ORF522 - Linear and Nonlinear Optimization

21. Branch and bound algorithms

Bartolomeo Stellato — Fall 2021

Final exam length poll

e 24 hours

e 12 hours

Please complete the poll at

https://forms.gle/Fmnil 2dVmQWFHQgv17

Ed Forum

 What is the proof that convex-concave procedure converges to a stationary
point? Sketch

1) show always feasjble: fi(z) — gi(z) < fi(z) — gi(x) <O

2) show descent method:

=

fo(z") = go(z®) > fo(z") — Go(z"; z")

> min, fo(z) — go(x; ") = fo(z" 1) — go(a™ T 2")

Therefore fo(x*) — go(x™) is nonincreasing and it converges (possibly to —oo)

[More at “Variations and extension of the convex—concave procedure”, Lipp, Boyd]

D

Today'’s lecture
[IMINLO]lee364b]

Branch and bound algorithms

Main concepts

Spacial branch and bound
Convergence analysis
Mixed-boolean convex optimization

Cardinality minimization example

Main concepts

Methods for nonconvex optimization

Convex optimization algorithms: global and typically fast

Nonconvex optimization algorithms: must give up one, global or fast

 Local methods: fast but not global
Need not find a global (or even feasible) solution.
They cannot certify global optimality because
KKT conditions are not sufficient.

* Global methods: global but often slow
They find a global solution and certity it.

Branch and bound algorithms

Methods for global optimization for nonconvex problems

Not a heuristic
» Provable lower and upper bounds on global objective value

» Terminate with certificate of e-suboptimality
» Always return global optimum

Often very slow

Exponential worst-case performance
(sometimes it works well)

The problem and its relaxation

Problem
r* = argmin f(x) » f can be nonconvex

subjectto z € X - X can be nonconvex

The problem and its relaxation

Problem
r* = argmin f(x) » f can be nonconvex
subjectto z € & - X can be nonconvex
Relaxation
$* = argmin f(x) + f(x) < f(x): convex underestimator

subjectto x € conv X . conv X: convex hull

Problem

r* = argmin f(x)
subjectto z e X

Relaxation

e\

T* = argmin f(x)
subjectto x € conv X

Properties
- Lower bound: f(i*) < f(z*)
» Larger feasible set: X C conv X

The problem and its relaxation

» f can be nonconvex

X can be nonconvex

A

* f(z) < f(=x): convex underestimator

 conv X: convex hull

Example

minimize ¢’z s it convex?

subjectto Az <b
r; € {0,1} How do you solve it?

Example

minimize ¢’ s it convex?
subjectto Az <b
r1 €{0,1} How do you solve it?

minimize ¢’z
subjectto Az <b
r; €{0,1}, i=1,...,10

Example

minimize ¢’ x Is it convex?
subjectto Az <b
r1 €{0,1} How do you solve it?
minimize ¢’z . Somve 210 1094 | P
subjectto Az < b « Parallelize solutions

r; €{0,1}, ¢=1,...,10 + Warm-start: similar problems

Example

minimize ¢’z s it convex?
subjectto Az <b
v € {0,1) How do you solve it?
minimize ¢ + Solve 210 = 1024 LPs
subjectto Az < + Parallelize solutions
r; €{0,1}, ¢=1,...,10 + Warm-start: similar problems

It can quickly explode: 2°Y ~ 1 bIn

Example

minimize ¢’z s it convex?
subjectto Az <b
v € {0,1) How do you solve it?
minimize ¢ + Solve 210 = 1024 LPs
subjectto Az < + Parallelize solutions
r; €{0,1}, ¢=1,...,10 + Warm-start: similar problems

It can quickly explode: 2°Y ~ 1 bIn

Branch and bound works more systematically
and
(hopefully) decreases the number of subproblems 9

Main idea

Two efficient subroutines
(for every region)

Lower bound: can be sophisticated Upper bound: evaluate any point

* Relaxed problem
| agrange dual
* Other bounds...

