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Ed Forum

TN\
* What is the advantage of|(1-alpha)’l + alpha* R\g}ver simply theé alpha * R; It seems

alpha™R also transforms the original nonexpansive function R in ntractive one, so
why bother adding another term |?

* What do the graphs mean for the averaged operator? Does the domain of R(x) get
adjusted by a factor of alpha around the fixed point, and then shifted by a factor of (1-
alpha)*l so that it encompasses both x and the fixed point, and this becomes T(x)?

 Slide 28 uses the phrase, "component-wise soft-thresholding;" what does that mean,
as opposed to not component-wise? "

* Throughout the lecture, | think it was mentioned that some things are "hard but cheap" W

or "expensive." In this context, such as slide 26 and 27, what is the difference between
hard and expensive”? J
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Separable sum .
f g(x) is block separable, i.e., g(z) = gi(z;)

(key to parallel/distributed

then, (prox,(v)); =prox, (v;), i=1,...,N proximal algorithms)



Separable sum .
f g(x) is block separable, i.e., g(z) = gi(z;)

then, (prox,(v)); = prox, (v;), i=1,...,N

Example: g(z) = \||z||1 = S:?—1 A|24]

soft-thresholding

/ Vi — A U; > A
(proxg(v)@: prox, . (v;) = A@) =<0 ;] < A

Vi + A v < —A

\

(key to parallel/distributed
proximal algorithms)




Operators

An operator 1" maps each point in R" to a subset of R"

» set valued 7'(x) returns a set
- single-valued T'(x) (function) returns a singleton

The domain of T'is the set dom T = {x | T'(z) # ()}

Example

» The subdifferential 0f is a set-valued operator
* The gradient V f Is a single-valued operator



Zero
r is a zero of T if 0eT(x)

Zero set
The setof allthe zeros  T71(0) ={x |0 T(x)}

Example Many problems
f7T"=0fand f: R" — R, then can be posed as finding zeros
0 € T'(x) means that x minimizes f of an operator



Fixed points

z IS a fixed-point of a single-valued operator 7' if

r="T(x)

Set of fixed points fix7T = {x € domT |z =T(z)} = (I —T) *(0)

Examples
» Identity 7'(x) = z. Any point is a fixed point
» Zero operator T'(x) = 0. Only 0 is a fixed point



Lipschitz operators

An operator 7' is L-Lipschitz if
|T(z) —T(y)|| < Lllz —yll, Vz,y€domT

Fact If 7" is Lipschitz, then it is single-valued
Proof If y = T'(z),z =T(z),then [ly — 2| < Lllz —z|| =0 =y =2 N

For L =1 we say 7' Is nonexpansive
For L. < 1 we say T’ is contractive (with contraction factor L)



Lipschitz operators and fixed points

Given a L-Lipschitz operator T and a fixed point r = T'z,
|Te —z|| = ||[Te — Tz| < Lijr — z|

A contractive operator (L < 1) can have at most
one fixed point, i.e., fixT = {z}
Proof

If z,y € fix1T and r # y then
|z =yl =[T(z) = T(y)|| < ||z -yl (contradiction) Il

A nonexpansive operator (L = 1) need not
have a fixed point

Example T'(x) = x + 2




Example a =1/2,2 =0

Averaged operators

We say that an operator 7" is a—averaged with o € (0, 1) if T

T=(1—-a)l+aR
and R IS honexpansive.

S|




How to design an algorithm

Problem
minimize  f(x)

Algorithm (operator) construction

1. Find a suitable 7" such that x € fix T’ solve your problem
2. Show that the fixed point iteration converges

If T" is contractive — linear convergence
If T'Is averaged — sublinear convergence

Most first order algorithms can be constructed in this way
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Today'’s lecture
[Chapter 4, FMO][PA][PMOI][LSMO]

Monotone operators

Conjugate functions and duality
Monotone and cocoercive operators
Subdifferential operator and monotonicity
Operators in optimization problems
Operators in algorithms

