ORF522 - Linear and Nonlinear Optimization

19. Acceleration schemes

Bartolomeo Stellato — Fall 2021



Ed Forum

 Can Method of multipliers, and ADMM handle inequality constraints, or it only
deal with equality constraints?

* On slide 38, it says that "the choice of lambda can greatly change
performance”. If that's the case, then what are the ways one can go about
choosing a proper lambda?

e | am still not sure about how to develop distributed algorithms, as it seemed that
the process could be broken down into only two parts (consensus optimization
with X and z being separate vector operations). Is there way to distribute the
algorithms over more than just two parts?






Operator splitting
Main idea
We would like to solve

0 € F(x), F maximal monotone

Split the operator

F=A+B, A and B are maximal monotone

Solve by evaluating

Ra=(I+ A" Cy=2Ry—1
or
RB:(I—I—B)_l Cp=2Rp —1

Useful when R4 and Rp are cheaper than Ry 4



Forward-backward splitting

Properties

Iterations
(I —tA)(

Dany

resolvent forward step

Properties

» R;p is 1/2 averaged
» |If Ais u-cocoercive then I — 21 A Is nonexpansive
— [ —tA is averaged for ¢t € (0,2u)
» Therefore forward-backward splitting converges
» If either A or B Is strongly monotone, then linear convergence



Proximal gradient descent as forward-backward splitting

f I1s L-smooth

minimize  f(z) + g(z) g IS nonsmooth but proxable

Therefore, Vfis (1/L)-cocoercive and dg maximal monotone

Proximal gradient descent
¥ = Rypg(I —tV f)(2")
— p]f'():x;tg(xl‘C — tV f(z™))

Remarks

» Converges fort € (0,2/L)

» If either f or g strongly convex linear convergence
 If g =7, then it’s projected gradient descent



Simplified iterations of Douglas-Rachford splitting

DR iterations
Zk_H — RB (wk)

wk—l—l _ wk 4+ RA(22k+1 B wkz) o Zk—l—l

1 Swap iterations and counter 2 Introduce 2" !
w T = wk 4+ Ry (225 — w") — 2F "t = R (22 — w")
Zk—l—l _ RB(wk—l—l) wk+1 _ wk 4 xkz—l—l o Zk

Zk—l—l _ RB (wk—|—1)

3 Update w"*! at the end 4 Define u* = w® — 2~
2"t = RA (225 — w") 2"t = Ra(2° — u”)
Zk—l—l _ RB(wk + CCk_l_l B Zk) Zk—l—l _ RB(ka+1 1 uk)

wk 1:wk+a¢k 1_Z/<: uk: 1:uk—|—a?k 1_Z/<:1




Douglas-Rachford splitting

Simplified iterations

- . k1l k1
QEk_H __ RA(Zk - uk) Residual: =z Z
k+l ki1 k —_— running sum of .
< Rp (™" +u”) g Interpretation as
k1 I k1 k1 residuals .
1 — u® Lz — 5 " Integral control
Remarks

* many ways to rearrange the D-R algorithm

» Equivalent to many other algorithms (proximal point, Spingarn’s partial
inverses, Bregman iterative methods, etc.)

* Need very little to converge: A, B maximal monotone

» Splitting A and B, we can uncouple and evaluate R4 and R separately g



Alternating direction method of multipliers (ADMM)
minimize f(x) 4+ g(x)

ADMM iterations

Proximal iterations
2"t = argmin (A f(x) + (1/2)]|z — 2" + u"||?)

2"t = prox, (2" — u*) k
k+1 - k+1 2

Skl prOXAg(ka Luky T 2 Tl = Argmin (Ag(z) + (1/2)||z — 2T — u”||?)

uFth = oF £ phtl R+l e I R

Remarks

» |t works forany A > 0
» The choice of A can greatly change performance
» |t recently gained a wide popularity in various fields:
Machine Learning, Imaging, Control, Finance 9



Today'’s lecture
[Chapter 3, COAC][Section 2.2, ILCO][Chapter 1, FMO]

First-order methods acceleration
e Lower bounds

e Acceleration

* |nterpretation and examples

Recap of nonlinear optimization

10



Lower bounds




Sublinear convergence rates

For a convex L-smooth function f we have

Gradient descent Proximal gradient
gt = gf — tVf(a:k) 2 = Plf'()th(flC — tVf(xk))
Convergence
BN o |zY — 2%|3 . distance O(1/k)
fla%) = f(@7) < ok iterations  O(1/¢)

Can we do better?