In the region

* | ocal optimization
 Evaluate function at the center

10

Main idea

Two efficient subroutines
(for every region)

Lower bound: can be sophisticated Upper bound: evaluate any point
» Relaxed problem In the region
» Lagrange dual * |ocal optimization
e Other bounds. .. * Evaluate function at the center
Ilterations

1. Partition feasible set into convex sets and compute
lower and upper bounds

2. Form global lower and upper bounds.
If they are close, break

3. Refine partitions and repeat

10

Spacial branch and bound

Problem setup

minimize f(x) * f can be nonconvex

subjectto = € Oiuis Qinit IS @ n-dimensional rectangle

For any rectangle O C OQ;,;: we define

$(Q) = min f(z)

Global optimal value

f(x") = ®(Qinit)

12

Lower and upper bounds

Lower and upper bound functions
(they must be cheap to compute)

P (Q) < 2(Q) < Pup(Q)

13

Lower and upper bounds

Lower and upper bound functions
(they must be cheap to compute)

P (Q) < 2(Q) < Pup(Q)

Assumption
bounds must become tight as rectangles shrink

Ve > 0, 0 > 0 such that VO C O, i
size(Q) <0 = Py (Q) — P(Q) <S¢

where size(Q) is the longest edge of Q

13

Branch and bound algorithm

Iterations

1. Branch: create/refine the partition
Oinit = U; 95, M;Q; =1

2. Bound:
- Compute lower and upper bounds

Li =P1,(9Q;), U; =P (9Qs), Vi
» Update global lower bounds on f(x*)
L =min{L;}, U = min{U,;}

3. IfU — L < ¢, break

14

Branch and bound algorithm

Iterations

1. Branch: create/refine the partition
Oinit = U; 95, M;Q; =1

2. Bound:
- Compute lower and upper bounds

Li =P1,(9Q;), U; =P (9Qs), Vi
» Update global lower bounds on f(x*)
L = jn{Li}Z,[,\ U = min{U, }

3. IfU — L < ¢, break

Remarks
* No need to make progress at every iterations

» Partitioning can be uneven

14

Branch and bound

Example in 1D

Qinit 1

What does it say about L? And about U?

Branch and bound

Example in 1D (continued)

Qinit 1
What does it say about L? And about U?

Branch and bound

Example in 1D (continued)

~ -

Qinit 1 Qs
What does it say about L? And about U?

: - - - 16
We can assume w.l.0.g. that U is nonincreasing and L nondecreasing

Branch and bound

Example in 2D
Partition
/- N

Binary tree

N — 7

17

Branch and bound
Example in 2D

Partition Binary tree

At each step we have a binary tree
Children correspond to subregions formed by splitting parents

17

Branch and bound
Example in 2D

Partition Binary tree

At each step we have a binary tree
Children correspond to subregions formed by splitting parents

Leaves give the current partition of O;,;;

17

Branch and bound

certify optimality —— L < f(2*) < U <+——

return point
“Incumbent”

18

Branch and bound

certify optimality —— L < f(2*) < U <+——

Partition = Leaves

return point
“Incumbent”

18

Branch and bound

certify optimality —— L < f(2*) < U <+——

Partition = Leaves

Optimality certificate In
nonconvex optimization
« Partition 9;,;+ = U; O;

- Bounds (L;,U;) Vi

return point
“Incumbent”

18

Branch and bound

certify optimality ——— L < f(z*) < U «—0 [fEUrn point

“Incumbent”
Partition = Leaves
Optimality certificate in Optimality certificate in
nonconvex optimization convex optimization

* Partition Qinit = U; Q@
- Bounds (L;,U;) Vi

Dual variables and cost

18

Branching rules

Branching decisions Goal
» Which rectangle Q, to split Get tight bounds
» Which edge (variable) to split as quickly as

+ Where to split (what value of the variable) possible

They can dramatically affect performance

19

Branching rules

Branching decisions Goal

» Which rectangle Q, to split Get tight bounds

» Which edge (variable) to split as quickly as
possible

« Where to split (what value of the variable)