Building contractions

12



Conjugate functions and duality




Convex closed proper functions

A function f : R™ — R is called CCP if it is

closed epl f IS a closed set
convex  flaz+(1—a)y) <af(x)+(1-a)f(y), acl01]

proper dom f IS nonempty

If not otherwise stated, we assume functions to be CCP
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Conjugate function

Given a function f : R — R we define its conjugate f* : R — R as
f*(y) = max y" z — f(x)

Note f/* is always convex (pointwise maximum of affine functions in y)
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Conjugate function

Given a function f : R — R we define its conjugate f* : R — R as
f*(y) = 2 y x — f(z)

Note f/* is always convex (pointwise maximum of affine functions in y)

f* Is the maximum gap
between y* x and f(x)

15




Fa\s mx 3= 56
Conjugate function properties and examples

Properties

Fenchel’s inequality flz)+ f*(y) >yl (from max inside conjugate)
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Conjugate function properties and examples

Properties
Fenchel’s inequality flz)+ f*(y) >yl (from max inside conjugate)

Biconjugate ) =max y' z — f*(z) = f(z)> [ (z)

X
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Conjugate function properties and examples

Properties

Fenchel’s inequality flz)+ f*(y) >yl (from max inside conjugate)
Biconjugate  f(y) =max y 'z — f*(z) = f(z) =" (2)
Biconjugate for CCP functions If f CCP, then f** = f

16



Conjugate function properties and examples

Properties

Fenchel’s inequality flz)+ f*(y) >yl (from max inside conjugate)
Biconjugate  f(y) =max y 'z — f*(z) = f(z) =" (2)
Biconjugate for CCP functions If f CCP, then f** = f

Examples (;l/p \’q :i}

Norm — : (o)) — T indicator function ' " _
f@ erHP’, ) x”f’”ﬂglj(y) of dual norm set
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Conjugate function properties and examples

Properties

Fenchel’s inequality flz)+ f*(y) >yl (from max inside conjugate)
Biconjugate  f(y) =max y 'z — f*(z) = f(z) =" (2)
Biconjugate for CCP functions If f CCP, then f** = f

Examples

Norm — : (o)) — T indicator function
flay=lel: 7w =T <1(¥) of dual norm set

: - _ . x % _ T . support
Indicator function f(z) = Zo(x):  f(y) =Z5(y) = max y- —gg(_:) finction

16

More examples of conjugate functions [Page 101, FMO] \,\



Fenchel dual

Dual using conjugate functions

minimize f(x) + g(x) —

Equivalent form (variables spilit)
minimize  f(x) + g(2)
subjectto x ==z
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Fenchel dual

Dual using conjugate functions
Equivalent form (variables spilit)

minimize  f(x) + g(2)

Lagrangian
L(z,z,y) = f(z) +9(2) +y" (2 —2) = —=(y" = — f(x)) — (~y" 2 — g(2))
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Fenchel dual

Dual using conjugate functions

minimize f(x) + g(x) —
Lagrangian
L(z,z,y) = f(x) +9(2) +y (z — 2)

Dual functlo
mmL (, z,y)

Equivalent form (variables spilit)
minimize  f(x) + g(2)
subjectto x ==z

~(y x — f(x)) (ﬁi—gwﬂ

9@
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Fenchel dual

Dual using conjugate functions
Equivalent form (variables spilit)

minimize  f(x) + g(2)

Lagrangian
L(z,z,y) = f(z) +9(2) +y" (2 —2) = —=(y" = — f(x)) — (~y" 2 — g(2))

Dual function
min L(z, z,y) = —f*(y) — 9" (—y)

Dual problem
maximize — f*(y) — g"(—y)
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Fenchel dual example

Constrained optimization

minimize f(z) + Z¢(x) —

Dual problem

maximize — f*(y) — oo (—y)

18



Fenchel dual example

Constrained optimization

minimize f(z) + Z¢(x) —

Norm penalization

minimize f(z) + ||z —

Dual problem

maximize — f*(y) — oo (—y)

Dual problem
maximize —f*(y)
subjectto |jy|l. <1

18



Fenchel dual example

Constrained optimization Dual problem
minimize f(x) 4+ Z¢(x) ——  maximize — f*(y) —oc(—y)
Norm penalization Dual problem
maximize —f*(y)
Mminimize f(a:) -+ HLIZ‘H —_— subject to HyH* <1
Remarks

