ORF522 – Linear and Nonlinear Optimization

20. Sequential Convex Programming

Ed Forum $\frac{1}{k^2}$ $\frac{1}{2}$

- Nesterov's theorem declares the existence of a fuction f, and gives its lower bound for first order methods; but how does it give lower bounds for all convex L-smooth functions?
- The part of the lecture that I struggled with most was the relationship between/difference between Nesterov momentum and accelerated proximal gradient methods, since it seemed that the weights achieve very similar results.

Today's lecture [Chapter 4 and 17, NO][ee364b]

Convex algorithms to solve nonconvex optimization problems

- Sequential convex programming
- Trust region methods
- Building convex approximations
- Regularized trust region methods
- Difference of convex programming

Methods for nonconvex optimization

Convex optimization algorithms: global and typically fast

Nonconvex optimization algorithms: must give up one, global or fast

Local methods: fast but not global
 Need not find a global (or even feasible) solution.
 They cannot certify global optimality because
 KKT conditions are not sufficient.

• Global methods: global but often slow They find a global solution and certify it.

Sequential Convex Programming

Sequential convex programming (SCP)

Local optimization method that leverages convex optimization

Subproblems are convex ———— we can solve them efficiently

It is a **heuristic**

- It can fail to find an optimal (or even feasible point)
- Results depend on the starting point.
 We can run the algorithm from many initial points and take the best result.

It often works very well

it finds a feasible point with good objective value (often optimal!)

Gradient descent as SCP

Problem

minimize f(x)

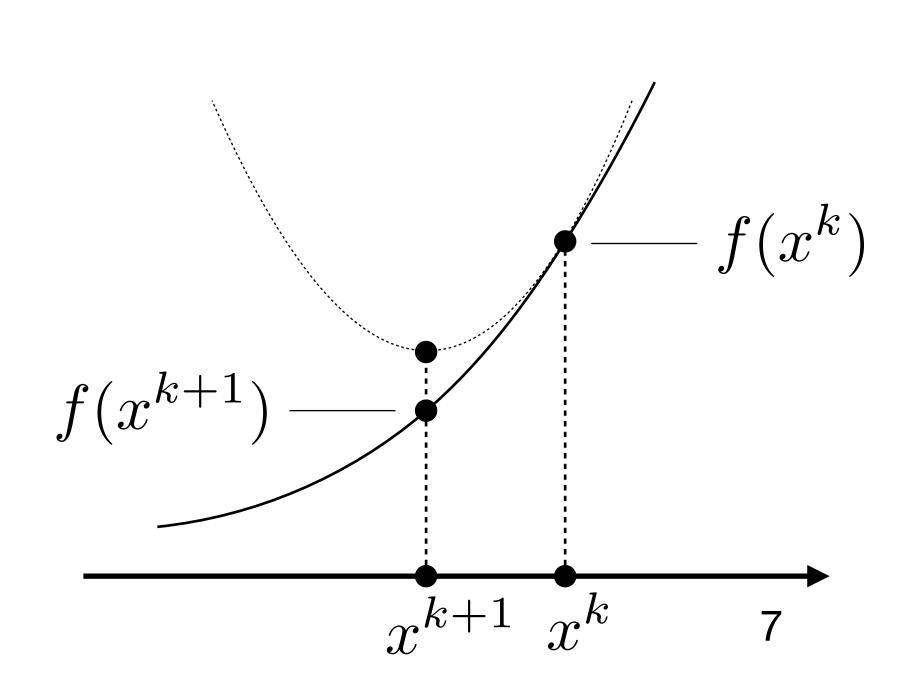
Iterates

$$x^{k+1} = x^k - t_k \nabla f(x^k)$$

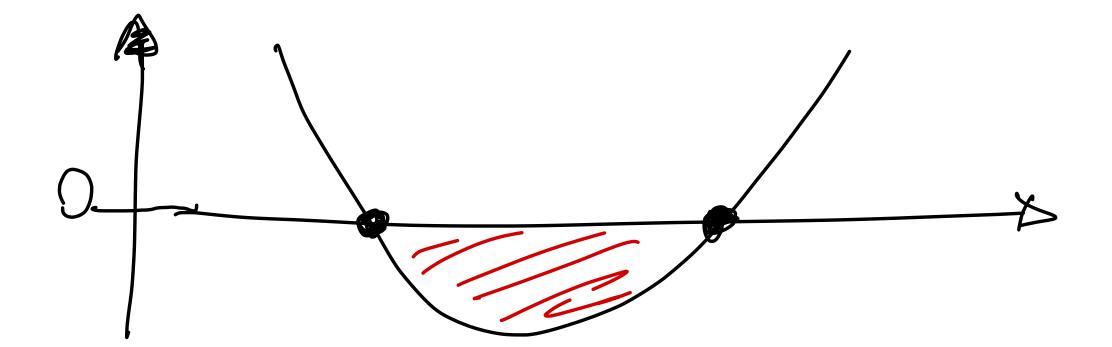
Quadratic approximation, replace $\nabla^2 f(x^k)$ with $\frac{1}{t_k}I$

$$x^{k+1} = \underset{y}{\operatorname{argmin}} \ f(x^k) + \nabla f(x^k)^T (y - x^k) + \frac{1}{2t_k} \|y - x^k\|_2^2$$

strongly convex problem



The problem



```
minimize f(x) subject to g_i(x) \leq 0, \quad i=1,\ldots,m with x \in \mathbf{R}^n h_i(x)=0, \quad i=1,\ldots,p
```

- f and g_i can be nonconvex
- h_i can be nonaffine

Trust region methods

Main idea

minimize
$$f(x)$$
 subject to $g_i(x) \leq 0, \quad i=1,\ldots,m$ $h_i(x)=0, \quad i=1,\ldots,p$
$$\qquad \qquad \text{iterate } x^k$$

$$\qquad \qquad \text{trust region } \mathcal{T}^k$$

approximate convex problem

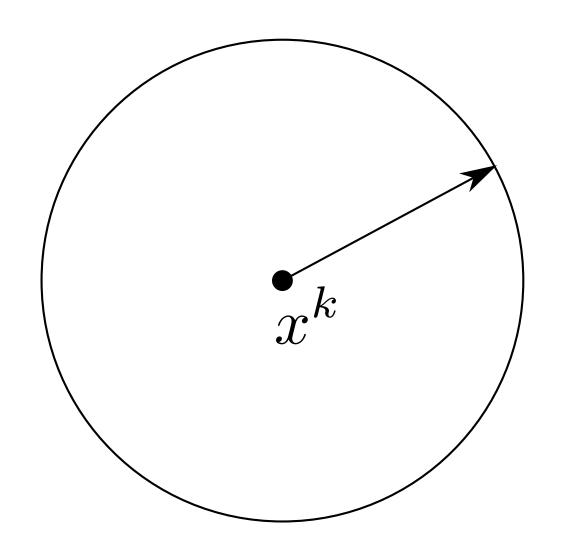
$$\begin{array}{ll} \text{minimize} & \hat{f}(x) \\ \text{subject to} & \hat{g}_i(x) \leq 0, \quad i=1,\ldots,m \\ & \hat{h}_i(x)=0, \quad i=1,\ldots,p \end{array} \quad \begin{array}{l} \text{solve to get} \\ & x \in \mathcal{T}^k \end{array}$$