They can dramatically affect performance

Example heuristic (best-bound search)
» Optimism: split 9, with lowest L;
» Greed: split along coordinate : with greatest uncertainty
(along longest endge)
» Hope: split at value z; where f(z;) = U; 19

Pruning

Key performance component
min L; < f(2™) < min U;

1

Q,I1sactive if L; < IIliIl U;

1

Otherwise it is inactive (z* ¢ Q;)
and we can prune it

20

Pruning

Key performance component
min L; < f(2™) < min U;

1

Q; Is active If L; < min U,

1

Otherwise it is inactive (z* ¢ Q;)
and we can prune it

Questions

What is Q;? activ@ac@
What is anactive

Convergence analysis

Bounds and volume decrease

Assumption
bounds become tight as rectangles shrink

Ve > 0, 0 > 0 such that VO C Oinit
size(Q) <0 = Py (Q) — P(Q) <S¢

where size(Q) is the diameter (longest edge of Q)

22

Bounds and volume decrease

Assumption
bounds become tight as rectangles shrink

Ve > 0, 0 > 0 such that VO C Oinit
size(Q) <0 = Py (Q) — P(Q) <S¢

where size(Q) is the diameter (longest edge of Q)

Volume decrease
At iteration k£ we have the partition £, = {Q1,..., O}

[(Qini
min vol(Q) < Vol Linit)
QcLy k

22

Bounding the condition nhumber

Condition number
For arectancle Q = [l1,u1| X -+ X |l,,, up]

max; (uz — lz)

cond(Q) =

min, (u; — ;)

23

Bounding the condition nhumber

Condition number
For arectancle Q = [l1,u1| X -+ X |l,,, up]

max; (u; — ;)

cond(Q) =

min; (u; — ;)

Worst-case

If we split Q along longest edge in half, we have

cond(Q) < max{cond(Q), 2} Q

23

Bounding the condition nhumber

Condition number

For arectancle Q = [l1,u1| X -+ X |l,,, up]

- max;(u; — ;)
cond(Q) = min; (u; — I;)
Worst-case
If we split Q along longest edge in half, we have
cond(Q) < max{cond(Q), 2} Q

Note: we can bound cond(Q) also if we
do not split in half, by using other rules
(e.g., cycling over the variables)

23

Small volume implies small size

> max(u; — l;) (mm(— 1))n_l

[[

size(Q)" (Multi
ply/divide by (max;(u
cond(Q) y y (max;(u;

> (mf(%) (cond(Q) > 1

— 1))

)

24

Small volume implies small size

> max(u; — l;) (mm(— 1))n_l

[[

— COS;ZG((QQ)):—1 (multiply/divide by (max; (u;
size(Q) \
> (COH 1 Q)> (cond(Q) > 1)

Therefore, size(Q) < VOl(Q)l/” cond(Q)

— 1))

)

24

Small volume implies small size

> max(u; — l;) (mm(— 1))n_l

[[

— COS;ZG((QQ)):—1 (multiply/divide by (max; (u;
size(Q) \
> (COH 1 Q)> (cond(Q) > 1)

Therefore, size(Q) < VOl(Q)l/” cond(Q)

Since cond(Q) is bounded, then we have
vol(Q) <~v = size(Q) <4

— 1))

)

24

Upper and lower bounds convergence

Small volume implies small size
Yo > 0, E”y > () such that VO C Oinit

vol(Q) < v = size(Q) <9

25

Upper and lower bounds convergence

Small volume implies small size
Yo > 0, E”y > () such that VO C Oinit

vol(Q) < v = size(Q) <9

Hence, (roughly)
k large 10 € L, vol(Q) <~y = size(Q) <d=1n/2

~

size(Q)) < n, (parent)

~ ~

A

Cup(Q) — P1(Q) < ¢ When O was added to L, (Q was split),
U—-L<€e —————— the algorithm should have terminated
(best-bound heuristic) B

