ORF522 – Linear and Nonlinear Optimization

17. Operator theory

Ed Forum

- What is the advantage of (1-alpha)*I + alpha* R over simply the alpha * R? it seems alpha*R also transforms the original nonexpansive function R into a contractive one, so why bother adding another term I?
- What do the graphs mean for the averaged operator? Does the domain of R(x) get adjusted by a factor of alpha around the fixed point, and then shifted by a factor of (1-alpha)*I so that it encompasses both x and the fixed point, and this becomes T(x)?
- Slide 28 uses the phrase, "component-wise soft-thresholding;" what does that mean, as opposed to not component-wise?
- Throughout the lecture, I think it was mentioned that some things are "hard but cheap" or "expensive." In this context, such as slide 26 and 27, what is the difference between hard and expensive?

Recap

Separable sum

If
$$g(x)$$
 is block separable, i.e., $g(x) = \sum_{i=1}^{N} g_i(x_i)$

then,
$$(\mathbf{prox}_g(v))_i = \mathbf{prox}_{g_i}(v_i), \quad i = 1, \dots, N$$

(key to parallel/distributed proximal algorithms)

Separable sum

If
$$g(x)$$
 is block separable, i.e., $g(x) = \sum_{i=1}^{N} g_i(x_i)$

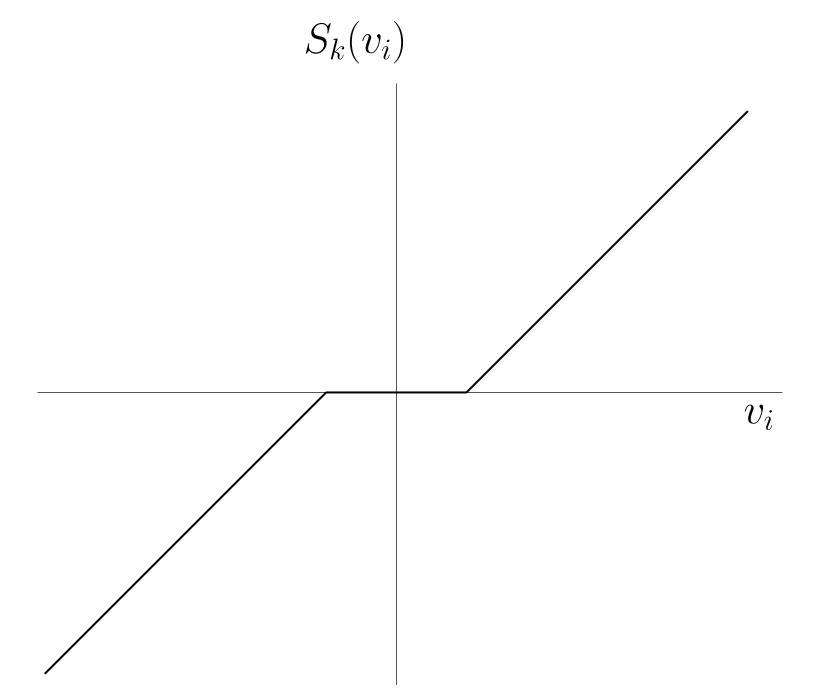
then,
$$(\mathbf{prox}_g(v))_i = \mathbf{prox}_{g_i}(v_i), \quad i = 1, \dots, N$$

(key to parallel/distributed proximal algorithms)

Example:
$$g(x) = \lambda ||x||_1 = \sum_{i=1}^{n} \lambda |x_i|$$

soft-thresholding

$$(\mathbf{prox}_g(v))_i = \mathbf{prox}_{\lambda|\cdot|}(v_i) = S_{\lambda}(v_i) = \begin{cases} v_i - \lambda & v_i > \lambda \\ 0 & |v_i| \leq \lambda \\ v_i + \lambda & v_i < -\lambda \end{cases}$$