- $\hat{f}(\hat{g}_i)$ is a convex approximation of $f(g_i)$ over \mathcal{T}^k \hat{h}_{λ} is an affine approximation of h_{λ} over \mathcal{T}^k

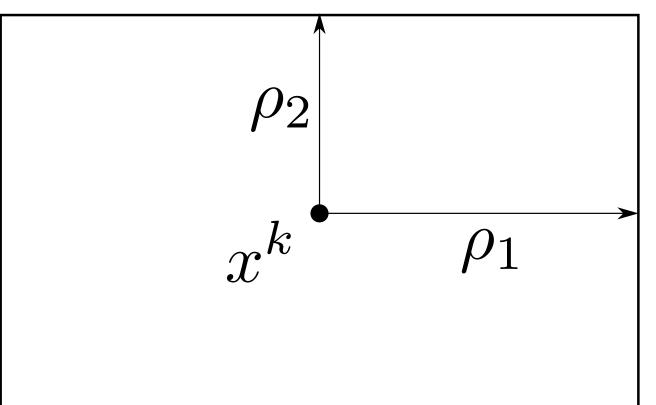
The trust region

$$\mathcal{T}^k = \{ x \mid ||x - x^k|| \le \rho \}$$

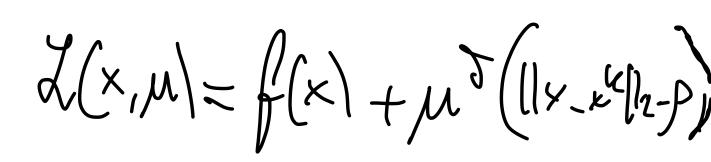
Ball $\mathcal{T}^k = \{x \mid ||x - x^k||_2 \le \rho\}$



Box $\mathcal{T}^k = \{x \mid |x_i - x_i^k| \le \rho_i\}$



Note: if f, g_i h_i are convex or affine in x_i , then we can take $\rho_i = \infty$



Proximal operator interpretation

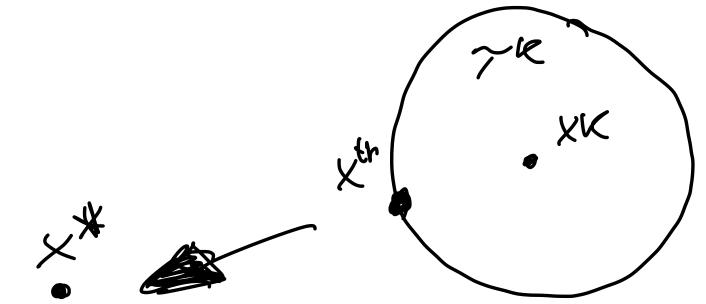
 $\lambda = \rho/\mu$

proximal problem

minimize
$$f(x) + \frac{1}{2\lambda} ||x - x^k||_2^2$$

optimality conditions

$$0 \in \partial f(x^{\operatorname{pr}}) + \frac{1}{\lambda}(x^{\operatorname{pr}} - x^k)$$



trust region problem

minimize
$$f(x)$$
 subject to $||x-x^k||_2 \le \rho$

optimality conditions

$$0 \in \partial f(x^{\operatorname{tr}}) + \mu \frac{x^{\operatorname{tr}} - x^k}{\|x^{\operatorname{tr}} - x^k\|_2}$$

$$\|x^{\operatorname{tr}} - x^k\|_2 = \rho$$

Note

- Minimum outside tr: $\|x^{\mathrm{tr}} x^k\| = \rho$
- $\partial ||z||_2 = \nabla (z^T z)^{1/2} = z/||z||$ (if $z \neq 0$)

Building convex approximations

$$(v)+ = mx(0,v)$$

Convex Taylor expansions

Given nonconvex function f

First order

$$\hat{f}(x) = f(x^k) + \nabla f(x^k)^T (x - x^k)$$

Second order

$$\hat{f}(x) = f(x^k) + \nabla f(x^k)^T (x - x^k) + (1/2)(x - x^k)^T P_+(x - x^k)$$

where
$$P_+ = \Pi_{\mathbf{S}_+}(\nabla^2 f(x)) = U(\mathbf{diag}(\lambda))_+ U^T$$

positive semidefinite cone projection

Local approximation

it does not depend on trust-region radius ρ

Quasi-linearization

Very easy and cheap method for affine approximation

write
$$h$$
 as $h(x) = A(x)x + b(x)$
$$\downarrow$$

$$\text{use } \hat{h}(x) = A(x^k)x + b(x^k)$$

Example
$$f(x) = (1/2)x^T P x + q^T x = ((1/2)P x + q)^T x + r$$
 Quasi-linear:
$$h = ((1/2)P x^k + q)^T x + r$$
 Taylor:
$$h(x^k) + (P x^k + q)^T (x - x^k)$$

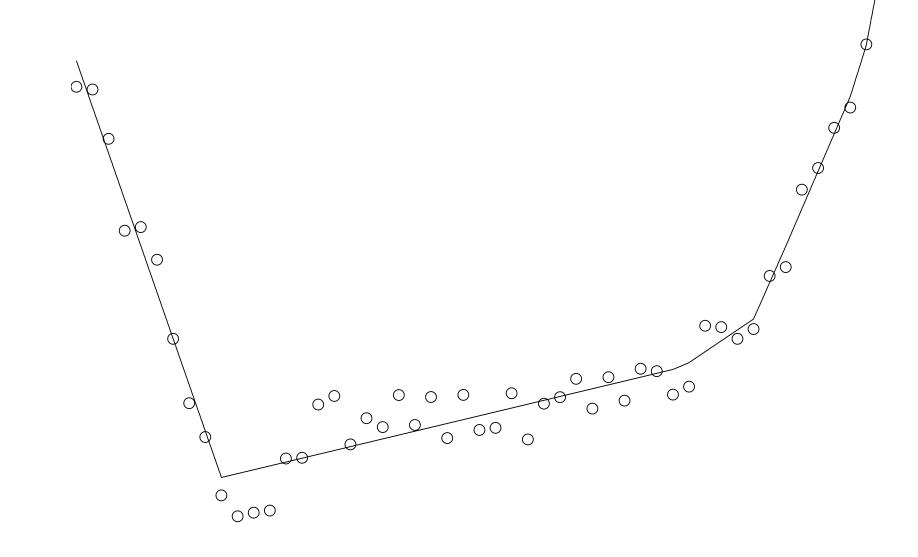
Local approximation

it does not depend on trust-region radius ρ

Particle methods

Idea

- Choose points $z_1, \ldots, z_K \in \mathcal{T}^k$ (e.g., verticles, grid, random, ...)
- Evaluate function $y_i = f(z_i)$
- Fit data (z_i, y_i) with convex functions (convex optimization)