25

Branch and bound convergence

It converges but we can show
all worst-case rates are exponential

We cannot hope to have non-exponential
worst-case performance

(unless P = N'P)

20

Mixed-boolean convex
optimization

Mixed-boolean convex optimization

minimize f(x)
subjectto g¢g(z,z) <0
ze€{0,1}"

r € RP Is the continuous variable
z € {0,1}" is the boolean variable

f and g are convex in x and z

For each fixed z, the reduced problem in = is convex

28

Global solution methods

Brute force
Solve problem for all 2" possible values of z € {0,1}" (it blows up for n > 20)

Branch and bound
worst-case: we end up solving all 2" convex problems

hope: it works better for our problem

29

Lower bounds via convex relaxations

minimize f(x)
subjectto g(z,z) <0

D< z<1

« Convex problem in z, z (easy)
» Optimal value is L < f(z*) (lower bound)

« [can be +oo (original problem infeasible)

30

Upper bounds

Round (simplest): round each relaxed boolean
variable z* to 0 or 1

Round and polish: round each relaxed boolean
variable and solve resulting problem in «

31

Upper bounds

Round (simplest): round each relaxed boolean
variable z* to 0 or 1

Round and polish: round each relaxed boolean
variable and solve resulting problem in «

Randomization

»+ Generate random z; € {0, 1} with prob(z; =1) = 2

« Solve for z
» Take best result after some samples

*
[/

31

Upper bounds

Round (simplest): round each relaxed boolean
variable z* to 0 or 1

Round and polish: round each relaxed boolean
variable and solve resulting problem in «

Randomization
» Generate random z; € {0, 1} with prob(z; =1) = 27
« Solve for z
» Take best result after some samples

Neighborhood search (after rounding)

 Pick z; and flip its value 0/1
 Solve for x to polish and get bound
» |terate over all components of z and take best result

31

Upper bounds

Round (simplest): round each relaxed boolean
variable z* to 0 or 1

Round and polish: round each relaxed boolean
variable and solve resulting problem in «

Randomization
» Generate random z; € {0, 1} with prob(z; =1) = 27
« Solve for z
» Take best result after some samples

Neighborhood search (after rounding)

 Pick z; and flip its value 0/1
 Solve for x to polish and get bound
» |terate over all components of z and take best result

Remarks

U can be

O

(we can fail to find
a feasible point)

IfU — L <e¢
we can quit

31

Boolean variables branching

Pick and index k£ and form two subproblems

& = minimize f(x) f¥ = minimize
subjectto g(z,z) <0 subject to
ze {0,1}"

32

Boolean variables branching

Pick and index k£ and form two subproblems

& = minimize f(x) fi = minimize f(x)
subjectto g¢g(z,z) <0 subjectto g(x,2) <0
z€40,1}" z€40,1}"

[Zkz()\) ‘Zkzlj

Remarks

- Each problem has n — 1 boolean variables
» Optimal value f(x*) = min{ fJ, f7'}
» We can relax the two problems to obtain lower bounds

32

Bounds from subproblems

o = minimize f(z) fi = minimize f(x)
subjectto g(x,z) <0 subjectto g(x,z) <0
ze€{0,1}" ze€{0,1}"
2. = 0 2 = 1

L,,U, are the lower, upper bounds for z;, = g with ¢ = 0, 1

L =min{Lg, L1} < f(2™) < min{Uy,U;} =U

33

Bounds from subproblems

o = minimize f(z) fi = minimize f(x)
subjectto g(x,z) <0 subjectto g(x,z) <0
ze€{0,1}" ze€{0,1}"
2. = 0 2 = 1

L,,U, are the lower, upper bounds for z;, = g with ¢ = 0, 1

L =min{Lg, L1} < f(2*) < min{Uy,U;} =U

> Previous
lower bound

33

Bounds from subproblems

o = minimize f(z) fi = minimize f(x)
subjectto g(x,z) <0 subjectto g(x,z) <0
ze€{0,1}" ze€{0,1}"
2. = 0 2 = 1