Operators

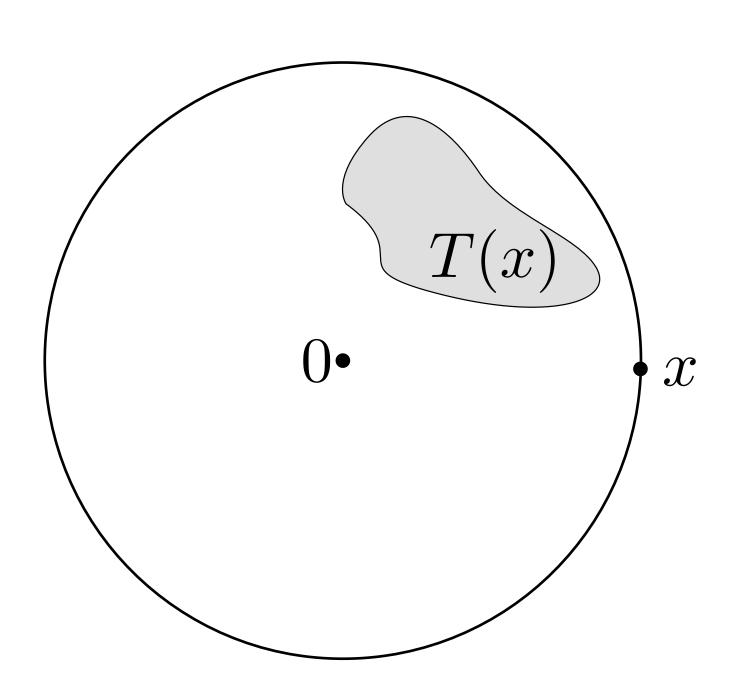
An operator T maps each point in \mathbf{R}^n to a subset of \mathbf{R}^n

- set valued T(x) returns a set
- single-valued T(x) (function) returns a singleton

The domain of T is the set $\operatorname{dom} T = \{x \mid T(x) \neq \emptyset\}$

Example

- The subdifferential ∂f is a set-valued operator
- The gradient ∇f is a single-valued operator



Zeros

Zero

x is a **zero** of T if

$$0 \in T(x)$$

Zero set

The set of all the zeros

$$T^{-1}(0) = \{x \mid 0 \in T(x)\}\$$

Example

If $T=\partial f$ and $f:\mathbf{R}^n\to\mathbf{R}$, then $0\in T(x)$ means that x minimizes f

Many problems can be posed as finding zeros of an operator

Fixed points

 \bar{x} is a **fixed-point** of a single-valued operator T if

$$\bar{x} = T(\bar{x})$$

Set of fixed points
$$\text{ fix } T = \{x \in \text{dom } T \mid x = T(x)\} = (I - T)^{-1}(0)$$

Examples

- Identity T(x) = x. Any point is a fixed point
- Zero operator T(x) = 0. Only 0 is a fixed point

Lipschitz operators

An operator T is L-Lipschitz if

$$||T(x) - T(y)|| \le L||x - y||, \quad \forall x, y \in \text{dom } T$$

Fact If T is Lipschitz, then it is single-valued

Proof If
$$y = T(x), z = T(x)$$
, then $||y - z|| \le L||x - x|| = 0 \Longrightarrow y = z$

For L=1 we say T is nonexpansive

For L < 1 we say T is **contractive** (with contraction factor L)

