ORF522 - Linear and Nonlinear Optimization
18. Operator splitting algorithms

Bartolomeo Stellato — Fall 2021

Ed Forum

 Why do we try to only use maximal monotone operators (slide 42, theory)?

If an operator 1" is maximal monotone, it's domain is the whole R". This means that, if we apply
iterations of the form 2! = T(:E'”) we never risk to go outside the domain of T" (and map z” to the

empty set). In practice, non-maximal monotone operators are are usually the ones we cannot efficiently
deal with (e.g., evaluate the resolvent of the subdifferential of a nonconvex function f: (I + 3]”)_1).

 Why does nonexpansiveness of an operator tell us that it is a function?

An operator T' is L-Lipschitz if
IT'(z) - T(y)|l < Lllz —yl, Vz,y € domT

(lec 16 slide 35)

Fact If T’ is Lipschitz, then it is single-valued
Proof If y =T (z),z=T(x),then||ly—z||< Lz —z||=0=y=2 |}

Resolvent and Cayley operators

The resolvent of operator A is defined as
Ra=(I+ A)_l

The Cayley (reflection) operator of A is defined as
Ca=2Ry—1=20+A)" -1

Properties

* |If A is maximal monotone, dom R4 = dom (4 = R"™ (Minty’s theorem)
- If A is monotone, R4 and C' 4 are nonexpansive (thus functions)

« Zeros of A are fixed points of R4 and C'4

Key result we can solve 0 € A(x) by finding fixed points of C'4 or R 4

“multiplier to residual” mapping

Lagrangian
— L(z,y) = f(z) +y (Az —Db)

minimize f(x)
subjectto Az =0

Dual problem
maximize ¢(y) = min L(z,y) = —max —L(z,y) = —(f*(—A"y) + y' b)

X

Operator Monotonicity

T(y) =b— Ax, where x = argmin, L(z,y) —— If f CCP, then T is monotone

Proof
0cdf(x)+ ATy «— (&f) H=ATy)

Therefore, T'(y) = b — A(0) H—ATy) =0, (bTy + f*(—ATy)) =0(—9) B

5

Summary of monotone and cocoercive operators

Monotone Lipschitz
(T(@) = T) (@ —y) 20 |F(z) - F(y)| < Lz —]
p=20 | L=1/p
Strongly monotone Cocoercive
(T(x) = T(y))" (z —y) > pllz -y ﬁl (F(z) — F(y))" (x —y) > pl|F(z) — F(y)|°
G=1-2uF

Nonexpansive
|G(z) =G| < llz =yl °

Strongly monotone and cocoercive subdifferential

f is u -strongly convex <«<— 0f p-strongly monotone
(Df(x) = 0f (y)" (x —y) > pllz —y|°

f 1s L-smooth
<= Of L-Lipschitzand 0f = V f: |Vf(x)—Vf(y)l| <Llx— 1yl
<= 0f (1/L)-cocoercive: (Vf(zx) - Vf(y)) (x —y) > (1/L)|Vf(z) = VI(y)|°

’ L
S @)+ V@) (y =)+ Flle =yl

f(y)

f(@)+ V@) (y—)+ Slle =yl 7

Inverse of subdifferential
If fis CCP, then, (Of)~t =0f*

Proof
(u,v) € gph(0f)™" <= (v,u) € gphdf
< u € Jf(v)

<— 0€df(v) —u

= v € argmin f(z) — u’
X

= f*(u) =u v — f(v)

Therefore, f(v) + f*(u) = ulv. If fis CCP, then f** = f and we can write
fr)+ffw)=wv <= (uv) egphdf’

Strong convexity is the dual of smoothness

f is p-strongly convex <= f*is (1/u)-smooth

Proof
f w-strongly convex <= 0Jf p-strongly monotone

— (0f)"'=0f* p-cocoercive
<~ f* (1/u)-smooth B

Remark: strong convexity and (strong) smoothness are dual

Forward step contractions
Given T' L-Lipschitz and p-strongly monotone, then I — AT

converges linearly at rate /1 — 2yu + v2L2, with optimal step v = u/L>.
Proof strongly
monotone | ; -
|(I =~AT)(@)~(I =T W)|I* = |z —y + T () =T (y)| ;pSCh'tZ
= [lz —y|* = 29(T(z) = T(y))" (z —y) +*|IT(z) = T(y)|*
< (1=2ypu+~°L?)||lz — y? N

Remarks

» |t applies to gradient descent with L-smooth and u-strongly convex f

- Better rate in gradient descent lecture. We can get it by

bounding derivative: ||D(I — yV?f(z))ll2 < max{|l —~L|, |1 — yu|}.