* Fenchel duality can simplify derivations
» Useful when conjugates are known
* VVery common in operator splitting algorithms
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Mlonotone cocoercive operators



Monotone operators

An operator 7' on R"™ is monotone if

(u—v)"(z—y) >0,

V(z,u), (y,v) € gphT

20



Monotone operators

An operator 7' on R"™ is monotone if

(u—v) (x—y) >0, V(zx,u),(y,v) € gphT

T 1s maximal monotone if
B(z,u) ¢ gphT such that

(. —u)" (2 —2x) >0

Equivalently: # monotone R
such that gph T’ C gphR

20



Monotone operators in 1D Let's fill the table

@ T(x) B T(x) Monotone Max Monotone
/ \ " v >
. B X X
- o C Vv X
D > X<
C 7@ D 7@ Monotonicity

/ / y>x = T(y)>T(x)

e 21




Monotone operators in 1D Let's fill the table

Monotone Max Monotone

A T'(z) B I'(x)
<N

N
J

C T(x) D T(x) Monotonicity

~ J y>z = T(y)=2T(x)

Continuity

- If T single-valued,
/ continuous and monotone,

. . 21
then 1it’s maximal monotone




Monotone operator properties

« sum 7'+ RIS monotone

* nhonnegative scaling o7 with o > 0 Is monotone

 inverse 7! is monotone

- congruence for M € R"*™, then M T (M=) is monotone on R™

= ( VPJ(% j}{
Affine function 7'(z) = Ax + b is maximal monotone D/@ P

)
< A—|—AT >~ 0 Q%L&\:PK J,Ql
P.PReO %



Strongly monotone operators

An operator 7' on R" is u-strongly monotone if
(u—v)" (x—y) > pllz —yl]?, pu>0 (also called p~-coercive)

V(z,u), (y,v) € gphT

23



Strongly monotone operators

An operator 7' on R" is u-strongly monotone if

(u—v)" (x —y) > pllz—yl|?, >0 (also called p~-coercive)

V(z,u), (y,v) € gphT

Let’s fill the table

Monotone Strongly Monotone

- I

z B \% \V4

Jr T .



Strongly monotone operators

An operator 7' on R" is u-strongly monotone if
(u—v)" (x—y) > pllz —yl]?, pu>0 (also called p~-coercive)

V(z,u), (y,v) € gphT

Let’s fill the table

Monotone Strongly Monotone

- o

v B

X /
/ / The slope is at least/iu ) o3




Cocoercive operators

An operator T' is 5-cocoercive, 5 > 0, If
(T(z) = T(y))" (x —y) > BIT(x) = T(y)|I”

24



Cocoercive operators

An operator T' is 5-cocoercive, 5 > 0, If
(T(z) = T(y))" (x —y) > BIT(x) = T(y)|I”

If T"is -cocoercive, then T'is (1/3)-Lipschitz

Proof f|T(z) —T(y)|I* < (T(z) = T(y)) (z —y) < |T(z) = T(y)ll[lz -yl
= ||T(x) =T(y)ll =< (1/8)llz =y _

24



Cocoercive operators

An operator T' is 5-cocoercive, 5 > 0, If
(T(z) = T(y))" (x —y) > BIT(x) = T(y)|I”

If T"is -cocoercive, then T'is (1/3)-Lipschitz

Proof f|T(z) —T(y)|I* < (T(z) = T(y)) (z —y) < |T(z) = T(y)ll[lz -yl
— || T(z) = T(y)| < (1/6)]|z =yl _

If T'is u-strongly monotone if and only if 7' is u-cocoercive

Proof (T'(z)— T(CE))T(wL{y) > M||$gm
Inverse: u =T (x) and v = T'(y) if and only ifx)e T—'(u) and y € T~ (v)