Lipschitz operators and fixed points

Given a L-Lipschitz operator T and a fixed point $\bar{x}=T\bar{x}$,

$$||Tx - \bar{x}|| = ||Tx - T\bar{x}|| \le L||x - \bar{x}||$$

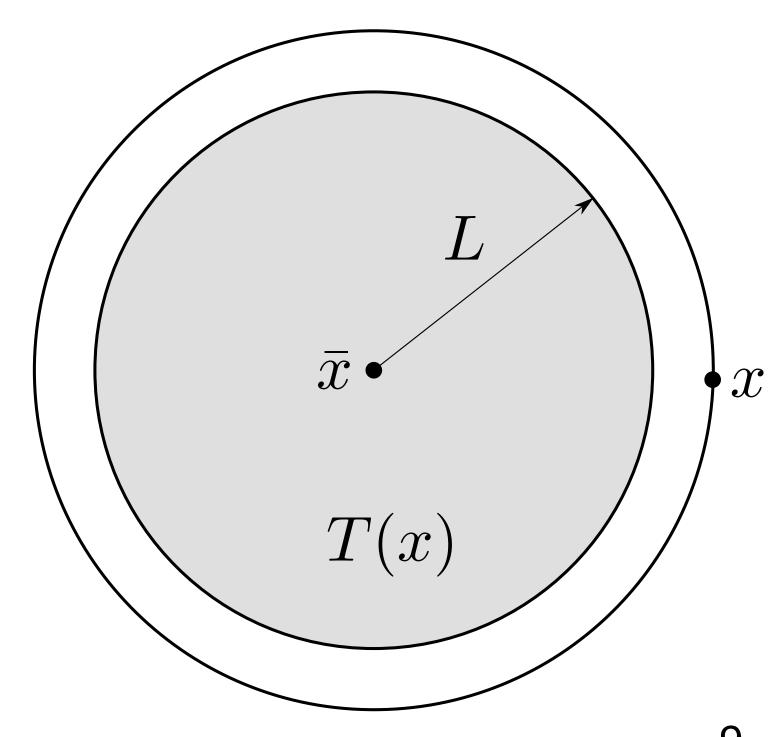
A contractive operator (L < 1) can have at most one fixed point, i.e., fix $T = \{\bar{x}\}$

Proof

If $\bar{x}, \bar{y} \in \operatorname{fix} T$ and $\bar{x} \neq \bar{y}$ then $\|\bar{x} - \bar{y}\| = \|T(\bar{x}) - T(\bar{y})\| < \|x - y\|$ (contradiction)