12



Lower bounds

First-order methods
Any algorithm that selects

2"t e xg + span{V f(zo), Vf(z1),..., Vf(z")}

Theorem (Nesterov ’83)

For every integer k£ < (n—1)/2, there exist a convex L-smooth function f such
that, for any first-order method

3L
32(k + 1)

distance  O(1/k?)
iterations  O(1//e)

f(z®) — f(a*) >

Sl —2*|F

13



Lower bound proof

o L (1
minimize f(x) = 1 (ixTA:E — eipx) V)= % (Ax — eq)
DU _
-1 2 -1
cupcake matrix
-1 2 -1
-1 2
* fIs convex and L-smooth |
» z* isthe optimizer with z7 =1 jr . (Solves V f(z*) =0 — Ax* = eq)
T
. L n . n + 1
+ f@7) = N 2 =
8n—+ 1 3 14



Lower bound proof

Iterates
f 2° =0 then 2~ ¢ span{Vf(2"),...,Vf(z* 1)} =spanie;,..., e.}

Upper bound I
k > y T) = min L) =
f@”) 2 x@span{vﬂ%?..,Vf@ck—l)}f( ) a:kﬂz---:a:nzof( ) Sk+1
For k ~n/2orn=2k+1,
f(gjk)—f(i*)>[/ k | 2k + 1 / 2K + 2 — oL
20—z 2 T8\ k+1 2k+2 30 B2k+1)3




Convergence rates

109

il
-—
—
——
-~ -
e —
——————————————
—— e ———
\ . —————-——-——-—-————-———————
TR R o e - ——— i ——— i ————
—— i —— —

10—2_

-------- 1/v'k (sublinear)

- -+ - 1/k (sublinear)
............... 1/(k?) (lower bound)
—— 0.5" (linear)

30) A0)
2

Can we achieve the lower bound?

50

16



Acceleration



Momentum

Gradient descent
"t = gF —tV (")

Adding momentum
p* = yF — 1V f(yF)

Pt = g+l 4 g (Rl k)

momentum




Nesterov momentum

p* T =yF — 1V (YY)

k
k+1 _ k1 k+1 _ .k
d ! A
Properties

» Original Momentum proposed by Nesterov ('83)
- No longer a descent method (i.e., we can have f(z*1) > f(z"))
» Same complexity per iteration as gradient descent

19



Accelerated proximal gradient method

f(x) convex and smooth

minimize f(x) + g(x) g(x) convex (may be not differentiable)

Iterations
"+t = prox,, (y* —tVf(y")) L+ /1 + 42
A — 1 where yg = g and A1 = :
yk—l—l _ $k+1 | ; (:Ek_l_l B ZEk)
k+1

Note: g(x) = 0 gives accelerated gradient descent o0



Proximal gradient and Nesterov weights

1 1 + 4)\2 A — 1 k
Ao = 1 )\k_|_1: _I_\/_|_ k ~ as k — oo
) Ak+1 k+3
1.2
— k/(k+3)
1.01 T (>\k — 1>/>\k+1
08l
0.6
04] 7
0.2 {
0.0 10 20 30 40 50



Convergence rate for accelerated proximal gradient method

f(x) convex and L-smooth

minimize  f(x) + g(x) g(x) convex (may be not differentiable)

Theorem
The accelerated proximal gradient method with step-size t < (1/L) satisfies

Fab) - sy < el
S THET 12

Proof
[Thm 4.4, A Fast lterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, Beck, Teboulle]

Note
It works for any momentum weights (Ax — 1)/A;1 such that

k + 2
A > ; and )\iﬂ < Apa1 — )\2 22




Convergence rate for accelerated proximal gradient method

f(x) convex and L-smooth

minimize f(x) + g(x) g(x) convex (may be not differentiable)

- Better iteration complexity O(1/k%) (i.e. O(1//¢)
 Fast If prox evaluations are cheap