(u=0) (T (uw) =T () 2 p|T (w) =T ([I°

24



Cocoercive and nonexpansive operators

If T is S-cocoercive ifandonlyif [ — 257 is nonexpansive

25



Cocoercive and nonexpansive operators

If T is S-cocoercive ifandonlyif [ — 257 is nonexpansive

= ||y — 28T (y) — x — 28T (x)||”
2 —4B(T(y) — T(x))" (y — z) + 48°| T (y) — T'(z)||?
)

y —x||* =48 ((T(y) = T(x))" (y —2) = BIT(y) = T(=)|)
|2

|
<

|

S

A
<
|
S

25



Cocoercive and nonexpansive operators

If T is S-cocoercive ifandonlyif [ — 257 is nonexpansive

= ||y — 28T (y) — x — 28T (x)||”
2 —4B(T(y) — T(x))" (y — z) + 48°| T (y) — T'(z)||?
)

y —z||* =48 (T(y) = T(x))" (y — ) = B|T(y) = T(2)|)
|2

|
<

|

S

A
<
|
S

B (cocoercive)

25



Summary of monotone and cocoercive operators

Monotone Lipschitz
(@) ~T@) (= —y) 2 0 |F(x) - F)|| < L]z — ]
p=20 | L=1/p
Strongly monotone Cocoercive
(T(z) = T(@)" (x —y) > pllz —yl° <F—>T_1 (F(x) = F(y)" (x —y) > pllF(z) — F(y)|’
G=1-2uF

Nonexpansive
|G(z) =G| < llz—yl| *°



Subdifferential operator and
monotonicity



Subdifferential operator monotonicity
Of(x)={g| fly) > flx)+g" (y— )}

0f(xz) is monotone (also for nonconvex functions)

28



Subdifferential operator monotonicity
Of(x)={g| fly) > flx)+g" (y— )}

0f(xz) is monotone (also for nonconvex functions)

Proof Suppose u € df(x) and v € df(y) then
fly) > flx) +u' (y—az),  flx) > fly) +v (z—y)
0

By adding them, we can write (v — v)! (z — y) >

28



Subdifferential operator monotonicity
Of(x)={g| fly) > flx)+g" (y— )}

0f(xz) is monotone (also for nonconvex functions)

Proof Suppose u € df(x) and v € df(y) then
fly) > fl@)+u' (y—=),  fl@)>fly)+v (z-y)
By adding them, we can write (u —v){ (z —y) >0 |}

Maximal monotonicity
If fis convex, closed and proper (CCP), then 0f(x) is maximal monotone 28



Strongly monotone and cocoercive subdifferential

f is u -strongly convex <«<—  0f p-strongly monotone
(Df(x) = 0f (y)" (x —y) > pllz —y|°

29



Strongly monotone and cocoercive subdifferential

f is u -strongly convex <«<—  0f p-strongly monotone
(Df(x) = 0f (y)" (x —y) > pllz —y|°

f 1s L-smooth
<= Of L-Lipschitzand 0f = V f: |Vf(x)—Vf(y)l| <Llx— 1yl
<= 0f (1/L)-cocoercive: (Vf(zx) - Vf(y)) (x —y) > (1/L)|Vf(z) = VI(y)|°

29



Strongly monotone and cocoercive subdifferential

f is u -strongly convex <«<—  0f p-strongly monotone
(Df(x) = 0f (y)" (x —y) > pllz —y|°

f 1s L-smooth
<= Of L-Lipschitzand 0f = V f: |Vf(x)—Vf(y)l| <Llx— 1yl
<= 0f (1/L)-cocoercive: (Vf(zx) - Vf(y)) (x —y) > (1/L)|Vf(z) = VI(y)|°

’ L
S @)+ V@) (y =)+ Flle =yl

f(y)

f(@)+ V@) (y— )+ Slle =yl 29



Inverse of subdifferential

If fis CCP, then, (Of)~t =0f*

30



Inverse of subdifferential
If fis CCP, then, (Of)~t =0f*

Proof

(u,v) € gph(0f)™" <= (v,u) € gphdf
<~ u € Jdf(v)
<— 0€df(v) —u

= v € argmin f(z) — u’
X

= f*(u) =u v — f(v)