Optimal step v = 2/(u + L) and factor (u/L — 1)(u/L + 1). 10

Resolvent contractions
If A is pu-strongly monotone, then
Ry = ([A)_l

is a contraction with Lipschitz parameter 1/(1 + p)

Proof
A p-strongly monotone — (I + A) (1 + p)-strongly monotone

— Ryu={I+A"" (1+ p)-cocoercive
— Rj (1/(1 + p))-Lipschitz B

11

Cayley contractions

If A is pu-strongly monotone and L-Lipschitz, then
Cop=2R A —T=2I+~A)"" =1
is a contraction with factor /1 — 4yu /(1 + vL)?

Remark need also Lipschitz condition

Proof [Page 20, PMO]

If, in addition, A = 0f where f is CCP, then C, 4 converges
with factor (v/pu/L —1)/(v/p/L + 1) and optimal step v = 1/v/uL

Proof

[Linear Convergence and Metric Selection for Douglas-Rachford Splitting and ADMM, Giselsson and Boyd]
12

Requirements for contractions

Function f
Operator A
i (A =0f)

Forward step _strongly monotone 1-strongly convex
I —~A s L-smooth
nesolvent 1 -strongly monotone p-strongly convex
Ra=(I+ A) - L-smooth
Cayley B u-strongly monotone u-strongly convex
Ca=2I+A) " -1 L-Lipschitz L-smooth

faster convergence

Key to contractions: strong monotonicity/convexity 13

Today'’s lecture
[IPMOJ]ILSMOJ]IPA]JADMM]

Operator splitting algorithms

Proximal point method

Forward-backward splitting
Douglas-Rachford splitting

Alternating Direction Method of Multipliers
Examples

Distributed optimization

14

Proximal point method

Proximal point method

Resolvent iterations Many traditional algorithms
k+1 _ BY — (T 4 AY—1(,F are proximal point method
v Ra(@®) = (I +4) (") with a specific A

If A = 0tf, we get proximal minimization algorithm

1
it = proxtf(xk) — argmin (tf(z) 5 |2 — xﬂ\%)

Z

Proximal minimization properties

* Ryis1/2averaged: Ry = (1/2)I +(1/2)Cyx = R.5f cOnverges Vit
+ fix Rp:¢ are zeros of Jf: optimal solutions

* If f pu-strongly convex, Ry:+ contraction: linear convergence

» Usetul only if you can evaluate prox, , efficiently

16

Method of multipliers

minimize f(x) Lagrangian
subjectto Ax =0 L(z,y) = f(z) +y (Az — D)

Dual problem
maximize g(y) = —(f*(=A"y) +y" b)

Multiplier to residual map operator
T(y) =b— Ax, where x = argmin_ L(z,y) — T(y) = 0(—g)

Therefore, 9(—g)(y) = b — Ax, 0€df(x)+ Ay

Solve the dual with proximal point method
yk_l_l — th’?(—g) (yk)

17

Method of multipliers

Derivation
Solve the dual with proximal point method

yk_H — Rt@(—g) (yk)
where 0(—g)(y) =b— Az, withzsuchthat 0cdf(z)+ Ay

Resolvent reformulation
v = Rig_ g (y") = " +10(—g)(y") =
— y" T t(b— Az =¢F, with 0€ df(a") + AT yFT!

z**T1 minimizes the augmented Lagrangian L, (z,y"*!)
0 € Of (") + AT (y* + t(Az* Tt — b))
— 2" € argmin f(x) + (v") (Az — b) + (¢t/2)||Az — b||* = argmin L(x, y*) 18

Method of multipliers (augmented Lagrangian method)

