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Ed Forum

* Nesterov’s theorem declares the existence of a fuction f, and gives its lower
bound for first order methods; but how does it give lower bounds for all
convex L-smooth functions?

* The part of the lecture that | struggled with most was the relationship
between/difference between Nesterov momentum and accelerated proximal
gradient methods, since it seemed that the weights achieve very similar
results.



Today'’s lecture
[Chapter 4 and 17, NO][ee364Db]

Convex algorithms to solve nonconvex optimization problems
e Sequential convex programming

* Trust region methods

* Building convex approximations

* Regularized trust region methods

* Difference of convex programming



Methods for nonconvex optimization

Convex optimization algorithms: global and typically fast

Nonconvex optimization algorithms: must give up one, global or fast

 Local methods: fast but not global —— heuristics
Need not find a global (or even feasible) solution.
They cannot certify global optimality because
KKT conditions are not sufficient.

 Global methods: global but often slow
They find a global solution and certity it.



Sequential Convex Programming



Sequential convex programming (SCP)

Local optimization method that leverages convex optimization

Subproblems are convex — we can solve them efficiently

It Is a heuristic
* |t can fail to find an optimal (or even feasible point)

* Results depend on the starting point.
We can run the algorithm from many initial points and take the best result.

It often works very well
it finds a feasible point with good objective value (often optimall!)



Gradient descent as SCP

Problem Iterates
minimize f(x) et = 2 — 4,V (2)
1
Quadratic approximation, replace V2 f(z") with —1
k
. 1
ot = argmin f (") + V(27)" (y —2") + 5y — 2"l
Y

strongly convex problem




The problem

minimize  f(x)
subjectto g¢g;(x) <0, 2=1,...,m with z € R"

» f and g; can be nonconvex

* h, can be nonaffine



Trust region methods



Main idea

minimize  f(x)
subjectto g¢;(z) < i=1,...,m
hi(x) = i=1,....p
iterate x*
trust region 7
o minimize  f(x)
approximate . ) -
convex subject to Gi( i(x) <0, z. =1,...,m solve to get
problem hi(x) =0, i=1,...,p —> k1
reTh

(g;) is a convex approximation of f (g;) over 7"
» h is an affine approximation of h over T* 0

>KH>



The trust region

7" ={z ||z — 2| < p}

Ball 7" ={z||[lz—2"|2<p}

k k & Note: if f, g; h; are convex
Box 7% =1z|l|w — 2| < pij o - or affine in x;, then
we can take p; = o
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Proximal operator interpretation

proximal problem trust region problem
o 1 minimize
minimize f(x) A |z — 273 | f(z) )
2\ subjectto ||z — 2”2 < p
optimality conditions optimality conditions
A=p/p ek
0 € Of(zP") - 1(xpr—xk) — 0 b,
A |2t — 2|2
|2 —2%[2 = p
Note

» Minimum outside tr: ||z% — 2| = p
» |zl = V(2" 2)2 = 2/|lz]|  (if 2 # 0)
12



Building convex approximations



Convex Taylor expansions

First order

Second order

Given nonconvex function f
fx) = f(z*) + V(") (z — ")
fla) = f(a") + V") (@ —a") + (1/2)(z — 2) " Py (2 — 2F)

sitive semidefinite

: PO
where P, =IIg, (V*f(z)) = U(diag(\))LU" cone projection

Local approximation
it does not depend on trust-region radius p
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Quasi-linearization

Very easy and cheap method for affine approximation

write h as h(z) = A(x)x + b(x)

l

use h(z) = A(x*)x + b(a*)

Example f(v)=(1/2)x' Pr+q¢ z+r=((1/2)Px+q) = +7r

Quasi-linear: h(z) = ((1/2)Pz* + )Tz + r
Taylor: h(z) = h(z¥) + (Pz* + ¢)T (z — z*)

Local approximation
it does not depend on trust-region radius p

15



Particle methods

Idea

- Choose points z;,...,zx € T® (e.g., verticles, grid, random, ...)

