ORF522 – Linear and Nonlinear Optimization

18. Operator splitting algorithms

Ed Forum

• Why do we try to only use maximal monotone operators (slide 42, theory)?

If an operator T is maximal monotone, it's domain is the whole \mathbf{R}^n . This means that, if we apply iterations of the form $x^{k+1}=T(x^k)$, we never risk to go outside the domain of T (and map x^k to the empty set). In practice, non-maximal monotone operators are are usually the ones we cannot efficiently deal with (e.g., evaluate the resolvent of the subdifferential of a nonconvex function f: $(I+\partial f)^{-1}$).

• Why does nonexpansiveness of an operator tell us that it is a function?

An operator T is L-Lipschitz if

$$||T(x) - T(y)|| \le L||x - y||, \quad \forall x, y \in \operatorname{dom} T$$

(lec 16 slide 35)

Fact If T is Lipschitz, then it is single-valued

Proof If
$$y = T(x), z = T(x)$$
, then $||y - z|| \le L||x - x|| = 0 \Longrightarrow y = z$

Recap

Resolvent and Cayley operators

The **resolvent** of operator A is defined as

$$R_A = (I + A)^{-1}$$

The Cayley (reflection) operator of A is defined as

$$C_A = 2R_A - I = 2(I+A)^{-1} - I$$

Properties

- If A is maximal monotone, $\operatorname{dom} R_A = \operatorname{dom} C_A = \mathbf{R}^n$ (Minty's theorem)
- If A is monotone, R_A and C_A are nonexpansive (thus functions)
- Zeros of A are fixed points of R_A and C_A

Key result we can solve $0 \in A(x)$ by finding fixed points of C_A or R_A

"multiplier to residual" mapping

Lagrangian

$$\begin{array}{ccc} \text{minimize} & f(x) \\ \text{subject to} & Ax = b \end{array}$$

$$L(x,y) = f(x) + y^T (Ax - b)$$

Dual problem

maximize
$$g(y) = \min_{x} L(x, y) = -\max_{x} -L(x, y) = -(f^*(-A^Ty) + y^Tb)$$

Operator

Monotonicity

$$T(y) = b - Ax$$
, where $x = \operatorname{argmin}_z L(z, y)$ \longrightarrow If f CCP, then T is monotone

Proof

$$0 \in \partial f(x) + A^T y \iff x = (\partial f)^{-1} (-A^T y)$$

Therefore,
$$T(y) = b - A(\partial f)^{-1}(-A^Ty) = \partial_y \left(b^Ty + f^*(-A^Ty)\right) = \partial(-g)$$

Summary of monotone and cocoercive operators

Monotone

$$(T(x) - T(y))^T(x - y) \ge 0$$

Strongly monotone

$$(T(x) - T(y))^T (x - y) \ge \mu ||x - y||^2$$

Lipschitz

$$||F(x) - F(y)|| \le L||x - y||$$

Cocoercive

$$(T(x) - T(y))^{T}(x - y) \ge \mu ||x - y||^{2} \longleftrightarrow_{F = T^{-1}} (F(x) - F(y))^{T}(x - y) \ge \mu ||F(x) - F(y)||^{2}$$

$$\int_{G = I - 2\mu F} G = I - 2\mu F$$

Nonexpansive

$$||G(x) - G(y)|| \le ||x - y||$$

Strongly monotone and cocoercive subdifferential

f is μ -strongly convex \iff ∂f $\mu\text{-strongly monotone}$

$$(\partial f(x) - \partial f(y))^T (x - y) \ge \mu ||x - y||^2$$

f is L-smooth

 $\iff \partial f \ L$ -Lipschitz and $\partial f = \nabla f$: $\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$

 $\iff \partial f\left(1/L\right)$ -cocoercive: $(\nabla f(x) - \nabla f(y))^T(x-y) \geq (1/L)\|\nabla f(x) - \nabla f(y)\|^2$