L,,U, are the lower, upper bounds for z;, = g with ¢ = 0, 1

L =min{Ly, L1} < f(2*) < min{Uy,U;} =U

> previous < previous
lower bound upper bound

33

Boolean branch and bound iterations

1. Branch: pick node ¢ and index k
form subproblems for z;, = 0and z, =1

2. Bound: Convergence
- Compute lower and upper bounds (trivial) worst-case

for z, = 0 and z = 2" iterations
. Update global lowey botinds on (%) hefore I — T

L =min{L;}, U =min{U,;}
3. fU — L <e¢, break

34

Boolean branch and bound iterations

1. Branch: pick node ¢ and index k
form subproblems for z;, = 0and z, =1

2. Bound: Convergence
- Compute lower and upper bounds (trivial) worst-case

for z, =0and z; =1 2™ iterations
» Update global lower bounds on f(x*) before U = L
L =min{L;}, U = min{U;}
3. IfU — L <, break

Remarks
* Pruning works in the same way, i.e., if L, > U

» Best-bound heuristic very common

» Variable k selection examples:
- “least ambivalent™ z; = 0 or 1 and largest Lagrange multiplier

- “most ambivalent”: |z — 1/2| is minimum

34

Boolean toy example

minimize ¢!z
subjectto Az <b
z € {0,1}°

35

Boolean toy example

minimize ¢!z
subjectto Az <b
z € {0,1}°

Questions

RS
* How much work (LPs) have we saved? —
» What happens if L; = co? [NFEAS
» What happens if U; = co? CavT 6 FEANELE (oiny

\Mal
- What if you get to a node where the relaxed 2* € {0,1}3? @"‘m}f

35

Practical considerations

Subproblem solutions are independent
We can exploit parallelism on multiple cores or computing nodes

36

Practical considerations

Subproblem solutions are independent
We can exploit parallelism on multiple cores or computing nodes

Subproblems can be very similar
(feasible region variations)
We can warm start the subproblem solver

36

Practical considerations

Subproblem solutions are independent
We can exploit parallelism on multiple cores or computing nodes

Subproblems can be very similar
(feasible region variations)
We can warm start the subproblem solver

Which algorithms would you choose for convex subproblems??
What if you have LP subproblems? g Y MaeX<

36

Practical considerations

Subproblem solutions are independent
We can exploit parallelism on multiple cores or computing nodes

Subproblems can be very similar
(feasible region variations)
We can warm start the subproblem solver

Which algorithms would you choose for convex subproblems?
What if you have LP subproblems?

Integer linear programs are much easier than integer convex
Tallored software can greatly speedup the solution

36

Cardinality minimization

Minimum cardinality example

Find sparsest x satisfying linear inequalities
minimize card(x)
subjectto Az <b

38

Minimum cardinality example

Find sparsest x satisfying linear inequalities
minimize card(x)
subjectto Az <b

Equivalent mixed-boolean LP
minimize 1T v
subject to @zz <z Sk, t=1,...,m
Ax < b
ze€{0,1}"

Big-M
formulation

38

Minimum cardinality example

Find sparsest x satisfying linear inequalities
minimize card(x)
subjectto Az <b

Equivalent mixed-boolean LP
minimize 1%z

subjectto [;z; <z; <wu;z;, 1=1,....n Big-M
Ax < b formulation
ze{0,1}"

* [;,u; are lower/upper bounds on z;
» The tightness of [;, u; can greatly influence convergence 38

Computing big-M constants

minimize x;

[; 1S the optimal value of |
| P subjectto Az <b

maximize zx;

- 1S the optimal value of |
! P subjectto Az <b

Total
2n LPs

39

Computing big-M constants

minimize x;
subjectto Az <b

[; 1s the optimal value of

Total
e 2n LPs
- Is the optimal value of Tarmize s
e subjectto Az < b
L
Remarks _ ,
| 995999 <