Advantages

- Nondifferentiable functions
- regional models: they depend on current x^k and radii ρ_i

Particle methods

Fit piecewise linear functions to data

$$\hat{f}(x) = \max_{i} \{ \hat{y}_i + g_i^T(x - z_i) \}$$

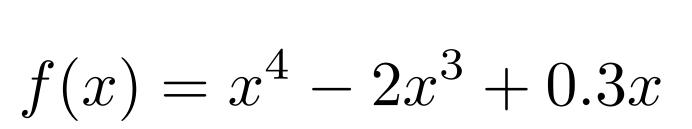
 \hat{y}_i act as function values $\hat{f}(z_i)$ g_i act as subgradients $\partial \hat{f}(z_i)$

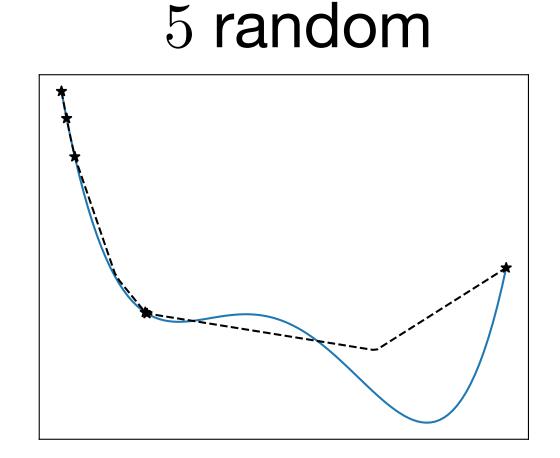
Fitting problem

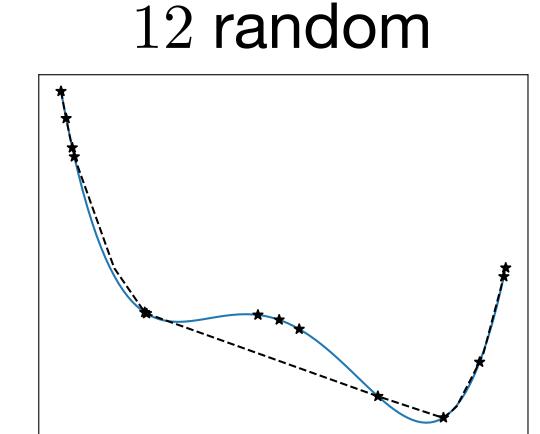
minimize
$$\sum_{i=1}^{K} (\hat{y}_i - y_i)^2$$
 subject to
$$\hat{y}_j \ge \hat{y}_i + g_i^T(z_j - z_i), \quad i, j = 1, \dots, K$$

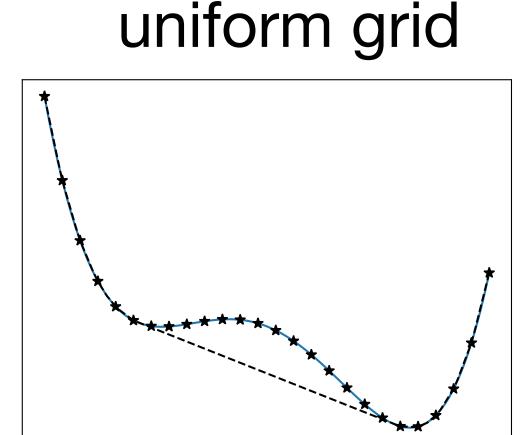
$$\hat{y}_i \leq y_i, \quad i = 1, \dots, K$$

convexity lower bound





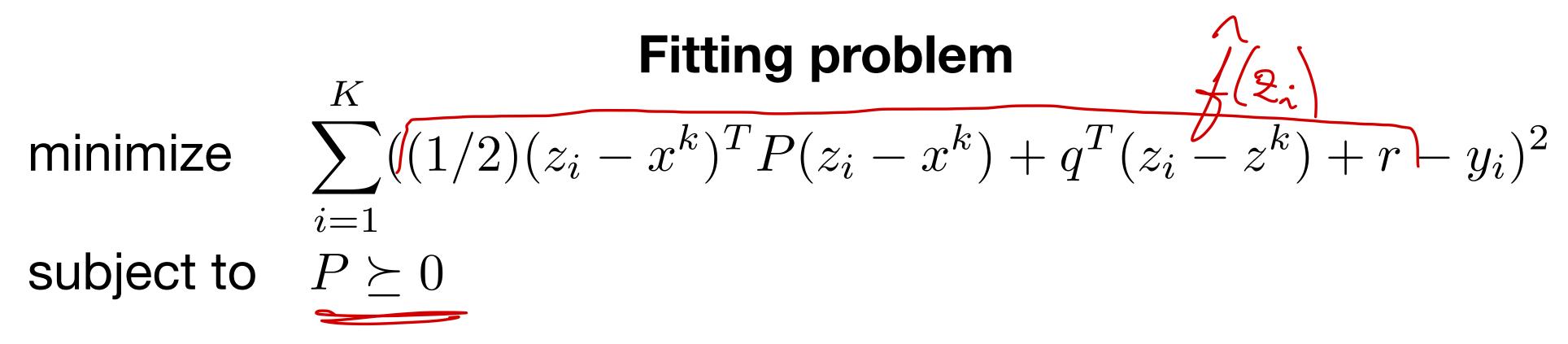




Particle methods

Fit quadratic functions to data

$$\hat{f}(x) = (1/2)(x - x^k)^T P(x - x^k) + q^T(x - x^k) + r$$



Remarks

- No necessarily upper/lower bound
- We can add other objectives, convex constraints and norm penalties
- Can be more sample efficient than piecewise linear
- Need to solve a convex problem for every function at every SCP iteration 18