30



Inverse of subdifferential
If fis CCP, then, (Of)~t =0f*

Proof
(u,v) € gph(0f)™" <= (v,u) € gphdf
< u € Jf(v)

<— 0€df(v) —u

= v € argmin f(z) — u’
X

= f*(u) =u v — f(v)

Therefore, f(v) + f*(u) = ulv. If fis CCP, then f** = f and we can write
fr)+ffw)=wv <= (uv) egphdf’



Strong convexity is the dual of smoothness

f is p-strongly convex <= f*is (1/u)-smooth

31



Strong convexity is the dual of smoothness

f is p-strongly convex <= f*is (1/u)-smooth

Proof
f w-strongly convex <=  0Jf p-strongly monotone

— (0f)"'=0f* p-cocoercive
<~ f* (1/u)-smooth B

31



Strong convexity is the dual of smoothness

f is p-strongly convex <= f*is (1/u)-smooth

Proof
f w-strongly convex <=  0Jf p-strongly monotone

— \@f)_l — 8f*} Lu-cocoercive
<~ f* (1/u)-smooth B

Remark: strong convexity and (strong) smoothness are dual
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Operators in optimization
problems




KKT operator

minimize  f(x)
subjectto Az =0

—_—

Lagrangian
L(z,y) = f(z) +y" (Az —b)

33



KKT operator

minimize  f(x)
subjectto Az =0

Lagrangian
——  L(z,y) = f(z) +y (Az — D)

KKT operator
o) — O-L(z,y) | _|0f(x)+ A y| | rov™
y Y) = —ﬁyL(x,y) — h— A o __pbrim

zeroset {(z,y) | 0 € T'(x,y)} is the set of primal-dual optimal points



KKT operator

minimize  f(x)
subjectto Az =0

Lagrangian
——  L(z,y) = f(z) +y (Az — D)

KKT operator
o) — O-L(z,y) | _|0f(x)+ A y| | rov™
y Y) = —ﬁyL(x,y) — h— A o __pbrim

zeroset {(z,y) | 0 € T'(x,y)} is the set of primal-dual optimal points

Monotonicity

of(x)| |0 AT| |2
R e T




KKT operator

minimize  f(x)

subjectto Az =0
KKT operator
_ OsL(x,y _ _af T —I—ATy_
T(a,y) = | 000 | = 9T
—0yL(z,y) - b—Azx

Lagrangian

L(z,y) = f(z) +y" (Az —Db)

Tdual

_JTprhn

zeroset {(z,y) | 0 € T'(x,y)} is the set of primal-dual optimal points

Monotonicity ,

0f(x)

jﬁcxay)::: h

_I_

0 AT

—-A 0

X

Y

skew-symmetric

N KV= 0 &0

sum of monotone
operators
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“multiplier to residual” mapping

minimize  f(x)
subjectto Az =0

34



“multiplier to residual” mapping

Lagrangian
—  L(z,y) = f(z) +y (Az —Db)

minimize  f(x)
subjectto Az =0

34



“multiplier to residual” mapping

Lagrangian

minimize  f(x) . - o
subjectto Az = b (z,y) = f(z) +y (Az — D)
Dual problem
maximize g(y) — HllIlL(J},y) — — IMNaXx —L(.’E,y) — _(f*(_ATy) i yTb)

X

34



“multiplier to residual” mapping

Lagrangian

minimize  f(x) . - o
subjectto Az = b (z,y) = f(z) +y (Az — D)
Dual problem
maximize g(y) — mlnL(a;,y) — — IMNaXx —L(.’E,y) — _(f*(_ATy) i yTb)

X

Operator Monotonicity

T(y) =b— Ax, where x = argmin, L(z,y) —— If f CCP, then T is monotone
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“multiplier to residual” mapping

Lagrangian

minimize  f(x)

-_— _ T -
subjectto Az = b L(z,y) = f(z) +y" (Az —b)

Dual problem

maximize mgn L(x,y) = — max —L(z,y) = —(f*(—A"y) + y'b)

Operator Monotonicity
T(y) =0b— A@Ww\here r = argmin, L(z,y) —— If f CCP, then T is monotone