Inverse of subdifferential

If
$$f$$
 is CCP, then, $(\partial f)^{-1} = \partial f^*$

Proof

$$(u,v) \in \mathbf{gph}(\partial f)^{-1} \iff (v,u) \in \mathbf{gph}\partial f$$

$$\iff u \in \partial f(v)$$

$$\iff 0 \in \partial f(v) - u$$

$$\iff v \in \operatorname*{argmin}_{x} f(x) - u^{T}x$$

$$\iff f^{*}(u) = u^{T}v - f(v)$$

Therefore, $f(v) + f^*(u) = u^T v$. If f is CCP, then $f^{**} = f$ and we can write

$$f^{**}(v) + f^*(u) = u^T v \iff (u, v) \in \mathbf{gph}\partial f^*$$

Strong convexity is the dual of smoothness

$$f$$
 is μ -strongly convex \iff f^* is $(1/\mu)$ -smooth

Proof

$$f$$
 μ -strongly convex $\iff \partial f$ μ -strongly monotone $\iff (\partial f)^{-1} = \partial f^*$ μ -cocoercive $\iff f^*$ $(1/\mu)$ -smooth

Remark: strong convexity and (strong) smoothness are dual

Forward step contractions

Given T L-Lipschitz and μ -strongly monotone, then $I-\gamma T$ converges linearly at rate $\sqrt{1-2\gamma\mu+\gamma^2L^2}$, with optimal step $\gamma=\mu/L^2$.

Proof

$$\begin{split} \|(I-\gamma T)(x)-(I-\gamma T)(y)\|^2 &= \|x-y+\gamma T(x)-\gamma T(y)\|^2 & \text{monotone} \\ &= \|x-y\|^2 - 2\gamma \frac{(T(x)-T(y))^T(x-y)}{(T(x)-T(y))^T(x-y)} + \gamma^2 \frac{\|T(x)-T(y)\|^2}{(T(x)-T(y))^2} \\ &\leq (1-2\gamma \mu + \gamma^2 L^2) \|x-y\|^2 \end{split}$$

Remarks

- It applies to gradient descent with L-smooth and μ -strongly convex f
- Better rate in gradient descent lecture. We can get it by bounding derivative: $\|D(I-\gamma\nabla^2f(x))\|_2 \leq \max\{|1-\gamma L|,|1-\gamma \mu|\}$. Optimal step $\gamma=2/(\mu+L)$ and factor $(\mu/L-1)(\mu/L+1)$.

strongly

Resolvent contractions

If A is μ -strongly monotone, then

$$R_A = (I + A)^{-1}$$

is a contraction with Lipschitz parameter $1/(1 + \mu)$

Proof

$$A \ \mu$$
-strongly monotone $\implies (I+A) \quad (1+\mu)$ -strongly monotone $\implies R_A = (I+A)^{-1} \quad (1+\mu)$ -cocoercive $\implies R_A \quad (1/(1+\mu))$ -Lipschitz

Cayley contractions

If A is μ -strongly monotone and L-Lipschitz, then

$$C_{\gamma A} = 2R_{\gamma A} - I = 2(I + \gamma A)^{-1} - I$$

is a contraction with factor $\sqrt{1-4\gamma\mu/(1+\gamma L)^2}$

Remark need also Lipschitz condition

Proof [Page 20, PMO]

If, in addition, $A=\partial f$ where f is CCP, then $C_{\gamma A}$ converges with factor $(\sqrt{\mu/L}-1)/(\sqrt{\mu/L}+1)$ and optimal step $\gamma=1/\sqrt{\mu L}$

Proof

[Linear Convergence and Metric Selection for Douglas-Rachford Splitting and ADMM, Giselsson and Boyd]

Requirements for contractions

Operator A

Function f $(A = \partial f)$

Forward step

$$I - \gamma A$$

$$\mu$$
-strongly monotone

$$\mu ext{-strongly convex} \ L ext{-smooth}$$

Resolvent

$$R_A = (I + A)^{-1}$$

$$\mu\text{-strongly monotone}$$

$$\mu ext{-strongly convex} \ L ext{-smooth}$$

Cayley

$$C_A = 2(I+A)^{-1} - I$$

$$\mu$$
-strongly monotone L -Lipschitz

$$\mu ext{-strongly convex} \ L ext{-smooth}$$

faster convergence

Key to contractions: strong monotonicity/convexity

Today's lecture [PMO][LSMO][PA][ADMM]

Operator splitting algorithms

- Proximal point method
- Forward-backward splitting
- Douglas-Rachford splitting
- Alternating Direction Method of Multipliers
- Examples
- Distributed optimization