» Evaluate function y; = f(z;)

- Fit data (z;, y;) with convex functions
(convex optimization)

Advantages

* Nondifferentiable functions
- regional models: they depend on current z* and radii p;
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Particle methods ) = max{gi + 97 (x = 20)}

Fit plecewise linear functionstodata ;. 55 function values F(2)

g; act as subgradients 91 (z;)
Fitting problem

minimize  S°0 (5 — vi)?

subjectto ¢; >4 +9g (z; —2:), 4,j=1,...,K convexity
yi <y, 1=1,...,K lower bound

5 random 12 random uniform grid

f(x) =z* —22° + 0.3z
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Particle methods

Fit guadratic functions to data

A

flz) = (1/2)(x —a")" P(x —2") +¢" (z — 2") +7

. Fitting problem

minimize Y ((1/2)(z; — 2") T P(z; — a) + ¢7 (2 — ) + 1 — y;)?
1=1
subjectto P > 0

Remarks
* No necessarily upper/lower bound

 \We can add other objectives, convex constraints and norm penalties
 Can be more sample efficient than piecewise linear
 Need to solve a convex problem for every function at every SCP iteration s



Trust region example



Example: nonconvex quadratic program

minimize  f(z) = (1/2)z! Pz + ¢' x
subjectto  ||z|| <1

P I1s symmetric but not positive semidefinite

Taylor approximation
f(x) = f(@*) + (Pa" + )" (x — &) + (1/2)(x — 2*)" Py (z — 2*)
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Example: nonconvex quadratic program

Lower bound via convex duality
minimize  f(z) = (1/2)z! Pz + ¢' x

subjectto  ||z|| <1

Lagrangian

(1/2)z* Pr+q x4+ >, Ni(z; — 1)
(1/2)zT (P + 2diag(\))z + g2z — 17\

L(x, \)

Dual problem (always convex)
maximize —(1/2)q¢" (P + 2diag(\)) " 'qg—1'X  g(\)
A >0
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Example: nonconvex quadratic program
SCP with p = 0.2 with 10 different random zo € R"

| gan

lower bound ~ —66.5
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Regularized trust region methods



Issues with vanilla sequential convex programming

minimize  f(x) minimize  f(z)
subjectto g¢g;(z) <0, :=1,...,m ——— subjectto g;(z) <0, i=1,....m
hi(z) =0, i=1,...,p hi(x) =0, i=1,....p
r € TH
Infeasibility

Approximate problem can be infeasible (e.g. too small p)

Evaluate progress Controlling trust region size

k . .
when z* infeasible + p too large

+ Objective: f(z") poor approximations — bad z**1
- Inequality violations: g;(x k)+ . ptoo small
\

- Equality violations: |h;(z") good approximations — slow progress
24



Exact penalty formulation

Solve unconstrained problem instead of the original problem

T

minimize o¢(x) = f(z) + A (Z(gi(w)h + Z hi(x)) , A >0

1=1

For )\ large enough ——— z* = argmin ¢(x) solves the original problem
(A > ||y*||oc Where y* is the dual variable satisfying the KKT conditions)

SCP solves the convex approximation (always feasible)

T

$(x) = () + A (Z(gmm >3 ;;M)

1=1
If A not large enough, we have sparse violations

25



Trust region update

Idea judge progress in ¢ using & = argmin ¢(z)

Exact decrease Approximate decrease
5 = ¢(z") — o(%) 0 = p(z*) — o(2)
Updates Parameters

. . accept: ¢t = 3
0> () —b P

= . increase region p = 52 tolerance a (e.g., = 0.1)

accept multiplier g2<¢ > 1 (e.g., = 1.1)
5 < of —_, " reject: "t =" | reject multiplier 3*¢ € (0,1) (e.g., 0.5)
» decrease region p = 3"%9p

Interpretation A
If actual decrease o Is more than « fraction of predicted decrease 0

then increase trust region size (longer steps). Otherwise decrease it. 20



Regularized trust region example



Nonlinear optimal control

Robotic arm

2-dimensional system

no gravity (horizontal)

controlled torques 71, 7
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Nonlinear optimal control

The problem T o
. B > minimum
minimize J —/ |7 (t)||5dt torque
subject to 9(0) — Hlmt, (1) = Osna1  position
0(0) = 0(T) =0 velocity

HT(t)Hoo S T, 0<t<T

Pynamic§ | M(Q) B (m1 —+ mg)l% m2l1l2(8182 -+ 6102)
M(0)0 + W(0,0)0 =7 B malila(s182 + c1c2) WZZ%
l - _ 0 molila(s1co — 6182)6’2_
W0, 0) = .
Not convex! (0,0) malila(s1ca — ¢152)6; 0