Proof T
0€ 0, Lixy)=0f(@) + ATy = @= (@) (-A"y)
Therefore, T'(y) = b — A(0f) "' (-A"y) =0, (b'y + f (-A"y)) =9(—9) N

34




“multiplier to residual” mapping

Lagrangian
—  L(z,y) = f(z) +y (Az —Db)

minimize  f(x)
subjectto Az =0

Dual problem
maximize ¢(y) = min L(z,y) = —max —L(z,y) = —(f*(—A"y) + y' b)

X

Operator Monotonicity

T(y) =b— Ax, where x = argmin, L(z,y) —— If f CCP, then T is monotone

Proof
0€ 0,L(x,y) =0f(x) + Ay = =
Therefore, T'(y) = b — A(Of) 1(—Aly) =

monotone

= (0f) " '(—A"y) —
Oy (b'y+ f*(—A"y)) =0(—9) B
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Operators in algorithms



Forward step operator

The forward step operator of 7' is defined as
I —~T

In general monotonicity of 7' is not enough for convergence

36



Example
minimize
subject to

Forward step operator

The forward step operator of 7' is defined as

I —~T

In general monotonicity of 7' is not enough for convergence

X

r =0

KKT operator

0 1| |z
Tley)=1_, |

|~ 1 1Y

Monotone (skew-symmetric)

A =

0 1

—1 0

A+ A" =0=0
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Forward step operator

The forward step operator of 7' is defined as
I —~T

In general monotonicity of 7' is not enough for convergence

Example KKT operator Monotone (skew-symmetric)
minimize « 0 11 [ 1 0 1
subjectto z =0 T(z,y) = 1 0l |y + 0 A= 10 A+ A" =0=0
Forward step Expansive
Kl 1 - |z 1 e
yl v 1] ly] |0 REEENEIE




Gradient step: special case of forward step

f L-smooth <= Vf (1/L)-cocoercive <= I—(2/L)V f nonexpansive

37



Gradient step: special case of forward step

f L-smooth <= Vf (1/L)-cocoercive <= I—(2/L)V f nonexpansive

Construct averaged iterations
I Wf (1—-a)l+all - (2/L)Vf)
where o = vL/2 € (0,1) <= € (0,2/L)
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Gradient step: special case of forward step

f L-smooth <= Vf (1/L)-cocoercive <= I—(2/L)V f nonexpansive

Construct averaged iterations
I —wWVf=01—-a)l+ ol —(2/L)Vf)
where a =~vL/2 € (0,1) <«<— ~¢€(0,2/L)

T

(to be averaged)
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Gradient step: special case of forward step

f L-smooth <= Vf (1/L)-cocoercive <= I—(2/L)V f nonexpansive

Construct averaged iterations
I —wWVf=01—-a)l+ ol —(2/L)Vf)
where a =~vL/2 € (0,1) <«<— ~¢€(0,2/L)

T

(to be averaged)

Remark
» Only smoothness assumption gives sublinear convergence
 Similar result we obtained in gradient descent lecture
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Resolvent and Cayley operators

The resolvent of operator A is defined as
Ra=(I+ A)_l

The Cayley (reflection) operator of A is defined as
Ca=2Ry—1=20+A)" -1

Properties

* |If A is maximal monotone, dom R4 = dom (4 = R"™ (Minty’s theorem)
- If A is monotone, R4 and C' 4 are nonexpansive (thus functions)

« Zeros of A are fixed points of R4 and C'4

38



Resolvent and Cayley operators

The resolvent of operator A is defined as
Ra=(I+ A)_l

The Cayley (reflection) operator of A is defined as
Ca=2Ry—1=20+A)" -1

Properties

* |If A is maximal monotone, dom R4 = dom (4 = R"™ (Minty’s theorem)
- If A is monotone, R4 and C' 4 are nonexpansive (thus functions)

« Zeros of A are fixed points of R4 and C'4

Key result we can solve 0 € A(x) by finding fixed points of C'4 or R 4 38



Fixed points of R4 and (4 are zeros of A

Proof
Ry = (] —+ A)_l

r € fix Ra 0€ A(z) <= z€ (I+ A)(z)
— (I+4) (@) =2
< QZ‘:RA(J})
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Fixed points of R4 and (4 are zeros of A