Example
$$T(x) = x + 2$$



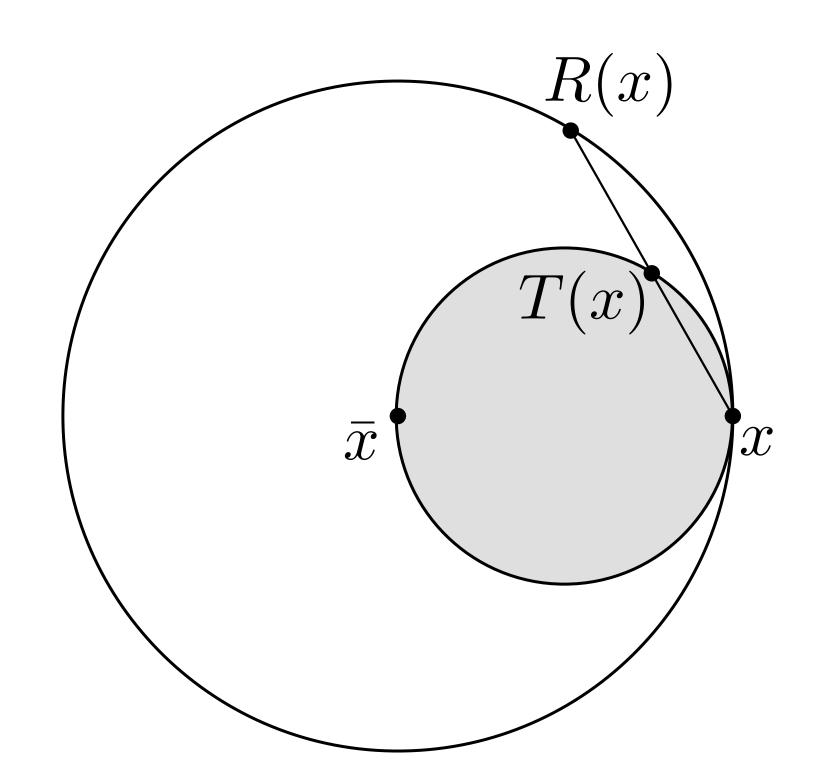
Example $\alpha=1/2, \bar{x}=0$

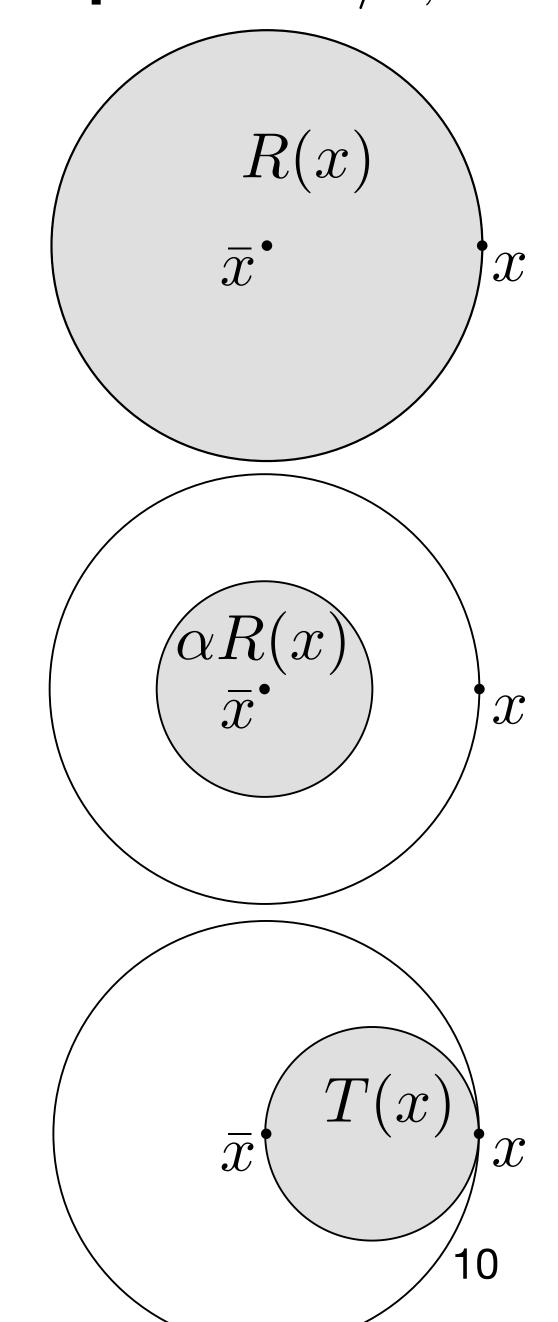
Averaged operators

We say that an operator T is α -averaged with $\alpha \in (0,1)$ if

$$T = (1 - \alpha)I + \alpha R$$

and R is nonexpansive.





How to design an algorithm

Problem

minimize f(x)

Algorithm (operator) construction

- 1. Find a suitable T such that $\bar{x} \in \operatorname{fix} T$ solve your problem
- 2. Show that the fixed point iteration converges

```
If T is contractive \implies linear convergence If T is averaged \implies sublinear convergence
```

Most first order algorithms can be constructed in this way

Today's lecture [Chapter 4, FMO][PA][PMO][LSMO]

Monotone operators

- Conjugate functions and duality
- Monotone and cocoercive operators
- Subdifferential operator and monotonicity
- Operators in optimization problems
- Operators in algorithms
- Building contractions

Conjugate functions and duality

Convex closed proper functions

A function $f: \mathbf{R}^n \to \mathbf{R}$ is called **CCP** if it is

closed epi f is a closed set

$$convex \qquad f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha)f(y), \quad \alpha \in [0,1]$$

proper dom f is nonempty

If not otherwise stated, we assume functions to be CCP

Conjugate function

Given a function $f: \mathbf{R}^n \to \mathbf{R}$ we define its **conjugate** $f^*: \mathbf{R}^n \to \mathbf{R}$ as