Trust region example

Example: nonconvex quadratic program

minimize
$$f(x) = (1/2)x^T P x + q^T x$$
 subject to $||x||_{\infty} \le 1$

P is symmetric but not positive semidefinite

Taylor approximation

$$\hat{f}(x) = f(x^k) + (Px^k + q)^T(x - x^k) + (1/2)(x - x^k)^T P_+(x - x^k)$$

Example: nonconvex quadratic program

Lower bound via convex duality

minimize
$$f(x) = (1/2)x^TPx + q^Tx$$
 subject to $||x||_{\infty} \le 1$

Lagrangian

$$L(x,\lambda) = (1/2)x^T P x + q^T x + \sum_{i=1}^n \lambda_i (x_i^2 - 1)$$
$$= (1/2)x^T (P + 2\operatorname{diag}(\lambda))x + q^T x - \mathbf{1}^T \lambda$$

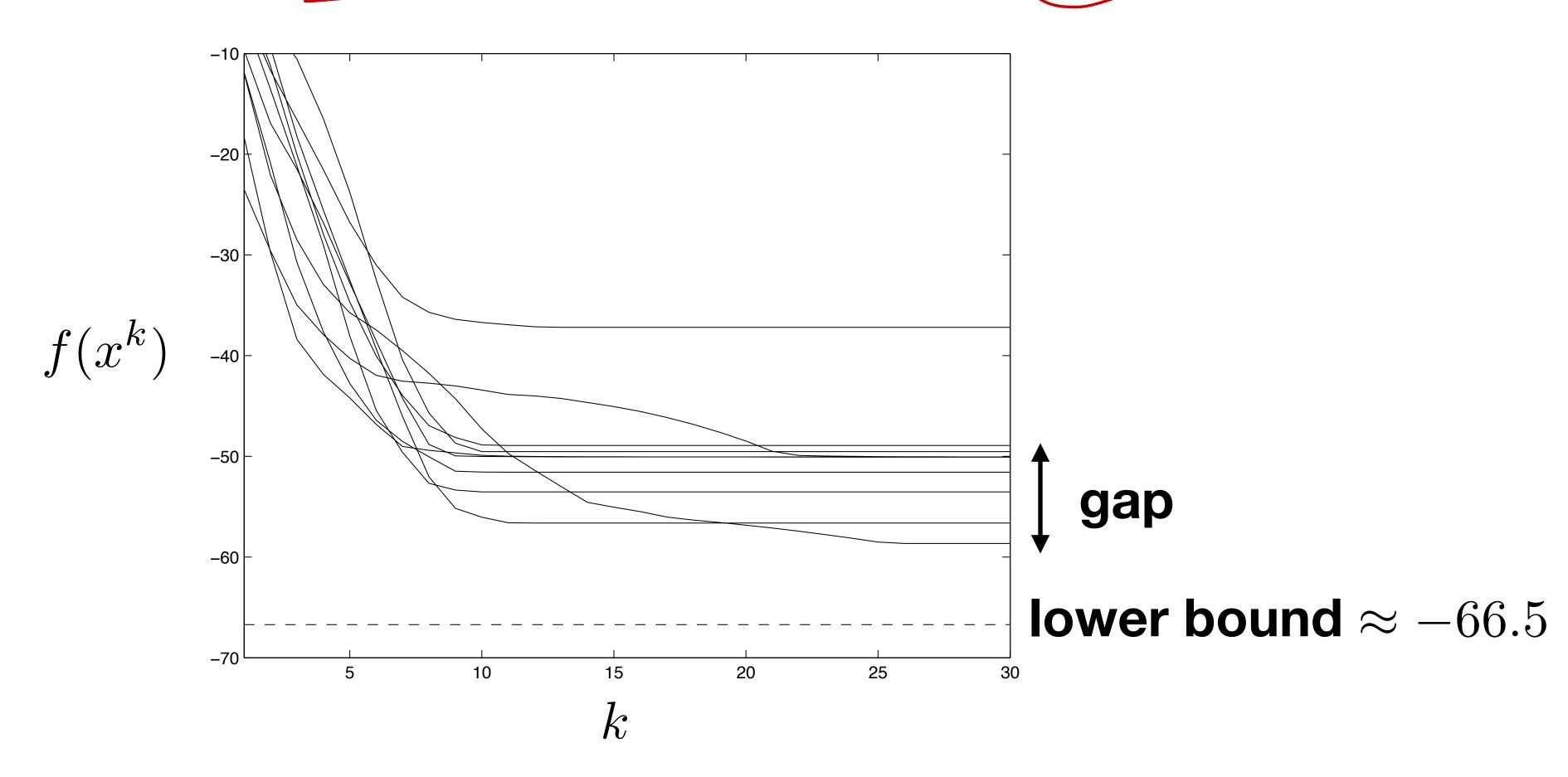
Dual problem (always convex)

minimize
$$-(1/2)q^T(P+2\mathbf{diag}(\lambda))^{-1}q-\mathbf{1}^T\lambda \qquad g(\lambda)$$

$$\lambda \geq 0$$

Example: nonconvex quadratic program

SCP with $\rho=0.2$ with 10 different random $x_0\in\mathbf{R}^n$



Regularized trust region methods

Issues with vanilla sequential convex programming

minimize
$$f(x)$$
 minimize $\hat{f}(x)$ subject to $g_i(x) \leq 0, \quad i = 1, \dots, m$ subject to $\hat{g}_i(x) \leq 0, \quad i = 1, \dots, m$
$$h_i(x) = 0, \quad i = 1, \dots, p$$

$$\hat{h}_i(x) = 0, \quad i = 1, \dots, p$$

$$x \in \mathcal{T}^k$$

Infeasibility

Approximate problem can be infeasible (e.g. too small ρ)

Evaluate progress

when x^k infeasible

- Objective: $f(x^k)$
- Inequality violations: $g_i(x^k)_+$
- Equality violations: $|h_i(x^k)|$

Controlling trust region size

- ρ too large poor approximations \to bad x^{k+1}
- ρ too small good approximations \rightarrow slow progress

Exact penalty formulation

Solve unconstrained problem instead of the original problem

For λ large enough $\longrightarrow x^* = \operatorname{argmin} \phi(x)$ solves the original problem $(\lambda > ||y^*||_{\infty})$ where y^* is the dual variable satisfying the KKT conditions)

SCP solves the convex approximation (always feasible)

$$\hat{\phi}(x) = \hat{f}(x) + \lambda \left(\sum_{i=1}^{m} (\hat{g}_i(x))_+ + \sum_{i=1}^{p} |\hat{h}_i(x)| \right)$$

If λ not large enough, we have sparse violations

Trust region update

Idea judge progress in ϕ using $\hat{x} = \operatorname{argmin} \hat{\phi}(x)$

Exact decrease

$$\delta = \phi(x^k) - \phi(\hat{x})$$

Updates

$$\delta > \alpha \hat{\delta} \longrightarrow$$

$$\delta < \alpha \hat{\delta} \longrightarrow$$

- $\delta < \alpha \hat{\delta} \longrightarrow \text{reject: } x^{k+1} = x^k$ $\cdot \text{ decrease region } \rho = \beta^{\text{rej}} \rho$

Approximate decrease

$$\hat{\delta} = \phi(x^k) - \hat{\phi}(\hat{x})$$

Parameters

tolerance α (e.g., = 0.1) accept multiplier $\beta^{\rm acc} \geq 1$ (e.g., = 1.1) reject multiplier $\beta^{\rm rej} \in (0,1)$ (e.g., 0.5)

Interpretation

If actual decrease δ is more than α fraction of predicted decrease δ then increase trust region size (longer steps). Otherwise decrease it.