Primal Iterates
minimize f(x) Yyt = Rip(—g) (yk)
subjectto Az =10 l

Dual A= argmin Lt(x,yk)

maximize g¢(y) = —(f*(—=A'y) + y' b) g

yk—l—l _ yk t(AZCk_H B b)

Properties
 Always converges with CCP f forany ¢t > 0

» |If f L-smooth
f* and g are u-strongly convex
Ry(—4) Is @ contraction: linear convergence
» If f strictly convex (>), then argmin has a unigue solution (¢ becomes =)

. Useful when f L-smooth and A sparse 19

Method of multipliers dual feasibility

il?k_l_

minimize f(x)
subjectto Az =0 Taa

b ¢ argmin Ly (z, y")

X

b= o% +t(Az" —b)

Optimality conditions (primal and dual feasibility)
Az — b, Of(x)+ A"y >0

From z**! update
0 € Of(z") + ATy +-tAT (AT —b)
_ 8f(33k+1) 4+ ATyk—l—l

(ij_l_l k—l—l)

y Y
dual feasible

——

primal feasible in the limit, i.e. Az* —b — 0

20

Forward-backward splitting

Operator splitting
Main idea
We would like to solve

0 € F(x), F maximal monotone

Split the operator

F=A+B, A and B are maximal monotone

Solve by evaluating

Ra=(I+ A" Cy=2Ry—1
or
RB:(I—I—B)_l Cp=2Rp —1

Useful when R4 and Rp are cheaper than Rg 22

Forward-backward splitting

Goal
Find x suchthat 0¢€ A(x)+ B(x)

Rewrite optimality condition
0€(A+ B)(x) <— 0€t(A+ B)(x)
<— 0e [+tB)(x)— I —tA)(x)
< ([+tB)(x)> (I —tA)(x)
— = I+tB)" (I —tA)(z)
<— = Rig(l —tA)(x)

Iterations
2"t = Rip(I — tA)(z)

23

Forward-backward splitting

Properties

Iterations
(I —tA)(

Dany

resolvent forward step

Properties

» R;p is 1/2 averaged
» |If Ais u-cocoercive then I — 21 A Is nonexpansive
— [—tA is averaged for ¢t € (0,2u)
» Therefore forward-backward splitting converges
» If either A or B Is strongly monotone, then linear convergence

24

Proximal gradient descent as forward-backward splitting

f I1s L-smooth

minimize f(z) + g(z) g IS nonsmooth but proxable

Therefore, Vfis (1/L)-cocoercive and dg maximal monotone

Proximal gradient descent
¥ = Rypg(I —tV f)(2")
— p]f'():x;tg(xl‘C — tV f(z™))

Remarks
» Converges fort € (0,2/L)
» If either f or g strongly convex linear convergence

- If ¢ = I, then it’s projected gradient descent 29

Example: Lasso with linear convergence
Iterative Soft Thresholding Algorithm (ISTA)

Proximal gradient descent

minimize (1/2)||Ax — bl|2 + \||z
(1/2)]] 15+ Az tF = Sy, (8 — tAT (Az" — b))

f (@) g(x)
Subgradient 0.001 /v/k + 1
022 Su_:_Jgradient 0.01/(k + 1) Example
i ISTA ¢t = 0.001
' randomly A e R500x300
generated

= V’f=A"4+-0
= f strongly convex

e — T linear convergence

6| i | | | |
10775 200 400 600 300 1000 26

Example: Lasso without linear convergence
Iterative Soft Thresholding Algorithm (ISTA)

minimize (1/2)||Az — b||2 + \||z||;

f(x) g()
Subgradient 0.0005/vk + 1
-------- Subgradient 0.005/(k + 1)
............... ISTA ¢ = 0.001
0 200 400 600 300

1000

Proximal gradient descent
it = Sy, (xk — tAT (Ax" — b))

Example

randomly 300 % 500
generated AeR

= Vf=A"A4>0
= f not strongly convex

sublinear convergence

27

Douglas-Rachford splitting

Operator splitting
Main idea
We would like to solve

0 € F(x), F maximal monotone

Split the operator

F=A+B, A and B are maximal monotone

Solve by evaluating

Ra=(I+ A" Cy=2Ry—1
or
RB:(I—I—B)_l Cp=2Rp —1

Useful when R4 and Rp are cheaper than Rg 29

Splitting Cayley iterations

Key result

0€ A(x)+ B(x) <= (CaCp(z)=2, =z = Rp(z)