Proximal point method

Proximal point method

Resolvent iterations

$$x^{k+1} = R_A(x^k) = (I+A)^{-1}(x^k)$$

Many traditional algorithms are **proximal point method** with a specific \boldsymbol{A}

If $A = \partial t f$, we get proximal minimization algorithm

$$x^{k+1} = \mathbf{prox}_{tf}(x^k) = \operatorname*{argmin}_{z} \left(tf(z) + \frac{1}{2} ||z - x^k||_2^2 \right)$$

Proximal minimization properties

- R_A is 1/2 averaged: $R_A = (1/2)I + (1/2)C_A \implies R_{t\partial f}$ converges $\forall t$
- $\operatorname{fix} R_{\partial tf}$ are zeros of ∂f : optimal solutions
- If f μ -strongly convex, $R_{\partial tf}$ contraction: linear convergence
- Useful only if you can evaluate \mathbf{prox}_{tf} efficiently

Method of multipliers

minimize f(x)

subject to Ax = b

Lagrangian

$$L(x,y) = f(x) + y^T (Ax - b)$$

Dual problem

maximize $g(y) = -(f^*(-A^Ty) + y^Tb)$

Multiplier to residual map operator

$$T(y) = b - Ax$$
, where $x = \operatorname{argmin}_z L(z, y) \longrightarrow T(y) = \partial(-g)$

Therefore, $\partial(-g)(y) = b - Ax$, $0 \in \partial f(x) + A^T y$

Solve the dual with proximal point method

$$y^{k+1} = R_{t\partial(-g)}(y^k)$$

Method of multipliers

Derivation

Solve the dual with proximal point method

$$y^{k+1} = R_{t\partial(-g)}(y^k)$$

where $\partial(-g)(y) = b - Ax$, with x such that $0 \in \partial f(x) + A^Ty$

Resolvent reformulation

$$y^{k+1} = R_{t\partial(-g)}(y^k) \iff y^{k+1} + t\partial(-g)(y^{k+1}) = y^k$$

$$\iff y^{k+1} + t(b - Ax^{k+1}) = y^k, \quad \text{with} \quad 0 \in \partial f(x^{k+1}) + A^T y^{k+1}$$

 x^{k+1} minimizes the augmented Lagrangian $L_t(x,y^{k+1})$

$$0 \in \partial f(x^{k+1}) + A^{T}(y^{k} + t(Ax^{k+1} - b))$$

$$\implies x^{k+1} \in \underset{x}{\operatorname{argmin}} f(x) + (y^{k})^{T}(Ax - b) + (t/2)||Ax - b||^{2} = \underset{x}{\operatorname{argmin}} L_{t}(x, y^{k}) \quad \text{18}$$

Method of multipliers (augmented Lagrangian method)

Primal

minimize f(x)subject to Ax = b

Iterates

$$y^{k+1} = R_{t\partial(-g)}(y^k)$$

$$x^{k+1} \in \underset{x}{\operatorname{argmin}} L_t(x, y^k)$$
$$y^{k+1} = y^k + t(Ax^{k+1} - b)$$

Properties

- Always converges with CCP f for any t > 0
- If f L-smooth

 f^* and g are μ -strongly convex

 $R_{\partial(-q)}$ is a contraction: linear convergence

- If f strictly convex (>), then argmin has a unique solution (\in becomes =)
- Useful when f L-smooth and A sparse

Method of multipliers dual feasibility

minimize
$$f(x)$$
 subject to $Ax = b$

$$x^{k+1} \in \underset{x}{\operatorname{argmin}} L_t(x, y^k)$$
$$y^{k+1} = y^k + t(Ax^{k+1} - b)$$

Optimality conditions (primal and dual feasibility)