Proof
Ra=(I+A)"

r € fix Ra 0€ Alx) <—= xz € (I+ A)(x)
— (I+4) (@) =2
< QZ‘:RA(J})

r € fix(Cy Ca(x) =2Ra(x) —I(zx) =20 —x == B
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If Ai1s monotone, then R 4 IS nhonexpansive

Proof
If (x,u) € gphR4 and (y,v) € gphR 4, then
u—+ A(u) 3 x, v+ A(v) Dy

40



If Ai1s monotone, then R 4 IS nhonexpansive

Proof
If (x,u) € gphR4 and (y,v) € gphR 4, then
u—+ A(u) 3 x, v+ A(v) Dy

Subtracttoget u — v+ (A(u) — A(v)) 22—y
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If Ai1s monotone, then R 4 IS nhonexpansive

Proof
If (x,u) € gphR4 and (y,v) € gphR 4, then
u—+ A(u) 3 x, v+ A(v) Dy

Subtracttoget u — v+ (A(u) — A(v)) 22—y

Multiply by (v —v)* and use monotonicity of A (being also a function: € — =),

Ju—v|* < (z—y)" (u—0)
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If Ai1s monotone, then R 4 IS nhonexpansive

Proof
If (x,u) € gphR4 and (y,v) € gphR 4, then
u—+ A(u) 3 x, v+ A(v) Dy

Subtracttoget u — v+ (A(u) — A(v)) 22—y

Multiply by (v —v)* and use monotonicity of A (being also a function: € — =),

Ju—v|* < (z—y)" (u—0)

Apply Cauchy-Schwarz and divide by ||u — v|| to get

Ju—ol| < [lz -y B



If Ai1s monotone, then (4 IS nonexpansive

Proof
Givenu = Ra(x) and v = R4(y) (R4 is a function)

|C(z) = CY)I* = (2u —z) = (2v —y)|I
= [2(u—v) = (z = y)II
= 4flu—v[]* —4(u—v)" (z —y) + [z -y

Note R, monotonicity (prev slide): ||u — v|? < (v —v)T(x — y)
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If Ai1s monotone, then (4 IS nonexpansive

Proof
Givenu = Ra(x) and v = R4(y) (R4 is a function)

|C(z) = CY)I* = (2u —z) = (2v —y)|I
= [2(u—v) = (z = y)II
= 4flu—v[]* —4(u—v)" (z —y) + [z -y

Note 124 monotonicity (prev slide): ||lu — v[|* < (u —v)! (z — y) B

Remark
R 4 1s nonexpansive since it is the average of I and C4:

Ra= (1/2)I+ (1/2)Ca = (1/2)I + (1/2)(2R4 — 1) 4



Role of maximality

We mostly consider maximal operators A because of

Theory: A, R4 and C' 4 do not bring iterates outside their domains

Practice: hard to compute R4 and (4 for non-maximal monotone operators,
e.g., when A = 0f(z) where f nonconvex.

42



Resolvent of subdifferential: proximal operator

prox; = Ryy = (I + Of)*

Proof
Let z = prox,(z), then

1
z = argmin f(u) 1 2Hu—a:||2

< 0€0f(z)+z—x (optimality conditions)
< xe(l+0f)(2)
= z=UI+0f) x) B
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Resolvent of normal cone: projection

Razc =1V (x) _Ne(z)

Proof

Let f = 7, the Iindicator function of a convex set

Recall: 0Zo(x) = Neo(xr) normal cone operator
uw= (I+0Ic) *(r) <+= wu=argmin Zc(u)+ (1/2)]|z — z||* = llc(z)

Z
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Resolvent of normal cone: projection

Razc =1V (x) _Ne(z)

Proof

Let f = 7, the Iindicator function of a convex set

Recall: 0Zo(x) = Neo(xr) normal cone operator
uw= (I+0Ic) *(r) <+= wu=argmin Zc(u)+ (1/2)]|z — z||* = llc(z)