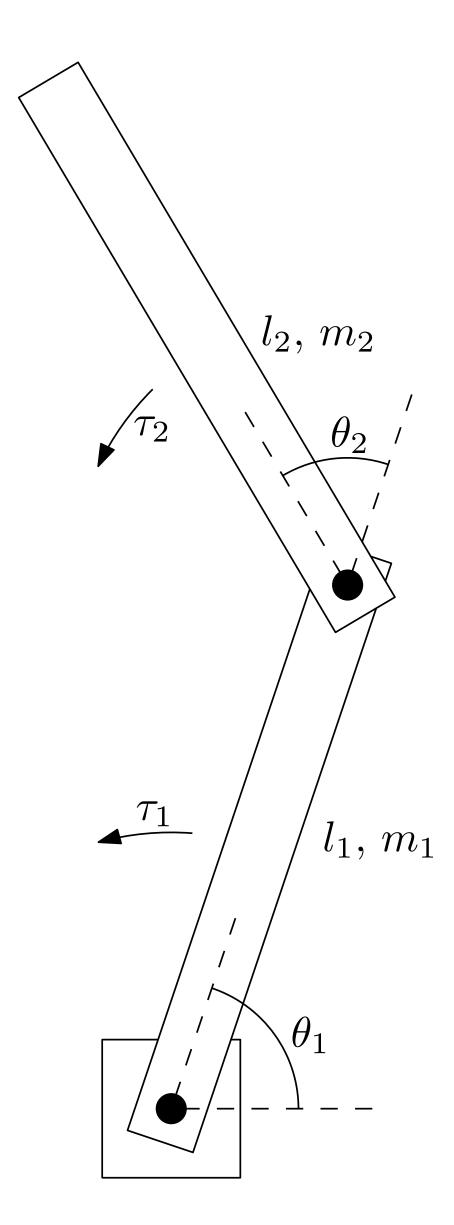
Regularized trust region example

Nonlinear optimal control Robotic arm

2-dimensional system

no gravity (horizontal)

controlled torques τ_1, τ_2



The problem

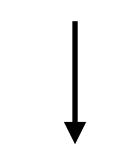
minimize
$$J = \int_0^T \|\tau(t)\|_2^2 \mathrm{d}t$$
 subject to
$$\theta(0) = \theta_{\mathrm{init}}, \ \theta(T) = \theta_{\mathrm{final}}$$

$$\dot{\theta}(0) = 0, \quad \dot{\theta}(T) = 0$$

$$\|\tau(t)\|_{\infty} \le \tau_{\max}, \quad 0 \le t \le T$$

Dynamics

$$M(\theta)\ddot{\theta} + W(\theta,\dot{\theta})\dot{\theta} = \tau$$



(Hard to optimize)

Note: cheap to simulate

$$M(\theta) = \begin{bmatrix} (m_1 + m_2)l_1^2 & m_2l_1l_2(s_1s_2 + c_1c_2) \\ m_2l_1l_2(s_1s_2 + c_1c_2) & m_2l_2^2 \end{bmatrix}$$

$$W(\theta, \dot{\theta}) = \begin{bmatrix} 0 & m_2 l_1 l_2 (s_1 c_2 - c_1 s_2) \dot{\theta}_2 \\ m_2 l_1 l_2 (s_1 c_2 - c_1 s_2) \dot{\theta}_1 & 0 \end{bmatrix}$$

where
$$s_i = \sin(\theta_i)$$
 and $c_i = \cos(\theta_i)$

minimum

torque

position

velocity

Discretization

Discretize with time intervals h=T/N

Objective
$$J = \int_0^T \|\tau(t)\|_2^2 dt \approx h \sum_{i=1}^N \|\tau_i\|_2^2$$
, with $\tau_i = \tau(ih)$

Dynamics: approximate derivatives

$$M(\theta)\ddot{\theta} + W(\theta, \dot{\theta})\dot{\theta} = \tau$$

$$\dot{\theta}(ih) \approx \frac{\theta_{i+1} - \theta_{i-1}}{2h}$$

$$\dot{\theta}(ih) \approx \frac{\theta_{i+1} - \theta_{i-1}}{2h}$$
 $\ddot{\theta}(ih) \approx \frac{\theta_{i+1} - 2\theta_i + \theta_{i-1}}{h^2}$ $\theta_0 = \theta_1 = \theta_{\text{init}}$ $\theta_N = \theta_{N+1} = \theta_{\text{final}}$

zero initial velocities

$$\theta_0 = \theta_1 = \theta_{\text{init}}$$
 $\theta_N = \theta_{N+1} = \theta_{\text{final}}$

nonlinear equality constraints

$$M(\theta_i) \frac{\theta_{i+1} - 2\theta_i + \theta_{i-1}}{h^2} + W\left(\theta_i, \frac{\theta_{i+1} - \theta_{i-1}}{2h}\right) \frac{\theta_{i+1} - \theta_{i-1}}{2h} = \tau_i$$

Convexification

minimize
$$h \sum_{i=1}^{N} \|\tau_i\|_2^2$$

subject to
$$\theta_0 = \theta_1 = \theta_{\text{init}}, \quad \theta_N = \theta_{N+1} = \theta_{\text{final}}$$

$$\theta_N = \theta_{N+1} = \theta_{\text{fina}}$$

$$\|\tau_i\|_{\infty} \leq \tau_{\max}$$

$$M(\theta_i) \frac{\theta_{i+1} - 2\theta_i + \theta_{i-1}}{h^2} + W(\theta_i, \frac{\theta_{i+1} - \theta_{i-1}}{2h}) \frac{\theta_{i+1} - \theta_{i-1}}{2h} = \tau_i$$

Quasi-linearization of the dynamics around previous x^k

$$\underbrace{M(\theta_i^k)}^{\theta_{i+1}-2\theta_i+\theta_{i-1}}_{h^2} + \underbrace{W\left(\underline{\theta_i^k}, \frac{\theta_{i+1}^k - \theta_{i-1}^k}{2h}\right)}_{h^2} \frac{\theta_{i+1} - \theta_{i-1}}{2h} = \tau_i$$

Remarks

- trust region only on θ_i (cost and constraints convex in τ_i)
- initialize with straight line: $\theta_i = \frac{i-1}{N-1}(\theta_{\text{final}} \theta_{\text{init}}), \quad i = 1, \dots, N$