$$Ax - b$$
, $\partial f(x) + A^T y \ni 0$

From x^{k+1} update

$$0 \in \partial f(x^{k+1}) + A^T y^k + t A^T (Ax^{k+1} - b)$$

$$= \partial f(x^{k+1}) + A^T y^{k+1}$$

$$= \partial f(x^{k+1}) + A^T y^{k+1}$$

$$= dual feasible$$

Forward-backward splitting

Operator splitting

Main idea

We would like to solve

$$0 \in F(x)$$
, F maximal monotone

Split the operator

$$F = A + B$$
,

F = A + B, A and B are maximal monotone

Solve by evaluating

$$R_A = (I+A)^{-1}$$
 or $C_A = 2R_A - I$ $R_B = (I+B)^{-1}$

Forward-backward splitting

Goal

Find x such that $0 \in A(x) + B(x)$

Rewrite optimality condition

$$0 \in (A+B)(x) \iff 0 \in t(A+B)(x)$$

$$\iff 0 \in (I+tB)(x) - (I-tA)(x)$$

$$\iff (I+tB)(x) \ni (I-tA)(x)$$

$$\iff x = (I+tB)^{-1}(I-tA)(x)$$

$$\iff x = R_{tB}(I-tA)(x)$$

Iterations

$$x^{k+1} = R_{tB}(I - tA)(x)$$

Forward-backward splitting

Properties

Iterations

Properties

- R_{tB} is 1/2 averaged
- If A is μ -cocoercive then $I-2\mu A$ is nonexpansive $\Rightarrow I-tA$ is averaged for $t\in(0,2\mu)$
- Therefore forward-backward splitting converges
- If either A or B is strongly monotone, then linear convergence

Proximal gradient descent as forward-backward splitting

minimize
$$f(x) + g(x)$$

f is L-smooth g is nonsmooth but proxable

Therefore, ∇f is (1/L)-cocoercive and ∂g maximal monotone

Proximal gradient descent

$$x^{k+1} = R_{t\partial g}(I - t\nabla f)(x^k)$$
$$= \mathbf{prox}_{tg}(x^k - t\nabla f(x^k))$$

Remarks

- Converges for $t \in (0, 2/L)$
- If either f or g strongly convex linear convergence
- If $g = \mathcal{I}_C$, then it's projected gradient descent

Example: Lasso with linear convergence

Iterative Soft Thresholding Algorithm (ISTA)

minimize
$$(1/2) ||Ax - b||_2^2 + \lambda ||x||_1$$
 $f(x)$ $g(x)$

Proximal gradient descent

$$x^{k+1} = S_{\lambda t} \left(x^k - tA^T (Ax^k - b) \right)$$

Example

randomly generated

$$A \in \mathbf{R}^{500 \times 300}$$

$$\Rightarrow \nabla^2 f = A^T A \succ 0$$

 \Rightarrow f strongly convex

linear convergence

Example: Lasso without linear convergence

Iterative Soft Thresholding Algorithm (ISTA)

minimize
$$(1/2) ||Ax - b||_2^2 + \lambda ||x||_1$$
 $f(x)$ $g(x)$

Proximal gradient descent

$$x^{k+1} = S_{\lambda t} \left(x^k - tA^T (Ax^k - b) \right)$$

Example

randomly generated

$$A \in \mathbf{R}^{300 \times 500}$$

$$\Rightarrow \nabla^2 f = A^T A \succeq 0$$

 \Rightarrow f not strongly convex

sublinear convergence

Douglas-Rachford splitting

Operator splitting

Main idea

We would like to solve

$$0 \in F(x)$$
, F maximal monotone

Split the operator

$$F = A + B$$

F = A + B, A and B are maximal monotone

Solve by evaluating

$$R_A = (I+A)^{-1}$$
 or $C_A = 2R_A - I$ $R_B = (I+B)^{-1}$

Splitting Cayley iterations

Key result

$$0 \in A(x) + B(x) \iff C_A C_B(z) = z, \quad x = R_B(z)$$

Goal

Apply C_A and C_B sequentially instead of computing R_{A+B} directly

Splitting Cayley iterations

Proof of key result

$$C_A C_B(z) = z$$

$$x = R_B(z)$$

Since $x = R_B(z)$, we have $z \in x + B(x)$

Since
$$\tilde{x} = R_A(\tilde{z})$$
, we have $\tilde{z} \in \tilde{x} + A(\tilde{x}) = x + A(x)$

By adding them, we obtain $z + \tilde{z} \in 2x + A(x) + B(x)$

Therefore,
$$0 \in A(x) + B(x)$$

 $x = R_B(z)$ $\tilde{z} = 2x - z$ combine $\tilde{x} = x$ $\tilde{x} = R_A(\tilde{z})$ $z = 2\tilde{x} - \tilde{z}$ last equation $2x = z + \tilde{z}$