(Hard to optimize) - -

Note: Cheap to simulate where S; — Slﬂ(@z) and C; — COS((%) 29



Nonlinear optimal control

Discretization

Discretize with time intervals h =T/N
T N
Objective /= [ [r(t)lpdt =Y |nlB, with 7 = r(ih)
0 i=1

Dynamics: approximate derivatives

M(0)0 +W(0,0)0 =T zero initial velocities

. 0ii1 — 0; 1 . Oir1 —20; +0;,_1 0o = 01 = Oini
0ih) ~ == Oih) ~ = Oy = Oyt = ;ﬁ
N = UN+1 = Ofnal

nonlinear equality constraints

Oiv1 —20; +0;—1 Oiv1 —0i—1\ 0it1 — 0,1
h2 - (9“ 2h ) 2h

— Ty 30

M (0;)




Nonlinear optimal control

Convexification N
minimize kY |73
1=1

SUbjeCt to 6y =60, = Qinit, On = (9N—|—1 = Ofinal

|Tilloo < Tmax

h? 2h 2h

0,.1—20,;,+0,_ 0,1.1—0,;_ 0,.1—0,_
M(ez) 11 + 1 | W(HZ, +1 1) 11 1

Quasi-linearization of the dynamics around previous z"

M(Qf)ei—l—l — 20, + 0,1 W ((97/:{7 95‘11 — 951) Oiv1 — 01 _

h? 2h 2h
Remarks
» trust region only on 6; (cost and constraints convex in 7;)
- initialize with straight line: 6; = +=% (0ana1 — Oinit), t=1,..., N
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Example

System
° mlzl,m2:5,l1:l2:1
« N =40,71 =10
° einit — (O, _2°9)5 eﬁnal — (37 29)

* Tmax = 1.1

Algorithm

*c A =2
c a=0.1, B¢ =1.1, ' = 0.5
* p1 = 90° (very large)

Nonlinear optimal control

Progress

70

5 10 15

Note: does not goto O
32
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Nonlinear optimal control

objective torque residuals
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feasible o'
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Trajectories
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Nonlinear optimal control
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Difference of convex
programming



Difference of convex programming

minimize  fo(z) — go(2) Difference of
subjectto  fi(z) — g;(x) <0, i=1,...,m convex functions

where f; and g; are convex

Very powerful
it can represent any twice differentiable function

Hard
nonconvex problem unless g; are affine

[On Functions Representable As A Difference Of Convex Functions, Hartman] 36



Difference of convex programming

Convexification (") — V(M) (z — )

Convexify f(z) — g(x)

Remarks

» True objective better than convexified objective

No trust region
needed

* True feasible set contains convexified feasible set —— 37



Difference of convex programming

Iterations

Convex-concave procedure

1. Convexify: form g;(x) = g;(z") + Vg; (™) (x — 2®) fori =0,...,m
2. Solve to obtain z"*!

minimize  fo(x) — go()

subjectto  fi(z) — gi(z) <0

Remarks
It always converges to a stationary point (it might be a maximum)

[Variations and extension of the convex—concave procedure, Lipp, Boyd]
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Path planning example

Find shortest path connecting @ and b in R

Avoid circles centered at ¢; with radius r;, with j =1,...,m

minimize L
subjectto zg=a, =z, =
path lengths t; —Ti—ille < L/m, i=1,...,n

obstacle Zl?i—CjHQET‘j, izl,...,n, jzl,...,m
constraints
(hot convex)

39



Path planning example

minimize L
subjectto zpg=a, =z, =

ajz_mz—lHZSL/na e =1, y T
T, —Cilla =15, 1=1,...,n, j=1,
Dimension: d = 2 Steps: n = 50

It converges in 26 iterations (convex problems)

[Disciplined Convex-Concave Programming, Shen, Diamond, Gu, Boyd]
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Sequential convex programming

Today, we learned to:

Familiarize with concepts of sequential convex programming
Develop trust region algorithms

Build convex approximations of nonlinear/nonsmooth functions
Develop regularized trust region methods to account for infeasibility

Recognize difference-of-convex programs and apply convex-concave
procedure

41



Next lecture

 Branch and bound algorithms

42