Goal
Apply C' 4 and C'g sequentially instead of computing R 4. g directly

30

Splitting Cayley iterations

Proof of key result r = Rp(2)
s _ o combine
CuCp(z) = 2 . Z=20—2 —m— 7 =
r = Rp(z2)
last
Since x = Rp(z), we have z € = + B(x) equation
Sincez = Ra(z),wehavez €+ A(x) =z + A(x)
20 = 2 + 2

By adding them, we obtain z + z € 2x + A(x) + B(x)
Therefore, 0 € A(z) + B(x) B

Note the arguments also holds the other way but we do not need it 31

Peaceman-Rachford splitting

w = CuCr(w")

It does not converge in general (product of nonexpansive).

Need C'4 or (' to be a contraction

Douglas-Rachford splitting (averaged iterations)

wt = (1/2)(I + C4Cg)(w")

» Always converges when 0 € A(x) 4+ B(x) has a solution
» If A or B strongly monotone and Lipschitz, then C4Cpg Is
a contraction: linear convergence

* This method traces back to the 1950s

Peaceman-Rachford and Douglas Rachford splitting

32

Douglas-Rachford splitting

Iterations

Zk+1 — RB (wk)

,J]k?—l—l __ 22k+1
wrETt = (1/2)(1 + C’AC’B)(wk) R ———

k

— W

CEk_l_l _ RA (wk—l—l)

wkH — wk + x

Last update (averaging) follows from:
wh T = (1/2)w” + (1/2) (225 — @~ 1)
= (1/2)w"” + 2"t — (1/2)(22F T — w")

_ Wk gkl ke

k41

&

k+1

33

Simplified iterations of Douglas-Rachford splitting

1 Swap iterations and counter
Wit = w"® + RA(227F — w") — 2"

Zk—l—l _ RB (wk—l—l)

3 Update w**! at the end

" = RA (227 — w")

2R — Rp(wk 4 oF L — o)

w

k

1

:wk—l—a:

k

1

— &

k

DR iterations
(simplify two inner steps)
Zk—l—l _ RB (wk)

wk:—l—l _ wk: + RA(QZk:—I—l o wk) o Zk:—l—l

2 Introduce 2!
T = RA(22° — w")

WL — ok 4kl Lk

Zk—l—l _ RB (wk—|—1)

4 Define u* = wh — ZF
"t = Ra (2% — u)

Zk—l—l _ RB(ka+1 _|_uk)

WL =k g Rl ke

34

Douglas-Rachford splitting

Simplified iterations

- . k1l k1
QEk_H __ RA(Zk - uk) Residual: =z Z
k+l ki1 k —_— running sum of .
< Rp (™" +u”) g Interpretation as
k1 I k1 k1 residuals .
1 — u® Lz — 5 " Integral control
Remarks

* many ways to rearrange the D-R algorithm

» Equivalent to many other algorithms (proximal point, Spingarn’s partial
iInverses, Bregman iterative methods, etc.)

* Need very little to converge: A, B maximal monotone

» Splitting A and B, we can uncouple and evaluate R4 and R separately 35

Alternating Direction Method of Multipliers

Douglas-Rachford splitting in optimization

Problem Problem
minimize f(x) + g(x) B,
Scaling by \ > 0 minimize Af(z) 4+ Ag(x)
Optimality conditions —_— > Optimality conditions
0 € df(x)+ dg(x) 0 € A0 f(x)+ Adg(x)
A(x) B(x)
DouglaS'RaChford Spllttlng Proximal operators
" = Ryor (2" —u”) it = pI‘OXAf(Zk — u")
" = Ryg (2" +) 2"t = prox,, ("' 4+ u")
e N R . kL — ok kbl kA

37

Alternating direction method of multipliers (ADMM)
minimize f(x) 4+ g(x)

ADMM iterations

Proximal iterations
"t = argmin (A f(x) + (1/2)|lz — 2" + u”||?)