$$f^*(y) = \max_{x} \ y^T x - f(x)$$

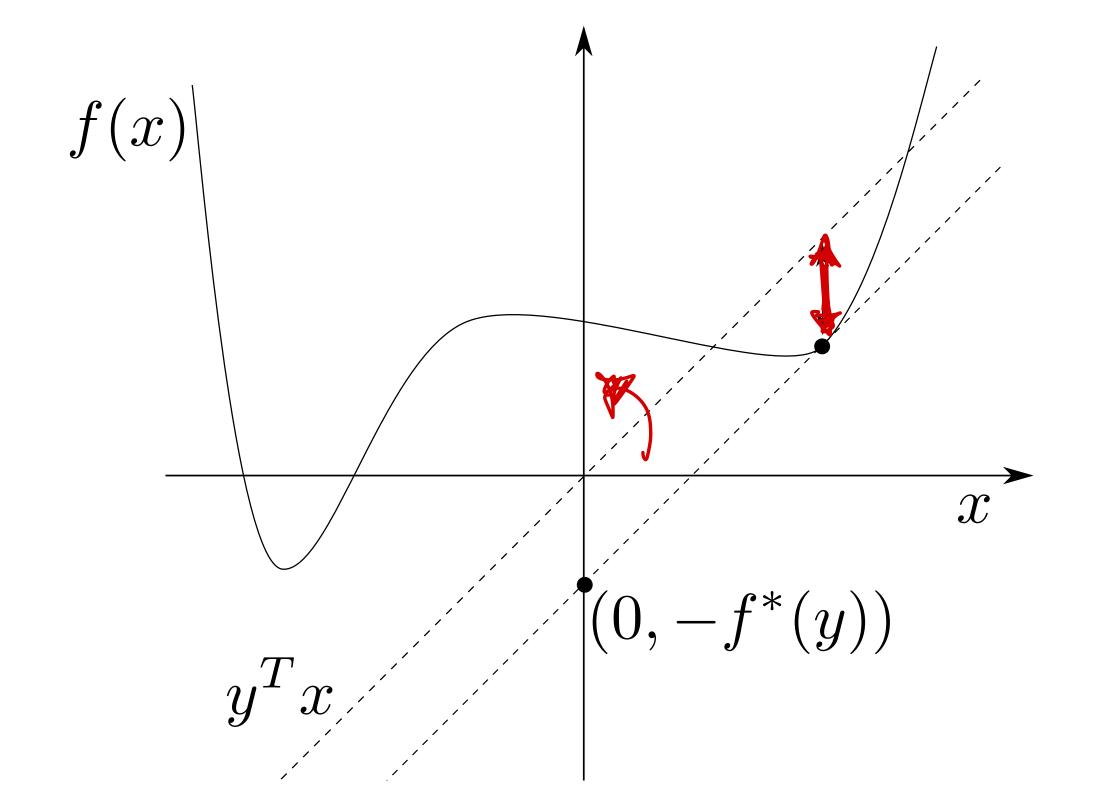
Note f^* is always convex (pointwise maximum of affine functions in y)

Conjugate function

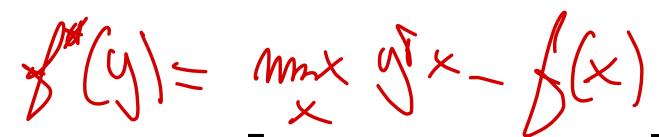
Given a function $f: \mathbf{R}^n \to \mathbf{R}$ we define its **conjugate** $f^*: \mathbf{R}^n \to \mathbf{R}$ as

$$f^*(y) = \max_{x} y^T x - f(x)$$

Note f^* is always convex (pointwise maximum of affine functions in y)



 f^* is the maximum gap between y^Tx and f(x)



Properties

Fenchel's inequality
$$f(x) + f^*(y) \ge y^T x$$

$$f(x) + f^*(y) > y^T x$$

(from max inside conjugate)

Properties

Fenchel's inequality
$$f(x) + f^*(y) \ge y^T x$$
 (from \max inside conjugate)

