Technological innovations
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A ) -‘_—“

Technological innovations
Massive High-level programming
Lots of data computations languages

B=r=sr—y =i

easy storage computers easy to
and are do complex
transmission super fast stuff
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What is happening today?

Huge scale optimization

Real-time optimization

Massive Massive Fast real-time  Low-cost computing

T SRR

computations requirements platforms
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What is happening today?

Huge scale optimization Real-time optimization
Massive Massive Fast real-time  Low-cost computing
computations requirements platforms

Renewed interest In
old methods (70s)

 Subgradient methods  Cheap iterations

—

* Proximal algorithms * Simple implementation
19



Contents of this course

Linear optimization Nonlinear optimization

* Modelling and applications Modelling and applications

Geometry Optimality conditions

Duality First-order methods

Degeneracy Operator-splitting

The simplex method algorithms

. . Acceleration schemes
Sensitivity analysis

Interior point methods

Extensions

Sequential convex
programming

Branch and bound
algorithms

Real-time
optimization




Course information
Grading

 25% Homeworks
5 bi-weekly homeworks with coding component. Collaborations are
encouraged!

¢ 25% Midterm 5 vt CIMEAR

90 minutes written exam a@E&#. No collaborations: oM N

 40% Final
Take-home assignment with coding component. No collaborations.

 10% Participation
One question or note on Ed after each lecture.
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Course information

10% Participation notes/questions
What?

* Briefly summarize what you learned in the last lecture
* Highlight the concepts that were most confusing/you would like to review.

 Can be anonymous (to your classmates, not to the instructor) or public, as you choose.

Why?
 We will use your ideas to clarity previous lectures, and to improve the course in future iterations.

* You can ask questions you don’t feel comfortable asking in class.

* You can use these to gather your thoughts on the previous lecture and solidify your understanding.
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Course information

Course website
https://stellato.10/teaching/orf522

Prerequisites

 (Good knowledge of linear algebra and
calculus.

For a refresher, read Appendices A & C of

[COJ] Boyd, Vandenberghe: Convex
Optimization (available online).

+ Familiarity with Python.

%

PRINCETON

UNIVERSITY Bartolomeo Stellato

ORF522: Linear and Nonlinear Optimization

Previous years: 2020

Description

This course introduces analytical and computational tools for linear and nonlinear
optimization. Topics include linear optimization modeling, duality, the simplex method,

degeneracy, sensitivity analysis and interior point methods. Nonlinear optimality conditions,

KKT conditions, first order and operator splitting methods for nonlinear optimization, real-
time optimization and data-driven algorithms. A broad spectrum of applications in
engineering, finance and statistics is presented.

Learning objectives

This course introduces analytical and computational tools for linear and nonlinear
optimization. Upon successful completion of this course you should be able to:

» Model decision-making problems across different disciplines as mathematical
optimization problems.

» Apply the most appropriate optimization tools when faced with a concrete problem.

» Implement optimization algorithms and prove their convergence.
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Course information

Materials

Linear optimization
 [LP] R. J. Vanderbei: Linear Programming: Foundations & Extensions (available on SpringerLink)
« [LO] D. Bertsimas, J. Tsitsiklis: Introduction to Linear Optimization (available Princeton Controlled Digital Lending)

Nonlinear optimization

« [NO] J. Nocedal, S. J. Wright: Numerical Optimization (available on SpringerLink)

« [CO] S. Boyd, L. Vandenberghe: Convex Optimization (available for free)

« [FMQ] A. Beck: First-order methods in optimization (available on SIAM)

« [FCA] J. B. Hiriart-Hrruty, C. Lemarechal: Fundamentals of Convex Analysis (available on SpringerLink)

 [ILCQO] Y. Nesterov: Introductory Lectures to Convex Optimization (available on SpringerLink)

« [e364Db] S. Boyd: Convex Optimization Il Lecture Notes (available online)

« [COAC] S. Bubeck: Convex Optimization: Algorithms and Complexity (available for free)

« [MINLO] P. Belotti, C. Kirches, S. Leyfter, J. Linderoth, J. Luedtke, A. Mahajan: Mixed-integer nonlinear optimization (available online)

Operator splitting algorithms

« [PA] N. Parikh, S. Boyd: Proximal Algorithms (available for free)

« [PMO] E. K. Ryu, S. Boyd: A primer on monotone operators (available for free)

« [LSMO] E. K. Ryu and W. Yin: Large-Scale Convex Optimization via Monotone Operators (Draft) (available for free)

 [ADMM] S. Boyd, N. Parikh, B. Peleato, J. Eckstein: Distributed Optimization and Statistical Learning via the Alternating Direction Method of
Multipliers (available for free)
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Software (open-source)

@ python’ jupyter

Numerical computations
Numerical computations on numpy and scipy.

CVXPY X = cp.Variable(n)
prob = cp.Problem(
T cp.Minimize(c.T@x),

[A @ x <= Db]

minimize c'x
. —
subjectto Ax <b )

prob.solve ()
print ("The optimal value 1is", prob.value)

print ("The solution x is", x.value)

25



Learning goals

 Model your favorite decision-making problems as mathematical optimization
problems.

* Apply the most appropriate optimization tools when faced with a concrete
problem.

* Implement optimization algorithms and prove their convergence.
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Glance into modern optimization
Huge scale optimization

Dataset with
billions of datapoints (z*,y') ———  Goal: Design predictor {* = 9o (")
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Glance into modern optimization
Huge scale optimization

Dataset with
billions of datapoints (z*,y') ———  Goal: Design predictor §* = gy(z*)

Optimization problem
Loss Reqularizer

minimize  L£(0) + Ar(0) = >, £(9°, y") + Ar(6)

Many examples Large-scale
« Support vector machines computing How large are the largest
Ceqularized | Soralled problems we can solve?
egulariZzed regression aralie (hOW many variables?)

e Neural networks e Distributed ”



Glance into modern optimization

Real-time optimization

: Ty & R" :
Dynamical system: z;,.1 = Ax; + Buy .
Ur © R™:
T
_ . . . . dGS
Goal: track trajectory minimize E |2y — x|
t=0

Constraints: inputs ||u|| < U, statesa <z; <D

state
iInput
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Real-time optimization

: Ty & R" :
Dynamical system: z;,.1 = Ax; + Buy
Ut & Rm )
T
_ . s . dGS
Goal: track trajectory minimize E |2y — 3]
t=0

Constraints: inputs ||u|| < U, statesa <z; <D

Solve and repeat.....
How fast can we solve these problems?

state
iInput
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: Ty & R" :
Dynamical system: z;,.1 = Ax; + Buy
Ut & Rm )
T
_ . s . dGS
Goal: track trajectory minimize E |2y — 3]
t=0

Constraints: inputs ||u|| < U, statesa <z; <D

Solve and repeat.....
How fast can we solve these problems?

1-norm —— 2?77

state
iInput
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Glance into modern optimization

Real-time optimization

: Ty & R" :
Dynamical system: z;,.1 = Ax; + Buy
Ut & Rm )
T
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Goal: track trajectory minimize E |2y — 3]
t=0

Constraints: inputs ||u|| < U, statesa <z; <D

Solve and repeat.....
How fast can we solve these problems?

state
iInput
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Next lecture

Linear optimization

e Definitions
 Modelling
e Formulations

« Examples
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