Example

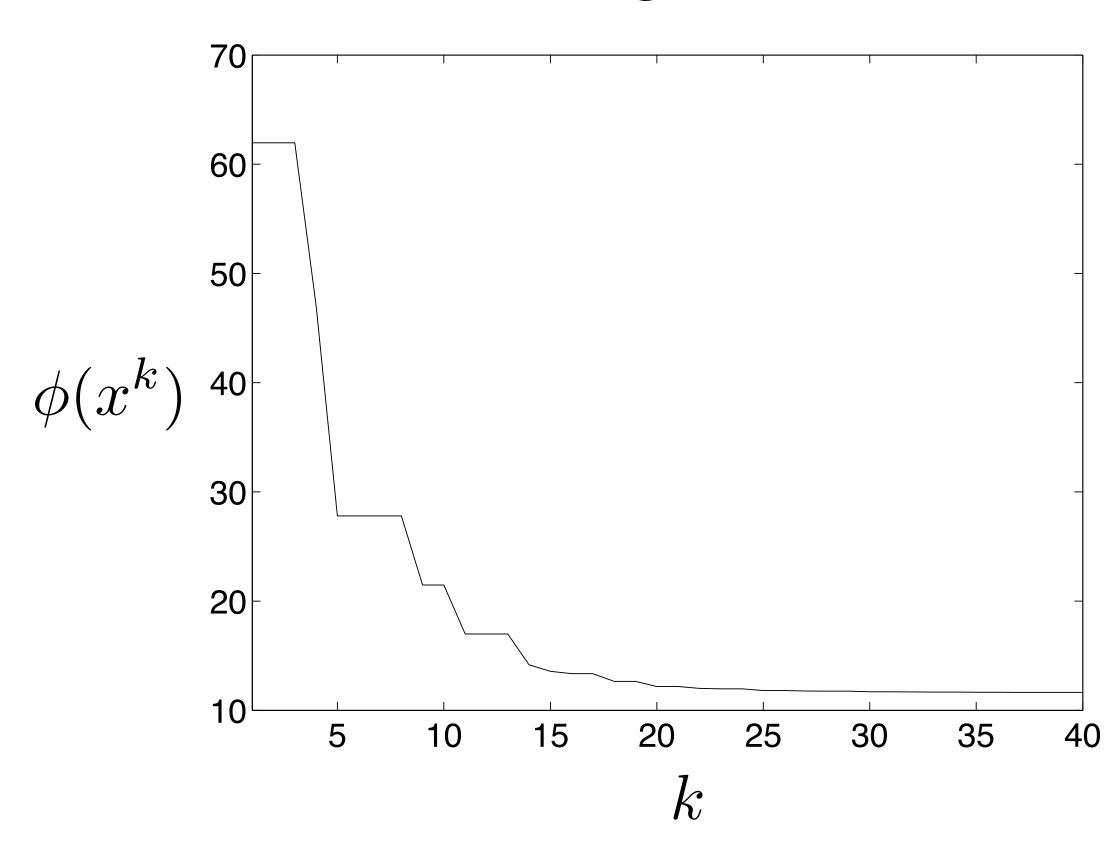
System

- $m_1 = 1$, $m_2 = 5$, $l_1 = l_2 = 1$
- N = 40, T = 10
- $\theta_{\text{init}} = (0, -2.9), \quad \theta_{\text{final}} = (3, 2.9)$
- $\tau_{\rm max} = 1.1$

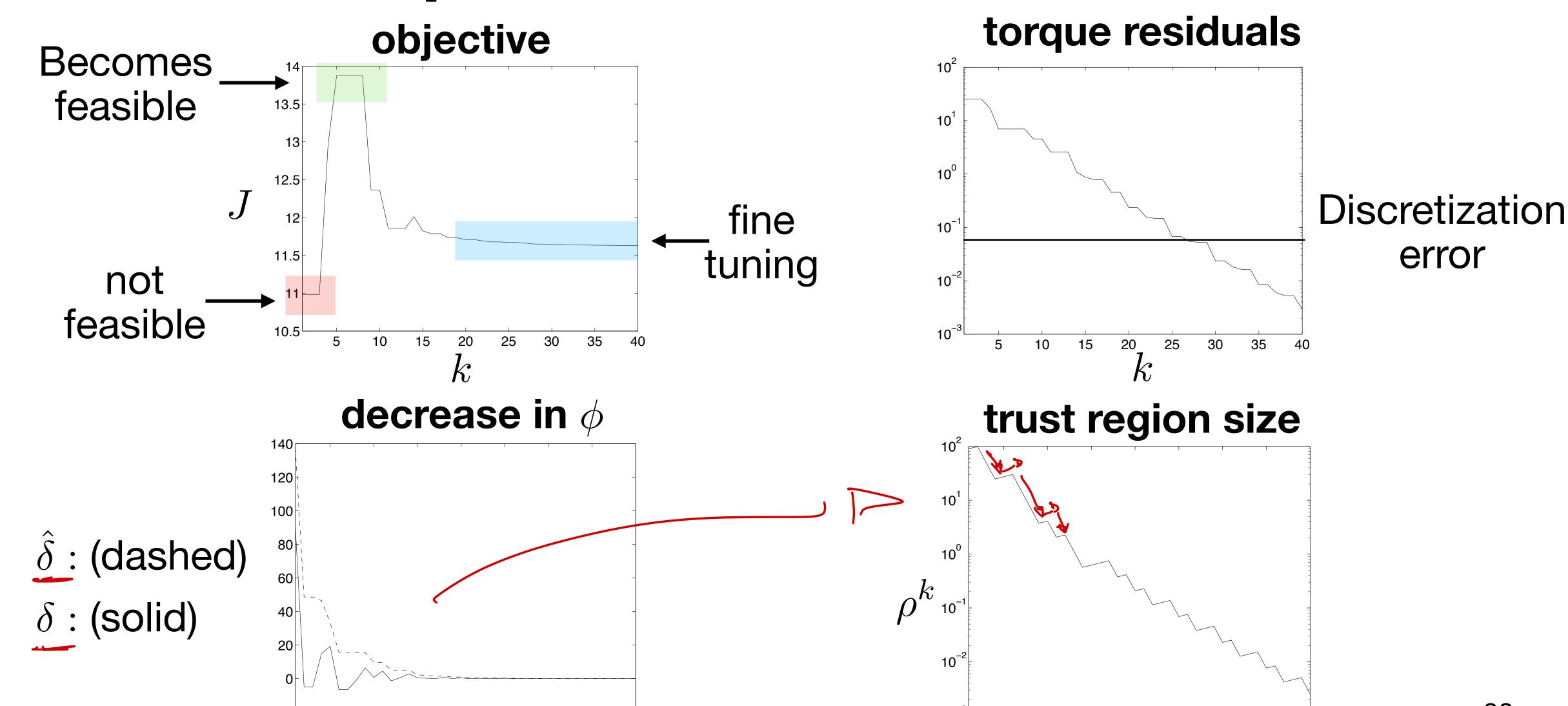
Algorithm

- $\lambda = 2$
- $\alpha = 0.1$, $\beta^{\rm acc} = 1.1$, $\beta^{\rm rej} = 0.5$
- $\rho_1 = 90^\circ$ (very large)