Note the arguments also holds the other way but we do not need it

Peaceman-Rachford and Douglas Rachford splitting

Peaceman-Rachford splitting

$$w^{k+1} = C_A C_B(w^k)$$

It does not converge in general (product of nonexpansive). Need C_A or C_B to be a contraction

Douglas-Rachford splitting (averaged iterations)

$$w^{k+1} = (1/2)(I + C_A C_B)(w^k)$$

- Always converges when $0 \in A(x) + B(x)$ has a solution
- If A or B strongly monotone and Lipschitz, then C_AC_B is a contraction: **linear convergence**
- This method traces back to the 1950s

Douglas-Rachford splitting

$$w^{k+1} = (1/2)(I + C_A C_B)(w^k)$$

Iterations

$$z^{k+1} = R_B(w^k)$$

$$\tilde{w}^{k+1} = 2z^{k+1} - w^k$$

$$x^{k+1} = R_A(\tilde{w}^{k+1})$$

$$w^{k+1} = w^k + x^{k+1} - z^{k+1}$$

Last update (averaging) follows from:

$$w^{k+1} = (1/2)w^k + (1/2)(2x^{k+1} - \tilde{w}^{k+1})$$

$$= (1/2)w^k + x^{k+1} - (1/2)(2z^{k+1} - w^k)$$

$$= w^k + x^{k+1} - z^{k+1}$$

Simplified iterations of Douglas-Rachford splitting DR iterations

(simplify two inner steps)

$$z^{k+1} = R_B(w^k)$$

$$w^{k+1} = w^k + R_A(2z^{k+1} - w^k) - z^{k+1}$$

1 Swap iterations and counter

$$w^{k+1} = w^k + R_A(2z^k - w^k) - z^k$$
$$z^{k+1} = R_B(w^{k+1})$$

3 Update \boldsymbol{w}^{k+1} at the end

$$x^{k+1} = R_A(2z^k - w^k)$$

$$z^{k+1} = R_B(w^k + x^{k+1} - z^k)$$

$$w^{k+1} = w^k + x^{k+1} - z^k$$

2 Introduce x^{k+1}

$$x^{k+1} = R_A(2z^k - w^k)$$

$$w^{k+1} = w^k + x^{k+1} - z^k$$

$$z^{k+1} = R_B(w^{k+1})$$

4 Define $u^k = w^k - z^k$

$$x^{k+1} = R_A(z^k - u^k)$$

$$z^{k+1} = R_B(x^{k+1} + u^k)$$

$$u^{k+1} = u^k + x^{k+1} - z^{k+1}$$

Douglas-Rachford splitting

Simplified iterations

$$x^{k+1} = R_A(z^k - u^k)$$

$$z^{k+1} = R_B(x^{k+1} + u^k)$$

$$u^{k+1} = u^k + x^{k+1} - z^{k+1}$$

Residual: $x^{k+1} - z^{k+1}$

running sum of residuals u^k

Interpretation as integral control

Remarks

- many ways to rearrange the D-R algorithm
- Equivalent to many other algorithms (proximal point, Spingarn's partial inverses, Bregman iterative methods, etc.)
- Need very little to converge: A, B maximal monotone
- Splitting A and B, we can uncouple and evaluate R_A and R_B separately

Alternating Direction Method of Multipliers

Douglas-Rachford splitting in optimization

Problem

minimize
$$f(x) + g(x)$$

Optimality conditions

$$0 \in \partial f(x) + \partial g(x)$$

Problem

minimize
$$\lambda f(x) + \lambda g(x)$$

Optimality conditions

$$0 \in \frac{\lambda \partial f(x)}{A(x)} + \frac{\lambda \partial g(x)}{B(x)}$$