« Ifl;, >00ru; <0Owecanijustsetz;, =1 O
(we cannot have z; = 0)
 This procedure, called “bound tightening”, is very common in the pre-

processing step of modern solvers 29

Cardinality problem relaxation

Relaxed problem
minimize 1!z
subjectto [;z; <z; <wu;z;, 1=1,....n

Ax < b
0<2z2<1

40

Cardinality problem relaxation

Relaxed problem
minimize 1!z
subjectto [;z; <z; <wu;z;, 1=1,....n

Ax < b
0<2z2<1

Assuming [; < 0 and u; > 0, It Is equivalent to

minimize >0 (1/wi)(@i)4 + (=1/1) (i) - Asymmetric weighted
subjectto Az <b 1-norm objective

40

Cardinality problem relaxation

Relaxed problem
minimize 1!z
subjectto [;z; <z; <wu;z;, 1=1,....n

Ax < b
D0<z<1

Assuming [; < 0 and u; > 0, It Is equivalent to

minimize >0 (1/wi)(@i)4 + (=1/1) (i) - Asymmetric weighted
subjectto Az <b 1-norm objective

If u;, = u=1= —I;, Vi, we recover the 1-norm penalty

40

Implementation details

Upper bound card(z*) (x* relaxed) relaxation seeks for sparse solutions

41

Implementation details

Upper bound card(z*) (x* relaxed) relaxation seeks for sparse solutions

Lower bound we can replace L with | L| since card is integer valued

41

Implementation details

Upper bound card(z*) (x* relaxed) relaxation seeks for sparse solutions

Lower bound we can replace L with | L| since card is integer valued

Best-bound search split node with lowest L

41

Implementation details

Upper bound card(z*) (x* relaxed) relaxation seeks for sparse solutions

Lower bound we can replace L with | L| since card is integer valued

Best-bound search split node with lowest L

Most ambivalent variable the closest z; to 1/2

41

Small example

Data
40 variables, 200 constraints
240 ~ 1 trillion combinations

Results

Oy o)
O @)

cardinality
o
=

v o
-] —_

DO
N

 Finds good solution very quikcly
» Weighted 1-norm heuristic works very well

 Terminates in 54 iterations

OV
Oy

O
DO

upper bound
lower bound

ceiling (lower bound)

10

20

30

50

42

Medium example

Data
60 variables, 200 constraints
200 ~ 1.15 - 10'® combinations

Results

» Finds good solution very quikcly

» Weighted 1-norm heuristic works very well

 Terminates in ~ 1200 iterations

=~
S 00

cardinality
N
=

w W W
= O OO

Oy
DO

S
N)

S
-

—————

-

upper bound

lower bound

ceiling (lower bound)

200

400 600 300

1000 1200

43

Larger example

01 L

Data
100 variables, 300 constraints
2100 ~ 1.26 - 10°Y combinations

>

cardinality
@)
-

50-
upper bound
| lower bound
01 | e ceiling (lower bound)
0 2500 5000 7500 10000 12500 15000 17500 20000
Results k

» Finds good solution very quikcly
* 6 hours run, no termination

« Only gap certificate in the end
44

Larger example with

Data
100 variables, 300 constraints
2100 ~ 1.26 - 10°Y combinations

Results

» Optimal cardinality 72
» Much more sophisticated method

» 1888 seconds (31 minutes) run
(very slow!)

commercial solver
Gurobi output

Gurobi Optimizer version 9.0.3 build v9.0.3rc0 (mac64)
200 columns and 30400 nonzeros

Optimize a model with 500 rows,
Variable types: 100 continuous,

Coefficient statistics:

Matrix range

Objective range

Bounds range
RHS range

[4e-05,
[1le+00,
[le+00,
[4e-03,

Presolve time: 0.05s

Presolved: 500 rows,
Variable types: 100 continuous,

Root relaxation: objective 2.933185e+01,

Nodes |

29

30.

31.
31.