Z

Nc monotone = Ilo nonexpansive

Proof of monotonicity
weNc(z) = u( &{%Vzéé' T—x) <0

Z_

add to obtain .
veENa(y) = vT(5—y) <0, V2eC = vT(2)—y) <0 " monotonicity




Building contractions



Forward step contractions
Given T' L-Lipschitz and p-strongly monotone, then I — AT

converges linearly at rate /1 — 2yu + v2L2, with optimal step v = u/L>.
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Forward step contractions
Given T' L-Lipschitz and p-strongly monotone, then I — AT

converges linearly at rate /1 — 2yu + v2L2, with optimal step v = u/L>.

Proof
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Forward step contractions
Given T' L-Lipschitz and p-strongly monotone, then I — AT

converges linearly at rate /1 — 2yu + v2L2, with optimal step v = u/L>.

Proof strongly
monotone Lipschitz

~
|
B
=
B
|
~
|
B
=
S
T
|
B
|
N
4
B
=
=
|
-
=
S
s

2 =yl — 2v(T(a) = T)) (& = 9) T 2| T) = T2~
< (1=2ypu+~°L?)||lz — y? N
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Forward step contractions
Given T' L-Lipschitz and p-strongly monotone, then I — AT

converges linearly at rate /1 — 2yu + v2L2, with optimal step v = u/L>.
Proof strongly
monotone | ; -
|(I =~AT)(@)~(I =T W)|I* = |z —y + T () =T (y)| ;pSCh'tZ
= [lz —y|* = 29(T(z) = T(y))" (z —y) +*|IT(z) = T(y)|*
< (1=2ypu+~°L?)||lz — y? N

Remarks

» |t applies to gradient descent with L-smooth and u-strongly convex f

- Better rate in gradient descent lecture. We can get it by

bounding derivative: ||D(I — yV?f(z))ll2 < max{|l —~L|, |1 — yu|}.

Optimal step v = 2/(u + L) and factor (u/L — 1)(u/L + 1). 40



Resolvent contractions
If A is pu-strongly monotone, then
Ry = ([ A)_l

is a contraction with Lipschitz parameter 1/(1 + p)
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Resolvent contractions
If A is pu-strongly monotone, then
Ry = ([ A)_l

is a contraction with Lipschitz parameter 1/(1 + p)

Proof
A p-strongly monotone — (I + A) (1 + p)-strongly monotone

— Ryu={I+A"" (1+ p)-cocoercive
— Rj (1/(1 + p))-Lipschitz B
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Cayley contractions

If A is pu-strongly monotone and L-Lipschitz, then
Cop=2R A —T=2I+~A)"" =1
is a contraction with factor /1 — 4yu /(1 + vL)?

Remark need also Lipschitz condition

Proof [Page 20, PMO]
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Cayley contractions

If A is pu-strongly monotone and L-Lipschitz, then
Cop=2R A —T=2I+~A)"" =1
is a contraction with factor /1 — 4yu /(1 + vL)?

Remark need also Lipschitz condition

Proof [Page 20, PMO]

If, in addition, A = 0f where f is CCP, then C, 4 converges
with factor (v/pu/L —1)/(v/p/L + 1) and optimal step v = 1/v/uL

Proof

[Linear Convergence and Metric Selection for Douglas-Rachford Splitting and ADMM, Giselsson and Boyd]
48




Requirements for contractions

Function f
Operator A
i (A =0f)

Forward step _strongly monotone 1-strongly convex
I —~A s L-smooth
nesolvent 1 -strongly monotone p-strongly convex
Ra=(I+ A) - L-smooth
Cayley B u-strongly monotone u-strongly convex
Ca=2I+A) " -1 L-Lipschitz L-smooth

faster convergence

Key to contractions: strong monotonicity/convexity 49



Operator theory

Today, we learned to:

Use conjugate functions to define duality

Define monotone and cocoercive operators and their relations
Relate subdifferential operator and monotonicity

Recognize monotone operators in optimization problems
Apply operators in algorithms: forward step, resolvent, Cayley

Understand requirements for building contractions
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Next lecture

» Operator splitting algorithms
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