Douglas-Rachford splitting

$$x^{k+1} = R_{\lambda \partial f}(z^k - u^k)$$

$$z^{k+1} = R_{\lambda \partial g}(x^{k+1} + u^k)$$

$$u^{k+1} = u^k + x^{k+1} - z^{k+1}$$

Proximal operators

$$x^{k+1} = \mathbf{prox}_{\lambda f}(z^k - u^k)$$

$$z^{k+1} = \mathbf{prox}_{\lambda g}(x^{k+1} + u^k)$$

$$u^{k+1} = u^k + x^{k+1} - z^{k+1}$$

Alternating direction method of multipliers (ADMM)

minimize
$$f(x) + g(x)$$

Proximal iterations

$$x^{k+1} = \mathbf{prox}_{\lambda f}(z^k - u^k)$$

$$z^{k+1} = \mathbf{prox}_{\lambda g}(x^{k+1} + u^k)$$

$$u^{k+1} = u^k + x^{k+1} - z^{k+1}$$

ADMM iterations

$$x^{k+1} = \mathbf{prox}_{\lambda f}(z^k - u^k)$$

$$z^{k+1} = \mathbf{prox}_{\lambda g}(x^{k+1} + u^k)$$

$$z^{k+1} = \mathbf{prox}_{\lambda g}(x^{k+1} + u^k)$$

$$z^{k+1} = argmin \left(\lambda f(x) + (1/2) \|x - z^k + u^k\|^2\right)$$

$$z^{k+1} = argmin \left(\lambda g(z) + (1/2) \|z - x^{k+1} - u^k\|^2\right)$$

$$u^{k+1} = u^k + x^{k+1} - z^{k+1}$$

$$u^{k+1} = u^k + x^{k+1} - z^{k+1}$$

- It works for any $\lambda > 0$
- The choice of λ can greatly change performance
- It recently gained a wide popularity in various fields: Machine Learning, Imaging, Control, Finance

ADMM and the Augmented Lagrangian

minimize
$$f(x) + g(z)$$

subject to $Ax + Bz = c$

(more generic form)

Augmented Lagrangian

$$f(x) + g(z) + y^{T}(Ax + Bz - c) + (t/2)||Ax + Bz - c||^{2} =$$

$$= f(x) + g(z) + (t/2)||Ax + Bz - c + u||^{2} - (t/2)||u||^{2} = L_{t}(x, z, u)$$

scaled dual variable

$$u = y/t$$

Note: $t = 1/\lambda$

Rewritten ADMM iterations

$$x^{k+1} = \underset{x}{\operatorname{argmin}} L_t(x, z^k, u^k)$$

$$z^{k+1} = \underset{z}{\operatorname{argmin}} L_t(x^{k+1}, z, u^k)$$

$$u^{k+1} = u^k + Ax^{k+1} + Bz^{k+1} - c$$

Comparison with method of multipliers

minimize f(x)subject to Ax = b

Method of Multipliers

$$x^{k+1} \in \underset{x}{\operatorname{argmin}} L_t(x, y^k)$$
$$u^{k+1} = u^k + Ax^{k+1} - b$$

minimize
$$f(x) + g(z)$$

subject to $Ax + Bz = c$

ADMM

$$x^{k+1} = \underset{x}{\operatorname{argmin}} L_t(x, z^k, u^k)$$

$$z^{k+1} = \underset{z}{\operatorname{argmin}} L_t(x^{k+1}, z, u^k)$$

$$u^{k+1} = u^k + Ax^{k+1} + Bz^{k+1} - c$$

- Same dual variable update u^{k+1}
- Augmented Lagrangian does not split f and g: argmin can be expensive
- ADMM splits f and g making steps easier
- We can derive ADMM by splitting the dual subdifferential operator [page 35, A Primer on Monotone Operator Methods]

Examples

Constrained optimization

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in C \end{array} \longrightarrow g(x) = \mathcal{I}_C(x)$$

ADMM iterates

$$x^{k+1} = \mathbf{prox}_{\lambda f}(z^k - u^k)$$

$$z^{k+1} = \mathbf{prox}_{\lambda g}(x^{k+1} + u^k)$$

$$z^{k+1} = u^k + x^{k+1} - z^{k+1}$$

$$z^{k+1} = u^k + x^{k+1} - z^{k+1}$$

$$z^{k+1} = u^k + x^{k+1} - z^{k+1}$$

$$z^{k+1} = u^k + x^{k+1} - z^{k+1}$$

- Easy if $\mathbf{prox}_{\lambda f}$ and Π_C are easy
- Many ways to split (we can include some constraints also in f)

