ORF522 – Linear and Nonlinear Optimization

19. Acceleration schemes

Ed Forum

- Can Method of multipliers, and ADMM handle inequality constraints, or it only deal with equality constraints?
- On slide 38, it says that "the choice of lambda can greatly change performance". If that's the case, then what are the ways one can go about choosing a proper lambda?
- I am still not sure about how to develop distributed algorithms, as it seemed that
 the process could be broken down into only two parts (consensus optimization
 with x and z being separate vector operations). Is there way to distribute the
 algorithms over more than just two parts?

Recap

Operator splitting

Main idea

We would like to solve

$$0 \in F(x)$$
, F maximal monotone

Split the operator

$$F = A + B$$
,

F = A + B, A and B are maximal monotone

Solve by evaluating

$$R_A = (I+A)^{-1}$$
 $C_A = 2R_A - I$ $R_B = (I+B)^{-1}$ or $C_B = 2R_B - I$

Useful when R_A and R_B are cheaper than R_F

Forward-backward splitting

Properties

Iterations

Properties

- R_{tB} is 1/2 averaged
- If A is μ -cocoercive then $I-2\mu A$ is nonexpansive $\Rightarrow I-tA$ is averaged for $t\in(0,2\mu)$
- Therefore forward-backward splitting converges
- If either A or B is strongly monotone, then linear convergence

Proximal gradient descent as forward-backward splitting

minimize
$$f(x) + g(x)$$

f is L-smooth g is nonsmooth but proxable

Therefore, ∇f is (1/L)-cocoercive and ∂g maximal monotone

Proximal gradient descent

$$x^{k+1} = R_{t\partial g}(I - t\nabla f)(x^k)$$
$$= \mathbf{prox}_{tg}(x^k - t\nabla f(x^k))$$

Remarks

- Converges for $t \in (0, 2/L)$
- If either f or g strongly convex linear convergence
- If $g = \mathcal{I}_C$, then it's projected gradient descent

Simplified iterations of Douglas-Rachford splitting

DR iterations

$$z^{k+1} = R_B(w^k)$$

$$w^{k+1} = w^k + R_A(2z^{k+1} - w^k) - z^{k+1}$$

1 Swap iterations and counter

$$w^{k+1} = w^k + R_A(2z^k - w^k) - z^k$$
$$z^{k+1} = R_B(w^{k+1})$$

3 Update w^{k+1} at the end

$$x^{k+1} = R_A(2z^k - w^k)$$

$$z^{k+1} = R_B(w^k + x^{k+1} - z^k)$$

$$w^{k+1} = w^k + x^{k+1} - z^k$$

2 Introduce x^{k+1}

$$x^{k+1} = R_A(2z^k - w^k)$$

$$w^{k+1} = w^k + x^{k+1} - z^k$$

$$z^{k+1} = R_B(w^{k+1})$$

4 Define
$$u^k = w^k - z^k$$

$$x^{k+1} = R_A(z^k - u^k)$$

$$z^{k+1} = R_B(x^{k+1} + u^k)$$

$$u^{k+1} = u^k + x^{k+1} - z^{k+1}$$

Douglas-Rachford splitting

Simplified iterations

$$x^{k+1} = R_A(z^k - u^k)$$

$$z^{k+1} = R_B(x^{k+1} + u^k)$$

$$u^{k+1} = u^k + x^{k+1} - z^{k+1}$$

Residual: $x^{k+1} - z^{k+1}$

running sum of residuals u^k

Interpretation as integral control

Remarks

- many ways to rearrange the D-R algorithm
- Equivalent to many other algorithms (proximal point, Spingarn's partial inverses, Bregman iterative methods, etc.)
- Need very little to converge: A, B maximal monotone
- Splitting A and B, we can uncouple and evaluate R_A and R_B separately

Alternating direction method of multipliers (ADMM)

minimize
$$f(x) + g(x)$$

Proximal iterations

$$x^{k+1} = \mathbf{prox}_{\lambda f}(z^k - u^k)$$

$$z^{k+1} = \mathbf{prox}_{\lambda g}(x^{k+1} + u^k)$$

$$u^{k+1} = u^k + x^{k+1} - z^{k+1}$$

ADMM iterations

$$x^{k+1} = \underset{x}{\operatorname{argmin}} \left(\lambda f(x) + (1/2) \|x - z^k + u^k\|^2 \right)$$
$$z^{k+1} = \underset{z}{\operatorname{argmin}} \left(\lambda g(x) + (1/2) \|z - x^{k+1} - u^k\|^2 \right)$$
$$u^{k+1} = u^k + z^{k+1} - x^{k+1}$$

Remarks

- It works for any $\lambda > 0$
- The choice of λ can greatly change performance
- It recently gained a wide popularity in various fields: Machine Learning, Imaging, Control, Finance

Today's lecture[Chapter 3, COAC][Section 2.2, ILCO][Chapter 1, FMO]

First-order methods acceleration

- Lower bounds
- Acceleration
- Interpretation and examples

Recap of nonlinear optimization

Lower bounds

Sublinear convergence rates

For a convex L-smooth function f we have

Gradient descent

$$x^{k+1} = x^k - t\nabla f(x^k)$$

Proximal gradient

$$x^{k+1} = \mathbf{prox}_{tg}(x^k - t\nabla f(x^k))$$

Convergence

$$f(x^k) - f(x^\star) \le \frac{\|x^0 - x^\star\|_2^2}{2tk} \longrightarrow \begin{array}{c} \text{distance} & O(1/k) \\ \text{iterations} & O(1/\epsilon) \end{array}$$

Can we do better?