ot = p]f'o:x:)\f(zl”C — u")

: k k
Skl prOXAg(ka LUk T Rl — Argmin (Ag(2) + (1/2)]]z — 2" — u”|?)
uFth = oF £ phtl R+l L S RS R
Remarks

» |t works forany A > 0
» The choice of A can greatly change performance
» |t recently gained a wide popularity in various fields:
Machine Learning, Imaging, Control, Finance 38

ADMM and the Augmented Lagrangian

minimize f(z) + g(z)

subjectto Az + Bz = ¢ (more generic form)

Augmented Lagrangian

f(x)+g(2)+y (Ax + Bz —c) + (t/2)||Ax + Bz — c||* = dueﬁcvz:figble
— f(@)+ 9() + (/D) Az + Bz — e+l = /Dl = Lz z0) =y

Note: t =1/
Rewritten ADMM iterations

"t = argmin Ly (z, 2%, u")

X

2T = argmin Ly (2

Z

1z b)

39
ui Tt = 4 AT 4 BT — ¢

Comparison with method of multipliers

minimize f(x) minimize f(x) + g(z2)
subjectto Ax =0 subjectto Ax + Bz =c
L ADMM
Method of Multipliers #F+ — argmin Ly (z, 2%, u)
k+1 - k x
""" € argmin L (x, y")
z 2T = argmin L, ("1, 2, u®)

<

Tt = 4 AT 4 BT — ¢

u it = 4 Azt — b

Remarks
+ Same dual variable update u**1

» Augmented Lagrangian does not split f and ¢: argmin can be expensive

- ADMM splits f and g making steps easier
- We can derive ADMM by splitting the dual subdifferential operator

[page 35, A Primer on Monotone Operator Methods] 40

Examples

Constrained optimization

minimize f(x)

=7
subjectto xz e C 9(2) c(2)

ADMM iterates

it = p]f'():sc;)\f(zlC — u") it = p]f'():x;)\f(zl“C — u")
R — p]f'():xg\g(a:/leLl + u) —_— =TI (2" 4+ u®)
o S R R s S S R

* Easy If prox, and Il are easy
« Many ways to split (we can include some constraints also in f)

42

Linear/Quadratic Optimization

minimize (1/2)xz! Px + ¢’ f(x) = (1/2)2T Pz + ¢Tx
subjectto Ax =0 » dom f = {x | Az = b}
r >0

g(Z) :IR+ (Z)
AcR™M™*™

ADMM iterations

21 — argmin (Af(z) + (1/2)]|z — 2" 4 uk||2)
{x|Ax=b}
Zk—|—1 __ ($k+1 4 uk)_'_

s R i S N S

Linear/Quadratic Optimization

Rewriting prox
Equality constrained QP

T = argmin N/ 22T P+ NTx + (1/2)|z — 2% + uF||?

subjectto Az =0

Optimality conditions

AP+ AT gkt _—)\q vy
A 0 % b

» Symmetric, possibly sparse, linear system O((n + m)?)
» We can factor only once (it does not depend on the iterates)

Linear/Quadratic Optimization

minimize (1/2)z" Pz + ¢«

| Ilterations
subjectto Az =10 '\ p e, AT T
r >0 1. 2Pt = Solve A) .

23 Zk+1 _ ($k+1 L uk)+

3kl — gk 4kl k]

Remarks

- Cheap iterations (after factorization) O((n + m)?)

» Projection is just variables clipping

» Dual variables y = A\u

» More sophisticated version
[OSQP: An Operator Splitting Solver for Quadratic Programs,
Stellato, Banjac, Goulart, Bemporad, Boyd]

k+1

V

_—)\q + 28 — ub

45

Find point at the Iintersection of two sets

find T "t = To (25 — u®)
subjectto x e CND — A= T p (2P + o)
s S NS R
Remarks

 Much more robust convergence than simple alternating projections
 Useful when projections are cheap
 Similar to Dykstra’s alternating projections

* |t can be used to solve optimization problems
[Conic Optimization via Operator Splitting and Homogeneous Self-Dual
Embedding, O’Donoghue, Chu, Parikh, Boyd] 0