Linear/Quadratic Optimization

minimize
$$(1/2)x^TPx + q^Tx$$
 $f(x) = (1/2)x^TPx + q^Tx$ subject to $Ax = b$ $dom f = \{x \mid Ax = b\}$ $x \ge 0$
$$g(z) = \mathcal{I}_{\mathbf{R}_+}(z)$$

$$A \in \mathbf{R}^{m \times n}$$

ADMM iterations

$$x^{k+1} = \underset{\{x|Ax=b\}}{\operatorname{argmin}} \left(\lambda f(x) + (1/2) \|x - z^k + u^k\|^2\right)$$
$$z^{k+1} = (x^{k+1} + u^k)_+$$
$$u^{k+1} = u^k + x^{k+1} - z^{k+1}$$

Linear/Quadratic Optimization

Rewriting prox

Equality constrained QP

$$x^{k+1} = \underset{\text{subject to}}{\operatorname{argmin}} \quad (\lambda/2) x^T P x + \lambda q^T x + (1/2) \|x - z^k + u^k\|^2$$

Optimality conditions

$$\begin{bmatrix} \lambda P + I & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x^{k+1} \\ \nu \end{bmatrix} = \begin{bmatrix} -\lambda q + z^k - u^k \\ b \end{bmatrix}$$

- Symmetric, possibly sparse, linear system $O((n+m)^3)$
- We can factor only once (it does not depend on the iterates)

Linear/Quadratic Optimization

minimize
$$(1/2)x^TPx + q^Tx$$
 subject to $Ax = b$

Iterations

$$x = 0$$

$$x \ge 0$$
1. $x^{k+1} = \text{Solve} \begin{bmatrix} \lambda P + I & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x^{k+1} \\ \nu \end{bmatrix} = \begin{bmatrix} -\lambda q + z^k - u^k \\ b \end{bmatrix}$

2.
$$z^{k+1} = (x^{k+1} + u^k)_+$$

3.
$$u^{k+1} = u^k + x^{k+1} - z^{k+1}$$

- Cheap iterations (after factorization) $O((n+m)^2)$
- Projection is just variables clipping
- Dual variables $y = \lambda u$
- More sophisticated version
 [OSQP: An Operator Splitting Solver for Quadratic Programs, Stellato, Banjac, Goulart, Bemporad, Boyd]

Find point at the intersection of two sets

find
$$x$$

$$x^{k+1} = \Pi_C(z^k - u^k)$$
 subject to
$$x \in C \cap D$$

$$z^{k+1} = \Pi_D(x^{k+1} + u^k)$$

$$u^{k+1} = u^k + x^{k+1} - z^{k+1}$$

- Much more robust convergence than simple alternating projections
- Useful when projections are cheap
- Similar to Dykstra's alternating projections
- It can be used to solve optimization problems
 [Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding, O'Donoghue, Chu, Parikh, Boyd]

Matrix decomposition

Given $M \in \mathbf{R}^{m \times n}$, consider the sparse + low rank decomposition

minimize
$$\|L\|_* + \gamma \|S\|_1$$
 subject to
$$L + S = M$$

- Nuclear norm (low-rank): $||L||_* = \sum_{i=1}^n \sigma_i(L)$ (1-norm on singular values)
- Elementwise 1-norm (sparse): $||S||_1 = \sum_{i,j} |S_{ij}|$

ADMM Iterations

$$\begin{split} L^{k+1} &= \mathbf{prox}_{\lambda ||\cdot||_*} (M - S^{k-1} - W^k) \\ S^{k+1} &= \mathbf{prox}_{\lambda \gamma ||\cdot||_1} (M - L^{k+1} + W^k) \\ W^{k+1} &= W^k + M - L^{k+1} - S^{k+1} \end{split}$$

Matrix decomposition

Explicit iterations

$$L^{k+1} = \mathbf{prox}_{\lambda \|\cdot\|_{*}} (M - S^{k-1} - W^{k}) \qquad L^{k+1} = ST_{\lambda} (M - S^{k-1} - W^{k})$$

$$S^{k+1} = \mathbf{prox}_{\lambda \gamma \|\cdot\|_{1}} (M - L^{k+1} + W^{k}) \longrightarrow S^{k+1} = S_{\lambda \gamma} (M - L^{k+1} + W^{k})$$

$$W^{k+1} = W^{k} + M - L^{k+1} - S^{k+1}$$

$$W^{k+1} = W^{k} + M - L^{k+1} - S^{k+1}$$

Soft thresholding: $S_{\tau}(X_i) = (1 - \tau/|X_i|)_+ X_i$ (we saw it in lecture 16)

Singular value thresholding: $ST_{\tau}(X) = U(\Sigma - \tau I)_{+}V^{T}$ where $X = U\Sigma V^{T}$

Note it involves an SVD!