47

2887987 13108
2897345 4880

33185

IRSISWAY

35255
81240

.90892

cutoff
cutoff

100 integer (100 binary)

5e+00]
1e+00]
1e+00]
3e+01]

Current Node
Expl Unexpl | Obj]

0

200 columns,

85

30400 nonzeros
100 integer (100 binary)

| Objective Bounds
Depth IntInf | Incumbent

85.0000000
85.00000
83.0000000
83.00000
83.00000
82.0000000
82.00000

72.00000
72.00000

735 iterations,

BestBd

.33185
.33185
.18570
.18570
. 35255
.81240
.05009
.05009

70.70801
70.86531

0.18 seconds

| Work
Gap | It/Node Time

Os
Os
1ls
ls
2s
3s
4s
5s

1.79% 34.1 1880s
1.58% 34.1 1885s

Explored 2903463 nodes (98760290 simplex iterations) in 1888.42 seconds

Thread count was 16 (of 16 available processors)

Optimal solution found (tolerance 1.00e-04)

Best objective 7.200000000000e+01, best bound 7.200000000000e+01,

gap 0.0000%

Tree size can grow dramatica

Example for 360s on CPU...

e - T == —
el e ——— == T __ T
f'\" ~".‘.>\ '<' S - ____—r—_': : e - R _—__—':':__-'_ - _:_.-P" .
& .\'s '{'. ’}\‘ /s 1'1' i l.l —_——— T e — - _'::’m‘\.\ d \--’"'-F-F“f“"" - ;'N"\. < = I ~
"l H (',\"* f)" l} .IA \\. I"'-. ||:i '.'l L - T -~ _,.-"". \\""s_ﬁ -_’I-' x\ / ", '3.. n‘.\ f"-, - - '\.\‘\ f;/' > 'm. / \ {f"'-. f' . ’{A‘I ";ﬁi - _,.H-"' ..‘\‘_\“
|I 1 .,~ \.. _,--F"-”-. -"-\.__-. "'_f‘- "'\\‘ AN ""l. ',./’ *\\ / \ £ [} i : . . s\-\ '/. \\.‘
i ! il hi: | Il L 2 o r"""}\x“H TN "'\'s. //\/\ .»}"1 "‘ ,ﬁ. }' IJ'. 'I i 1 il ﬁ.’ .~'/w\ ,')\ N & Ay " A. ;\ -’<l. £ f{]lﬁ /J\ AN ’
| ‘ " L | Y Y e /.\ A s (5 AR :)]J l AN f \ ,.\ ;J il /]e i .,\ l I I" Al }. e VoA LY 4
1 || i Jl 18/ nl” ' ; LA .i I ’ & e 3 N A 109 '; \l A) .’ Al \l' i '; J : 1 || HPES Ao |i #
U [.{ . ‘I . Noof LN «“'\. ¢ fl'l l I'I . \ ‘I lJ s .‘ E Y AUt 'l Il ‘| SN (] | ¢ ".. | \ .'..ll
veeal > ol ‘ S [ERITNY B TS (.Il ﬁ.;.. , 'r\ '{ ;‘(\ A\ ,{l !, ';"-'. gf :l]I h] l I({ H 5 A i \ \)\ c {l“ i g1, | |‘ h/ H Aok A s]Il
'l'|[l'||l ' I |r|mn|r1 ln TAiRIAL |r| |r I1' a5 r P [} ‘ /'I\K‘J: I'I":"‘ } ll { IJ ‘" IIII L“l tlrapf 0y IJI ,1' llrl"l n l' - l| 1jagle
LI | L f:k* rm J | |