Matrix decomposition

Given M € R™*"™, consider the sparse + low rank decomposition

minimize ||L]|. + v||S]1
subjectto L+S=M

n

* Nuclear norm (low-rank): || L|. =) _._, 0;(L) (I-norm on singular values)

- Elementwise 1-norm (sparse): ||S|; =

Sij

2,]

ADMM lterations
Lk_l_l — prOX>\||’H* (M — Sk_l — Wk)
SkJrl — PFOXMH-Hl(M — Lk_l_l + Wk)
Wk—l—l _ Wk 4+ M — Lk—l—l B Sk—l—l

[Robust Principal Component Analysis?, Candes et al.]

47

Matrix decomposition

Explicit iterations

Lk_I_l — pI‘OXAHH*(M — Sk_l — Wk) Lk+1 — ST)\(M — Sk_l — Wk)
Sk_l_l — pI'OX)\,yH.Hl(M — Lk_l_l -+ Wk) —_ Sk—l_l — S)\fy(M — Lk—l_l -+ Wk)
Wk—l—l _ Wk: 4 M — Lk—l—l o Sk—l—l Wk—l—l _ Wk 1 M — Lk—l—l o Sk—l—l

Soft thresholding: S, (X;)

(1 —7/|X;])+X; (we saw it in lecture 16)

Singular value thresholding: ST, (X)=U(X —7I). V! where X = UXV?
Note it involves an SVD!

48

Matrix decomposition surveillance example

Estlmated Estlmated

49

[Robust Principal Component Analysis?, Candes et al.]

Distributed optimization

Consensus optimization

Rewrite as consensus problem
N
minimize Zfi(mi)
1=1

subjectto xzeC

Goal solve
N
minimize f(x) = Zf@'(‘r)
1=1

Consensus set

C={(x1,...,25) |T1 =22 =---=2xN}
Constrained ADMM 25 = prox, ;. (2F — uf) separable
= profo(zk — u") N
=T (2" 4+ u”) —— 2T =(1/N) Z(mfﬂ +u;) averaging
L S R R S =1

k+1 _ k k41 k41
u;, T =Uu; +r;, —Z -

Distributed consensus optimization

ri = p]f'ox/\fi(zkj — u")
N .
rewrite
k+1 _ —k+1 | -k -
2t = (1/]\f)§:(mff+1 tuly ———— T =2+ u By combining,
. k41 _
i=1 — U = 0
average .1 k| k1l k1
w; t =l ot = R — > AT =at 4T =T l
Skl _ ket

Simplified distributed iterations
ri = prox, ;, (% — u®)

uFtl = o F gkl _ gk

) 1

» Fully distributed prox between processors/cores/agents

- Gather z;’s to compute z, which is then scattered >

Global exchange problem

N
minimize) fi(x;)

i]:\fl Tr; © R"
subjectto » x; =0

1—=1

* (z;),;: quantity of commodity received (> 0) or contributed by (< 0) agent s
» £, utility function of each agent
 equilibrium constraint (market clearing) “supply” = “demand”

ADMM iterations

v; " = prox,; (zf — " —u”) proximal exchange

~ algrithm
uk Tl — ko gkt g -

Summary of ADMM

Convergence
» Slow to converge to high accuracy

» |t often converges to modest accuracy in a few tens of iterations
» Step size A (also called 1/p) can greatly influence convergence
» If f or g Is strongly convex, it converges linearly

Applications

Machine learning, control, finance, parallel computing,
advertising, imaging, robotics, etc...

Surveys

* [Proximal Algorithms, Parikh and Boyd]

 [Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, 54
Boyd, Parikh, Chu, Peleato, Eckstein]

Operator splitting algorithms

Today, we learned to:

Apply the proximal point method to the “multiplier to residual” mapping obtaining the
Method of Multipliers (Augmented Lagrangian)

Derive proximal gradient from forward-backward splitting
Split operators to obtain simpler averaged iterations with Douglas-Rachford splitting

Rewrite Douglas-Rachford splitting for optimization problems obtaining the Alternating
Directions Method of Multipliers

Apply ADMM to various examples

Develop distributed algorithms

55

Next lecture

e Acceleration schemes

56