Biconjugate
$$f^{**}(y) = \max_{x} y^T x - f^*(x) \implies f(x) \ge f^{**}(x)$$

Properties

Fenchel's inequality $f(x) + f^*(y) \ge y^T x$ (from \max inside conjugate)

Biconjugate
$$f^{**}(y) = \max_{x} y^T x - f^*(x) \implies f(x) \ge f^{**}(x)$$

Biconjugate for CCP functions If f CCP, then $f^{**} = f$

Properties

Fenchel's inequality $f(x) + f^*(y) \ge y^T x$ (from max inside conjugate)

Biconjugate
$$f^{**}(y) = \max_{x} y^{T}x - f^{*}(x) \implies f(x) \ge f^{**}(x)$$

Biconjugate for CCP functions If f CCP, then $f^{**} = f$

Examples

Norm
$$f(x) = ||x||$$
, $f^*(y) = \mathcal{I}_{||y|| \le 1}(y)$

of dual norm set

Properties

Fenchel's inequality $f(x) + f^*(y) \ge y^T x$ (from \max inside conjugate)

Biconjugate
$$f^{**}(y) = \max_{x} y^T x - f^*(x) \implies f(x) \ge f^{**}(x)$$

Biconjugate for CCP functions If f CCP, then $f^{**} = f$

Examples

Norm
$$f(x) = ||x||$$
: $f^*(y) = \mathcal{I}_{||y||_* \le 1}(y)$ indicator function of dual norm set

Indicator function
$$f(x) = \mathcal{I}_C(x)$$
: $f^*(y) = \mathcal{I}_C^*(y) = \max_{x \in C} y^T x = \underbrace{\sigma_C(y)}$

support function

Dual using conjugate functions

minimize
$$f(x) + g(x)$$

Equivalent form (variables split)

minimize
$$f(x) + g(z)$$

subject to $x = z$

Dual using conjugate functions

minimize f(x) + g(x)

Equivalent form (variables split)

minimize
$$f(x) + g(z)$$

subject to $x = z$

Lagrangian

$$L(x, z, y) = f(x) + g(z) + y^{T}(z - x) = -(y^{T}x - f(x)) - (-y^{T}z - g(z))$$

Dual using conjugate functions

Equivalent form (variables split)

minimize
$$f(x) + g(z)$$

subject to $x = z$

Lagrangian

$$L(x,z,y) = f(x) + g(z) + y^T(z-x) = -(y^Tx - f(x)) - (-y^Tz - g(z))$$

$$\min_{x,z} L(x,z,y) = -f^*(y) - g^*(-y)$$

Dual using conjugate functions

minimize f(x) + g(x) —

Equivalent form (variables split)

minimize
$$f(x) + g(z)$$

subject to $x = z$

Lagrangian

$$L(x, z, y) = f(x) + g(z) + y^{T}(z - x) = -(y^{T}x - f(x)) - (-y^{T}z - g(z))$$

Dual function

$$\min_{x,z} L(x,z,y) = -f^*(y) - g^*(-y)$$

Dual problem

maximize
$$-f^*(y) - g^*(-y)$$

Fenchel dual example

Constrained optimization

minimize $f(x) + \mathcal{I}_C(x)$

Dual problem

maximize
$$-f^*(y) - \sigma_C(-y)$$

Fenchel dual example

Constrained optimization

minimize
$$f(x) + \mathcal{I}_C(x)$$

Dual problem

maximize
$$-f^*(y) - \sigma_C(-y)$$

Norm penalization

minimize
$$f(x) + ||x||$$

Dual problem

maximize
$$-f^*(y)$$
 subject to $||y||_* \le 1$

Fenchel dual example

Constrained optimization

minimize
$$f(x) + \mathcal{I}_C(x)$$

Dual problem

maximize
$$-f^*(y) - \sigma_C(-y)$$

Norm penalization

minimize
$$f(x) + ||x||$$

Dual problem

 $\begin{array}{ll} \text{maximize} & -f^*(y) \\ \text{subject to} & \|y\|_* \leq 1 \end{array}$