|I lu! -f..'ﬁ! [l ""il
g .']':":‘:'.'::::i: o ‘:'.1:’.:.‘:51 Iy i

|
| |
e hidaladlnge we sdidtedle sefesalin u ‘ " { l:ll' | ,{ !-IH.'I 'lrl'i 5' t] ;"l t || ff} Wiloan Il e JiGLeLive as. ulllull ‘I ‘ ll I |f
AR RO IOUIR IR (TR ¥4 ([ﬁ rm .1" '\ Ir ‘ ”l 1k 'g 'lll'll] I Illlllil‘lln n IIIII NP INrNTINC tJ \ rflr
L (AR TS I3 JITUTRFRTIAIFT FRURUIFTIEA J l (1 14] f ,1| L b || ' llm. Jl T} " 1111 {] ., anenanialunddoadiadle ee s s pinibzscnndinms s ediaftdie JL s delinly Jininsjadisn e Jldin s
=3¢ Ilt:ll itdpe)da anicmxonpice op B34t 3c ax pipL) b b} ¢
LILM lJlllllll]‘ nedla u.u[u anfajladin|s Juapibvsfhainn 1

p: @ (J] A 4 2e|{Ep) 1] x| nxl

icnxdael. sajitjpimaidnicd| [{R] {3 ! 33 axice cf|adiedte acax axf pePpannicnxd(nice cc x(itedd) am ol paexicnilqjaqt) cd ac agn jrax:ezjcpxiomill cqafERIEe 3c 33 afbede]p3 amgfixiomice e ad|afbejeraxinn:alaR il cc 2k 32 ull:]ltln n

F 1adl
allseo el l]llll} . l' Hama.nhizdiaile LaJlesien ndl Jlrn h FRUTUTTIFFSTINS TR FRFITUSYFI ISR lllllllJlIJI Jjesiensinsies edladisiie e Ilnll SRS (TTNT] llllJlIJ!l casudinibsenndia At.nn Je adipitolin n |l‘ fIpdlaJld en s sa.dbnlbainsiensdiaes.

J 1 llll]ll" 1. Lk
[{40}

1aln

ceac 3 afbepepaaaidoxilajen ediaqbedte 3c 33 sx:c|pen 3f[agfa(Rac oz lll aeefbedde| 3 nxnpjpnicn:jiag e e pit 1]'])1 [}] oz edladieiieac 3 (@) 1) llllll‘ll! O TCIOIISPR RAUNE TR BORIORT (3 BY LILL LB K] {4 jteacap ancpxinencd|) ce 3dedpai}
Icnenap 1 [}] 1 LU gy ixnnInicnIniceon Illltll[tllllIlI[IIIlllIlIlrl]lllJI g I MAD ISR ({141}]]]I[ll IR ECX HipL iy CEXIONICIN I ONRIRR|CNININC (X0 NI Iy n If (e (14l M0 | JIXCciygecnIn fr llllltlllllll
1||ll ir | wWIpifeir af ey erpurnqdiadiyes e vitafrafdr vy nyjrurpuqerir rln mird{rnyr 1111 Hjiirny 'unjr 1l OI0IY Ol O (teitridf vy suirlprienif i {Iptte er dr [{tagrhy svirnTipy Ndglidugi dg ol] ” | ifirnruirjrpadheite nr reidrihy
| g e 1XpIpa I:l] [Nnxo I AXIEHIEIED EQXICIIpEN lll gyt DN RULL 14 i | a | (AR (HAIAN D] J14Y (93RS (43¢ | NAI{DIBN] HULY U | 1 el i HEERI[IgIgICE|IE CIgnen
| | | |r 'fll w L lT(]‘II’l |'|||I1| 1ir l 1IHr U0 ||] [1] | i | riir] r{lvirsrry :I | g | | It II "l l igrn l"l
|] 1] Iheja (J N | J ” J] 0 juaile) | | L] an
Il | | L[b1 4 [L14]] | |
S |
| I
| |

10,000 nodes

[Mixed-integer nonlinear optimization, Belotti, Kirches, Leyffer, Linderoth, Luedtke, Ashutosh]

The cost of
building a
certificate

46

Branch and bound algorithms

Today, we learned to:

 Understand and apply branch and bound ideas for nonconvex optimization
 Analyze branch and bound convergence

* Implement branch and bound to mixed-integer convex optimization

 Recognize the current limitations of branch and bound schemes

47

Next lecture

e Conclusions

48