Matrix decomposition surveillance example

Original M

Estimated Low-rank \hat{L}

Estimated Sparse \hat{S}

Distributed optimization

Consensus optimization

Goal solve

minimize
$$f(x) = \sum_{i=1}^{N} f_i(x)$$

Rewrite as consensus problem

minimize
$$\sum_{i=1}^{N} f_i(x_i)$$
 subject to $x \in C$

Consensus set

$$C = \{(x_1, \dots, x_N) \mid x_1 = x_2 = \dots = x_N\}$$

Constrained ADMM

$$x^{k+1} = \mathbf{prox}_{\lambda f}(z^k - u^k)$$

$$z^{k+1} = \Pi_C(x^{k+1} + u^k)$$

$$u^{k+1} = u^k + x^{k+1} - z^{k+1}$$

$$x_i^{k+1} = \mathbf{prox}_{\lambda f_i}(z^k - u^k)$$

$$z^{k+1} = (1/N) \sum_{i=1}^{N} (x_i^{k+1} + u_i^k) \quad \text{averaging}$$

$$u_i^{k+1} = u_i^k + x_i^{k+1} - z^{k+1}$$

separable

Distributed consensus optimization

$$\begin{aligned} x_i^{k+1} &= \mathbf{prox}_{\lambda f_i}(z^k - u^k) \\ z^{k+1} &= (1/N) \sum_{i=1}^N (x_i^{k+1} + u_i^k) &\xrightarrow{\mathbf{rewrite}} & z^{k+1} &= \bar{x}^{k+1} + \bar{u}^k \\ u_i^{k+1} &= u_i^k + x_i^{k+1} - z^{k+1} &\xrightarrow{\mathbf{average}} & \bar{u}^{k+1} &= \bar{u}^k + \bar{x}^{k+1} - z^{k+1} & & z^{k+1} &= \bar{x}^{k+1} \\ & z^{k+1} &= \bar{x}^{k+1} &= \bar{x}^{k+1} \end{aligned}$$

Simplified distributed iterations

$$x_i^{k+1} = \mathbf{prox}_{\lambda f_i} (\bar{x}^k - u^k)$$

 $u_i^{k+1} = u_i^k + x_i^{k+1} - \bar{x}^{k+1}$

- Fully distributed prox between processors/cores/agents
- Gather x_i 's to compute \bar{x} , which is then scattered

Global exchange problem

minimize
$$\sum_{i=1}^N f_i(x_i)$$
 $x_i \in \mathbf{R}^n$ subject to $\sum_{i=1}^N x_i = 0$

- $(x_i)_i$: quantity of commodity received (> 0) or contributed by (< 0) agent i
- f_i : utility function of each agent
- equilibrium constraint (market clearing) "supply" = "demand"

ADMM iterations

$$x_i^{k+1} = \mathbf{prox}_{\lambda f_i}(x_i^k - \bar{x}^k - u^k)$$
 proximal exchange $u^{k+1} = u^k + \bar{x}^{k+1}$ algrithm

Summary of ADMM

Convergence

- Slow to converge to high accuracy
- It often converges to modest accuracy in a few tens of iterations
- Step size λ (also called $1/\rho$) can greatly influence convergence
- If f or g is strongly convex, it converges linearly

Applications

Machine learning, control, finance, parallel computing, advertising, imaging, robotics, etc...

Surveys

- [Proximal Algorithms, Parikh and Boyd]
- [Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, 54
 Boyd, Parikh, Chu, Peleato, Eckstein]

Operator splitting algorithms

Today, we learned to:

- Apply the proximal point method to the "multiplier to residual" mapping obtaining the Method of Multipliers (Augmented Lagrangian)
- Derive proximal gradient from forward-backward splitting
- Split operators to obtain simpler averaged iterations with Douglas-Rachford splitting
- Rewrite Douglas-Rachford splitting for optimization problems obtaining the Alternating Directions Method of Multipliers
- Apply ADMM to various examples
- Develop distributed algorithms

Next lecture

Acceleration schemes