Remarks

- Fenchel duality can simplify derivations
- Useful when conjugates are known
- Very common in operator splitting algorithms

Monotone cocoercive operators

Monotone operators

An operator T on \mathbb{R}^n is monotone if

$$(u-v)^T(x-y) \ge 0, \quad \forall (x,u), (y,v) \in \mathbf{gph}T$$

Monotone operators

An operator T on \mathbb{R}^n is monotone if

$$(u-v)^T(x-y) \ge 0, \quad \forall (x,u), (y,v) \in \mathbf{gph}T$$

T is maximal monotone if

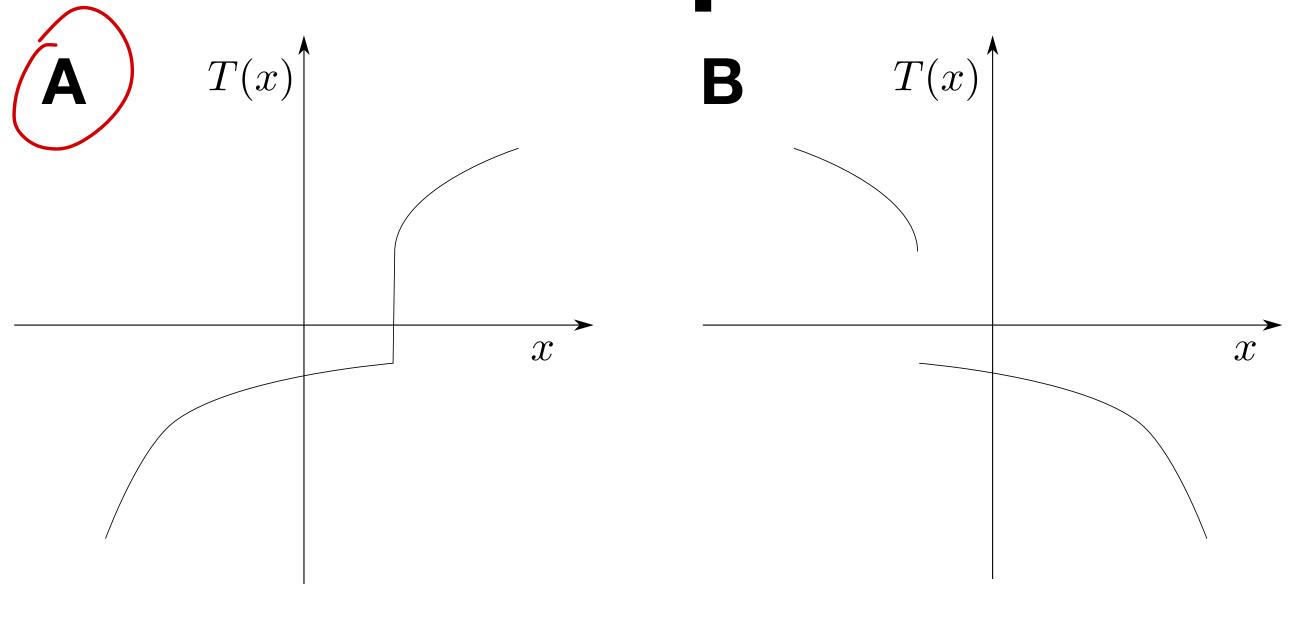
 $\nexists(\bar{x},\bar{u})\notin\mathbf{gph}T$ such that