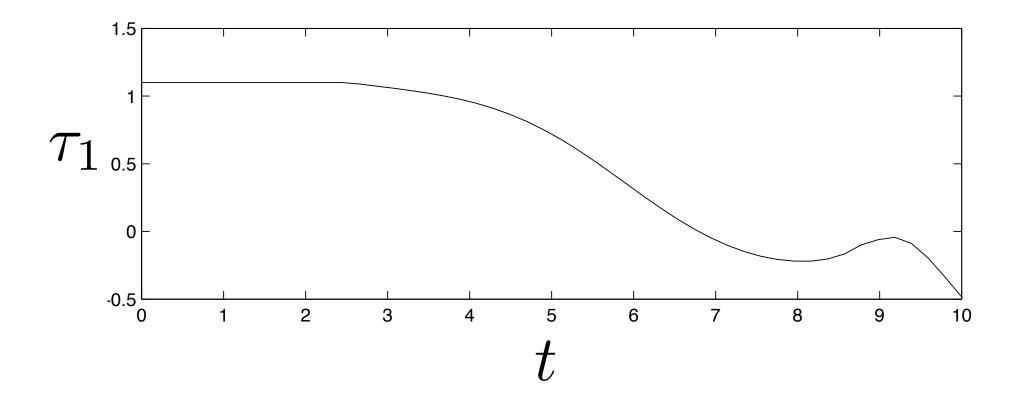
Progress

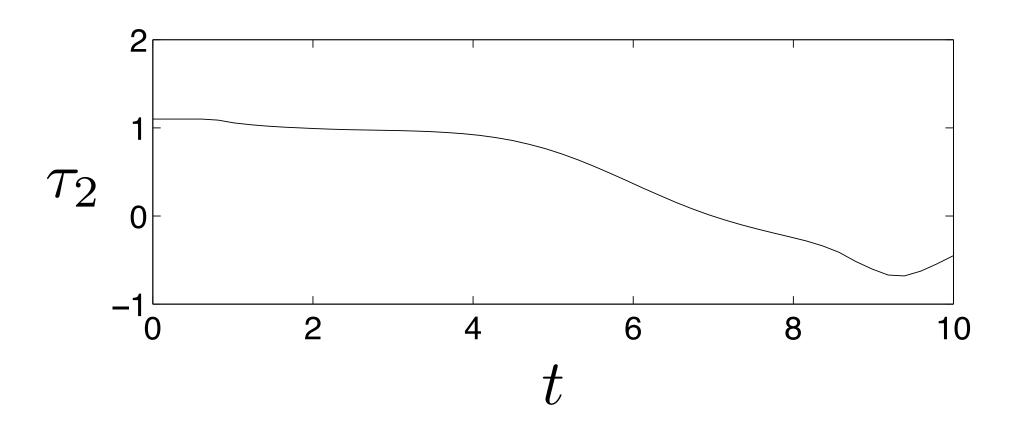


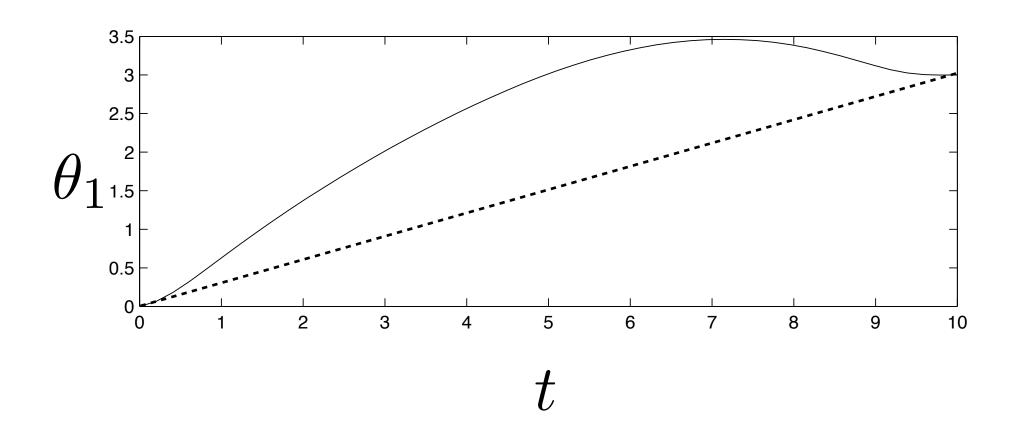
Note: does not go to 0

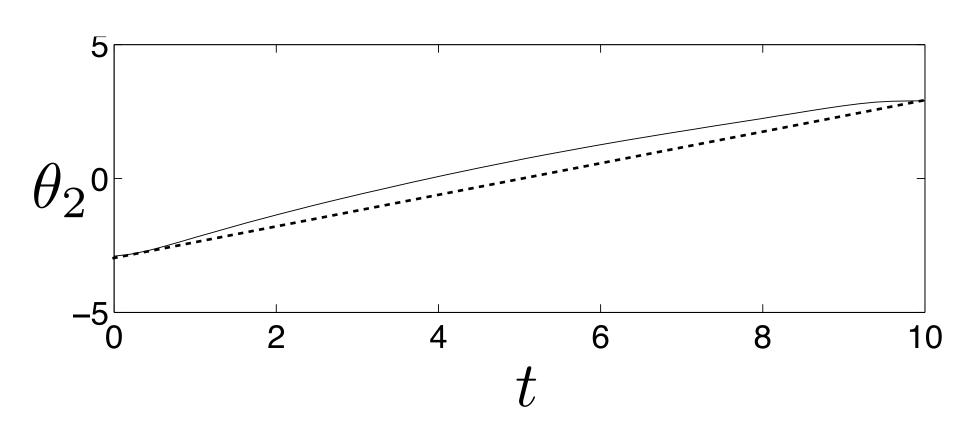


Trajectories









minimize
$$f_0(x)-g_0(x)$$
 Difference of subject to $f_i(x)-g_i(x) \leq 0, \quad i=1,\ldots,m$ convex functions