Lower bounds

First-order methods

Any algorithm that selects

$$x^{k+1} \in x_0 + \mathbf{span}\{\nabla f(x_0), \nabla f(x_1), \dots, \nabla f(x^k)\}$$

Theorem (Nesterov '83)

For every integer $k \le (n-1)/2$, there exist a convex L-smooth function f such that, for any first-order method

$$f(x^k) - f(x^\star) \ge \frac{3L}{32(k+1)^2} \|x^0 - x^\star\|^2 \qquad \qquad \text{distance} \qquad O(1/k^2)$$
 iterations
$$O(1/\sqrt{\epsilon})$$

Lower bound proof

minimize
$$f(x) = \frac{L}{4} \left(\frac{1}{2} x^T A x - e_1^T x \right) \longrightarrow \nabla f(x) = \frac{L}{4} \left(A x - e_1 \right)$$

Gilbert Strang (MIT) "cupcake matrix"

$$A = \begin{bmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{bmatrix}, \qquad e_1 = (1, 0, \dots, 0)$$
 mooth

$$e_1 = (1, 0, \dots, 0)$$

- f is convex and L-smooth
- x^{\star} is the **optimizer** with $x_i^{\star} = 1 \frac{i}{n+1}$

•
$$f(x^*) = -\frac{L}{8} \frac{n}{n+1}$$
, $||x^*||^2 \le \frac{n+1}{3}$

(Solves
$$\nabla f(x^\star) = 0 \rightarrow Ax^\star = e_1$$
)

Lower bound proof

Iterates

If
$$x^0 = 0$$
 then $x^k \in \text{span}\{\nabla f(x^0), \dots, \nabla f(x^{k-1})\} = \text{span}\{e_1, \dots, e_k\}$

Upper bound

$$f(x^k) \ge \min_{x \in \mathbf{span}\{\nabla f(x^0), \dots, \nabla f(x^{k-1})\}} f(x) = \min_{x_{k+1} = \dots = x_n = 0} f(x) = -\frac{L}{8} \frac{k}{k+1}$$

For $k \approx n/2$ or n = 2k + 1,

$$\frac{f(x^k) - f(x^*)}{\|x^0 - x^*\|^2} \ge \frac{L}{8} \left(-\frac{k}{k+1} + \frac{2k+1}{2k+2} \right) / \left(\frac{2k+2}{3} \right) = \frac{3L}{32(k+1)^2}$$

Convergence rates

Can we achieve the lower bound?

Acceleration

Momentum

Gradient descent

$$x^{k+1} = x^k - t\nabla f(x^k)$$

Adding momentum

$$x^{k+1} = y^k - t\nabla f(y^k)$$

$$y^{k+1} = x^{k+1} + \beta_k(x^{k+1} - x^k)$$

$$\mid$$

$$momentum$$

Nesterov momentum

$$x^{k+1} = y^k - t\nabla f(y^k)$$
$$y^{k+1} = x^{k+1} + \frac{k}{k+3}(x^{k+1} - x^k)$$

Properties

- Original Momentum proposed by Nesterov ('83)
- No longer a descent method (i.e., we can have $f(x^{k+1}) > f(x^k)$)
- Same complexity per iteration as gradient descent

Accelerated proximal gradient method

minimize
$$f(x) + g(x)$$

f(x) convex and smooth g(x) convex (may be not differentiable)

Iterations

$$x^{k+1} = \mathbf{prox}_{tg} (y^k - t\nabla f(y^k))$$
$$y^{k+1} = x^{k+1} + \frac{\lambda_k - 1}{\lambda_{k+1}} (x^{k+1} - x^k)$$

where
$$y_0=x_0$$
 and $\lambda_{k+1}=\frac{1+\sqrt{1+4\lambda_k^2}}{2}$

Note: g(x) = 0 gives accelerated gradient descent

Proximal gradient and Nesterov weights

$$\lambda_0 = 1 \qquad \lambda_{k+1} = \frac{1 + \sqrt{1 + 4\lambda_k^2}}{2} \longrightarrow \frac{\lambda_k - 1}{\lambda_{k+1}} \approx \frac{k}{k+3} \text{ as } k \to \infty$$

Convergence rate for accelerated proximal gradient method

minimize
$$f(x) + g(x)$$

f(x) convex and L-smooth g(x) convex (may be not differentiable)

Theorem

The accelerated proximal gradient method with step-size $t \leq (1/L)$ satisfies

$$f(x^k) - f(x^*) \le \frac{2\|x^0 - x^*\|^2}{t(k+1)^2}$$

Proof

[Thm 4.4, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, Beck, Teboulle]