» Can’t do better! (from lower bound)

23



Examples and interpretations



Nesterov acceleration

ODE interpretation P ()
gt = gt k (F+L — )
Time-varying k+ 3
damping
—§X t—0 a?k%X(k\/g):X(T)
. X (1) - ?_X(T)—FVJB(X(T)):O
damping
= coefficient

Spring —Vf(X)
Note: 3 is the smallest constant

that guarantees O(1/74) convergence

25
[A Differential Equation for Modeling Nesterov’s Accelerated Gradient Method: Theory and Insights, Su, Boyd, Candes]



Example: Lasso without linear convergence

minimize (1/2)||Az — b5 + ||z
f(x) g()

Proximal gradient descent
(Iterative Shrinkage Thresholding Algorithm)

"t =5, (a8 — tAT (Az" — b)) ISTA

Accelerated proximal gradient descent
(Fast Iterative Shrinkage Thresholding Algorithm)

xk—l—l __ Sfyt (yk B tAT(Ayk B b))

R gkt A — 1 (2FH1 k)
Ak+1

FISTA

20

[A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, Beck, Teboulle]



Example: Lasso without linear convergence
Fast Iterative Soft Thresholding Algorithm (FISTA)

- 118

minimize (1/2)||Az — b||2 + ~v||z||1

\\\\\\

\\\\\

ISTA ¢t = 0.001
FISTA ¢t = 0.001

200

400

600

300

1000

Example

randomly 300 x 500
generated A€R

= Vf=A"A%0
= f not strongly convex

FISTA is much faster

Typical rippling behavior
(not a descent method)
27



Image deblurring

x:. reconstructed image

minimize  (1/2)|| Az — b||5 + 7||z|1 in wavelet basis (sparse)

k= 100 k = 200

original blurred

-

ISTA

28

[A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, Beck, Teboulle]



More sophisticated accelerations
Other algorithms

Acceleration can also be applied also to ADMM

[Fast Alternating Direction Optimization Methods, Goldstein, O’Donoghue, Setzer, Baraniuk]

Momentum with restarts Improved
(reset momentum when it makes convergence rate
small progress) O(1/k*)

Nonlinear acceleration
(e.g., Anderson Acceleration)

Adaptively pick weights by solving
a small optimization problem
(usually least-squares)

[Acceleration Methods, d'Aspremont, Scieur, Taylor]

29



Momentum intuition and much more

Why Momentum Really Works
All deep learning optimization
| algorithms
are based on
Momentum/Acceleration:

RMSprop, AdaGrad, Adam, etc.

https://distill.pub/2017/momentum/
30



Summary of nonlinear optimization



Nonlinear optimization

T - General
Optimality conditions Necessary
- KKT optimality conditions
» Subgradient optimality conditions 0 € 9 f (x*) Convex

Necessary and sufficient

First order methods: Moderate accuracy on Large-scale data

» Gradient descent

» Subgradient methods

- Proximal algorithms (e.g., ISTA)

» Operator splitting algorithms (e.g., ADMM)

32



Convergence rates

Typical rates
(gradient descent, proximal gradient, ADMM, etc.)

» L-smoothness: O(1/k), accelerated O(1/k%)

» u-strong convexity: O(log(1/k))

» We can always combine line search

» Convergence bounds usually in terms of cost function distance

Operator theory

* Helps developing and analyzing serial and distributed algorithms
» Algorithms always converge for convex problems

(independently from step size)
» Convergence bounds usually in terms of iterates distance

33



First-order methods

» Gradient/subgradient method

 Forward-backward splitting (proximal algorithms)

Per-iteration Number of

cost terations » Accelerated forward-backward splitting

* Douglas-Rachford splitting (ADMM)

* |nterior-point methods (not covered)

Large-scale systems
e start with feasible method with cheapest per-iteration cost
* if too many iterations, transverse down the list 34



Acceleration In nonlinear optimization

Today, we learned to:

* Derive lower bounds on cost optimality for first-order methods

* Accelerate first-order algorithms by adding momentum term
 Apply acceleration schemes to get the best possible convergence

e Select the appropriate algorithms to apply in large-scale optimization

35



Next lecture

e Extensions and nonconvex optimization

36