Difference of

where f_i and g_i are convex

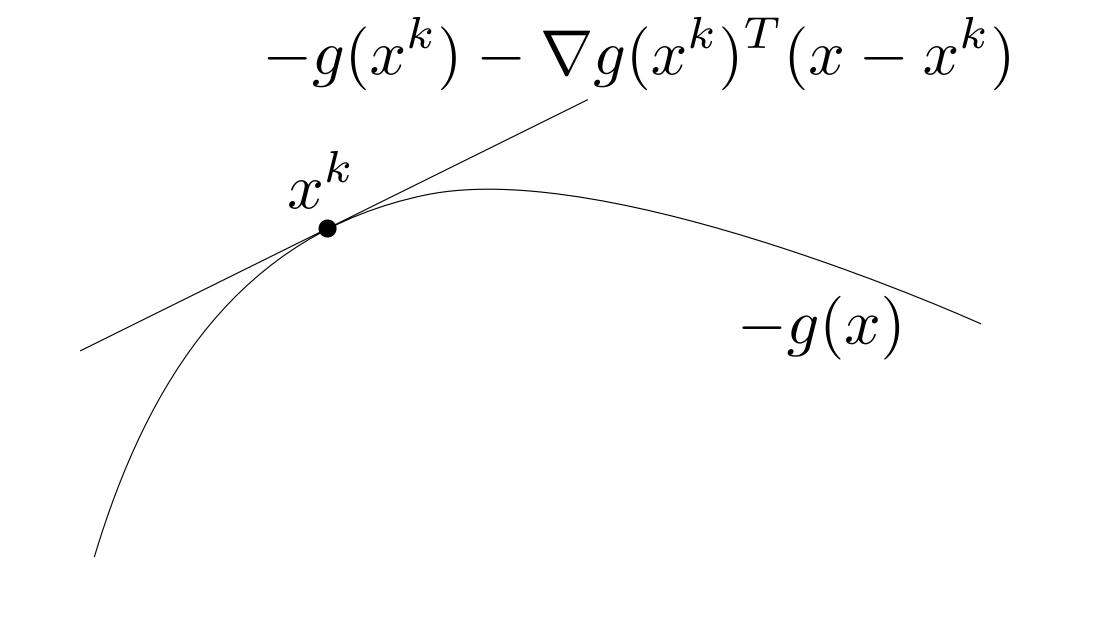
Very powerful

it can represent any twice differentiable function

Hard

nonconvex problem unless g_i are affine

Convexification



Remarks

- True objective better than convexified objective
- True feasible set contains convexified feasible set

Iterations

Convex-concave procedure

- 1. Convexify: form $\hat{g}_i(x) = g_i(x^k) + \nabla g_i(x^k)^T (x x^k)$ for i = 0, ..., m
- 2. Solve to obtain x^{k+1}

minimize
$$f_0(x) - \hat{g}_0(x)$$

subject to $f_i(x) - \hat{g}_i(x) \leq 0$

Remarks

It always converges to a stationary point (it might be a maximum)

Path planning example

Find shortest path connecting a and b in \mathbf{R}^d

Avoid circles centered at c_j with radius r_j with $j=1,\ldots,m$

```
minimize L subject to x_0=a, \quad x_n=b path lengths — \|x_i-x_{i-1}\|_2 \leq L/n, \quad i=1,\dots,n obstacle — \|x_i-c_j\|_2 \geq r_j, \quad i=1,\dots,n, \quad j=1,\dots,m (not convex)
```

Path planning example

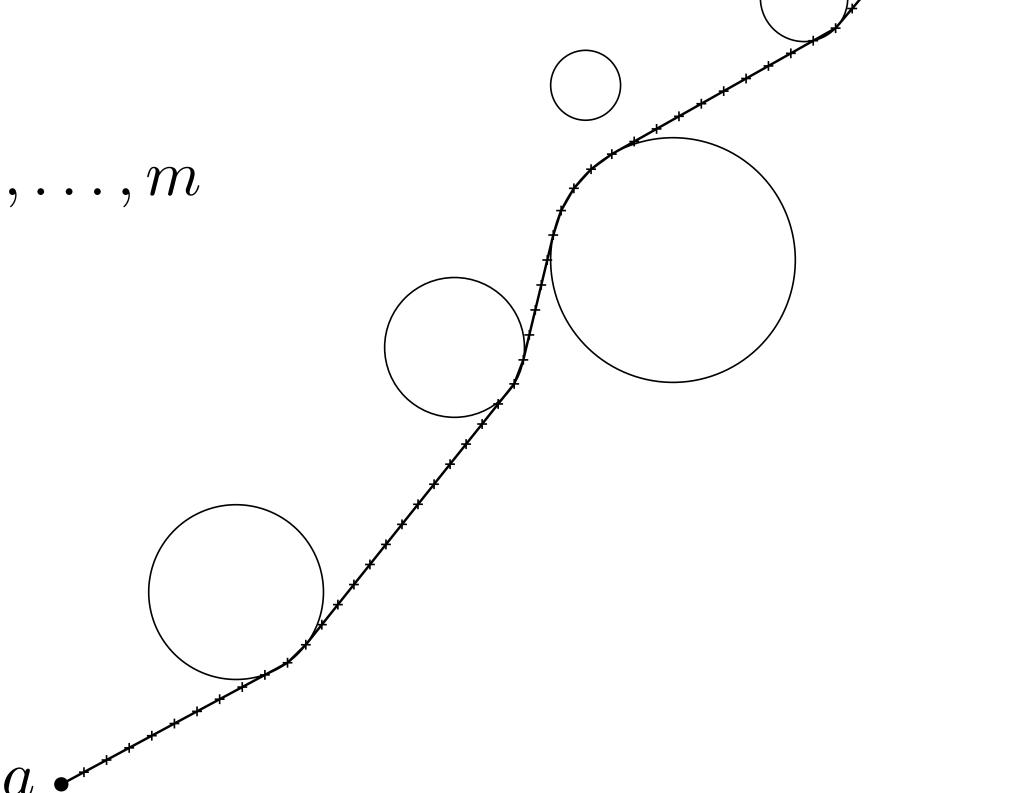
minimize
$$L$$
 subject to $x_0=a, \quad x_n=b$
$$\|x_i-x_{i-1}\|_2 \leq L/n, \quad i=1,\dots,n$$

$$\|x_i-c_j\|_2 \geq r_j, \quad i=1,\dots,n, \quad j=1,\dots,m$$

Dimension: d=2

Steps: n = 50

It converges in 26 iterations (convex problems)



Sequential convex programming

Today, we learned to:

- Familiarize with concepts of sequential convex programming
- Develop trust region algorithms
- Build convex approximations of nonlinear/nonsmooth functions
- Develop regularized trust region methods to account for infeasibility
- Recognize difference-of-convex programs and apply convex-concave procedure

Next lecture

Branch and bound algorithms