Note

It works for any momentum weights $(\lambda_k - 1)/\lambda_{k+1}$ such that

$$\lambda_k \geq \frac{k+2}{2}$$
 and $\lambda_{k+1}^2 \leq \lambda_{k+1} - \lambda_k^2$

Convergence rate for accelerated proximal gradient method

minimize
$$f(x) + g(x)$$

f(x) convex and L-smooth g(x) convex (may be not differentiable)

$$f(x^k) - f(x^*) \le \frac{2\|x^0 - x^*\|^2}{t(k+1)^2}$$

- Better iteration complexity $O(1/k^2)$ (i.e. $O(1/\sqrt{\epsilon})$
- Fast if prox evaluations are cheap
- Can't do better! (from lower bound)

Examples and interpretations

ODE interpretation

Time-varying damping

Nesterov acceleration

$$x^{k+1} = y^k - t\nabla f(y^k)$$

$$y^{k+1} = x^{k+1} + \frac{k}{k+3}(x^{k+1} - x^k)$$

$$t \to 0 \qquad \qquad x^k \approx X(k\sqrt{t}) = X(\tau)$$

$$\ddot{X}(\tau) + \frac{3}{\tau}\dot{X}(\tau) + \nabla f(X(\tau)) = 0$$
damping

damping coefficient

Note: 3 is the smallest constant that guarantees $O(1/\tau^2)$ convergence

Example: Lasso without linear convergence

minimize
$$(1/2) ||Ax - b||_2^2 + \gamma ||x||_1$$
 $f(x)$ $g(x)$

Proximal gradient descent (Iterative Shrinkage Thresholding Algorithm)

$$x^{k+1} = S_{\gamma t} (x^k - tA^T (Ax^k - b))$$

ISTA

Accelerated proximal gradient descent (Fast Iterative Shrinkage Thresholding Algorithm)

$$x^{k+1} = S_{\gamma t} \left(y^k - tA^T (Ay^k - b) \right)$$
$$y^{k+1} = x^{k+1} + \frac{\lambda_k - 1}{\lambda_{k+1}} (x^{k+1} - x^k)$$

FISTA

Example: Lasso without linear convergence

Fast Iterative Soft Thresholding Algorithm (FISTA)

minimize
$$(1/2)||Ax - b||_2^2 + \gamma ||x||_1$$

Example

randomly $A \in \mathbf{R}^{300 \times 500}$ generated

$$\Rightarrow \nabla^2 f = A^T A \succeq 0$$

 \Rightarrow f not strongly convex

FISTA is much faster

Typical rippling behavior (not a descent method)

Image deblurring

minimize $(1/2)||Ax - b||_2^2 + \gamma ||x||_1$

x: reconstructed image in wavelet basis (sparse)

original

blurred

ISTA

FISTA

More sophisticated accelerations

Other algorithms

Acceleration can also be applied also to ADMM

[Fast Alternating Direction Optimization Methods, Goldstein, O'Donoghue, Setzer, Baraniuk]

Momentum with restarts
(reset momentum when it makes ______
small progress)

Improved convergence rate $O(1/k^2)$

Nonlinear acceleration

(e.g., Anderson Acceleration)

Adaptively pick weights by solving a small optimization problem (usually least-squares)

Momentum intuition and much more

All deep learning optimization algorithms are based on Momentum/Acceleration:

RMSprop, AdaGrad, Adam, etc.

https://distill.pub/2017/momentum/

Summary of nonlinear optimization

Nonlinear optimization

Optimality conditions

- KKT optimality conditions
- Subgradient optimality conditions $0 \in \partial f(x^*)$

General Necessary

ConvexNecessary and sufficient

First order methods: Moderate accuracy on Large-scale data

- Gradient descent
- Subgradient methods
- Proximal algorithms (e.g., ISTA)
- Operator splitting algorithms (e.g., ADMM)

Convergence rates

Typical rates

(gradient descent, proximal gradient, ADMM, etc.)

- L-smoothness: O(1/k), accelerated $O(1/k^2)$
- μ -strong convexity: $O(\log(1/k))$
- We can always combine line search
- Convergence bounds usually in terms of cost function distance

Operator theory

- Helps developing and analyzing serial and distributed algorithms
- Algorithms always converge for convex problems (independently from step size)
- Convergence bounds usually in terms of iterates distance

First-order methods

Per-iteration cost

Number of iterations

- Gradient/subgradient method
- Forward-backward splitting (proximal algorithms)
- Accelerated forward-backward splitting
- Douglas-Rachford splitting (ADMM)
- Interior-point methods (not covered)

Large-scale systems

- start with feasible method with cheapest per-iteration cost
- if too many iterations, transverse down the list

Acceleration in nonlinear optimization

Today, we learned to:

- Derive lower bounds on cost optimality for first-order methods
- Accelerate first-order algorithms by adding momentum term
- Apply acceleration schemes to get the best possible convergence
- Select the appropriate algorithms to apply in large-scale optimization

Next lecture

Extensions and nonconvex optimization