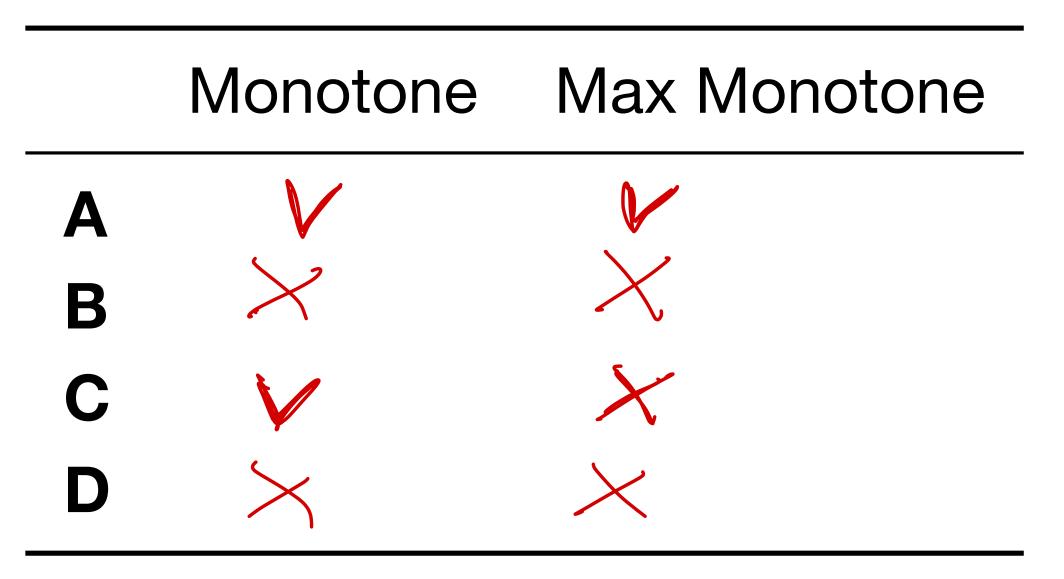
$$(\bar{u} - u)^T (\bar{x} - x) \ge 0$$

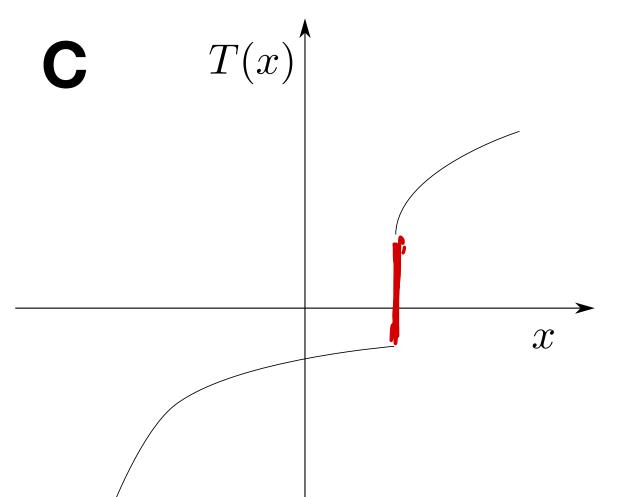
Equivalently: \nexists monotone R such that $\mathbf{gph}T \subset \mathbf{gph}R$

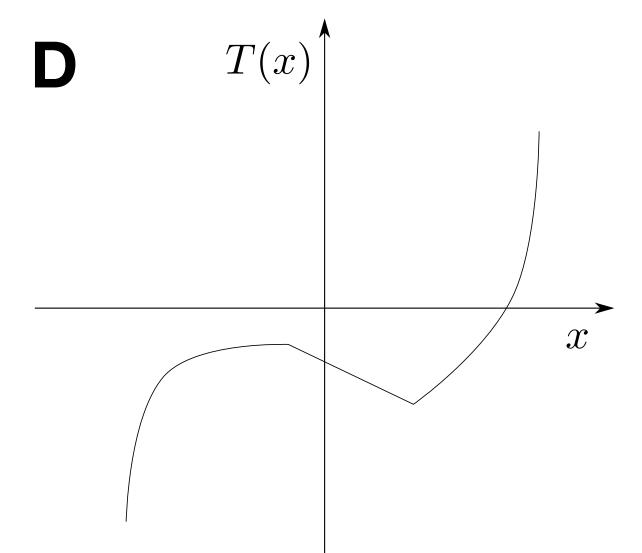
Monotone operators in 1D

Let's fill the table







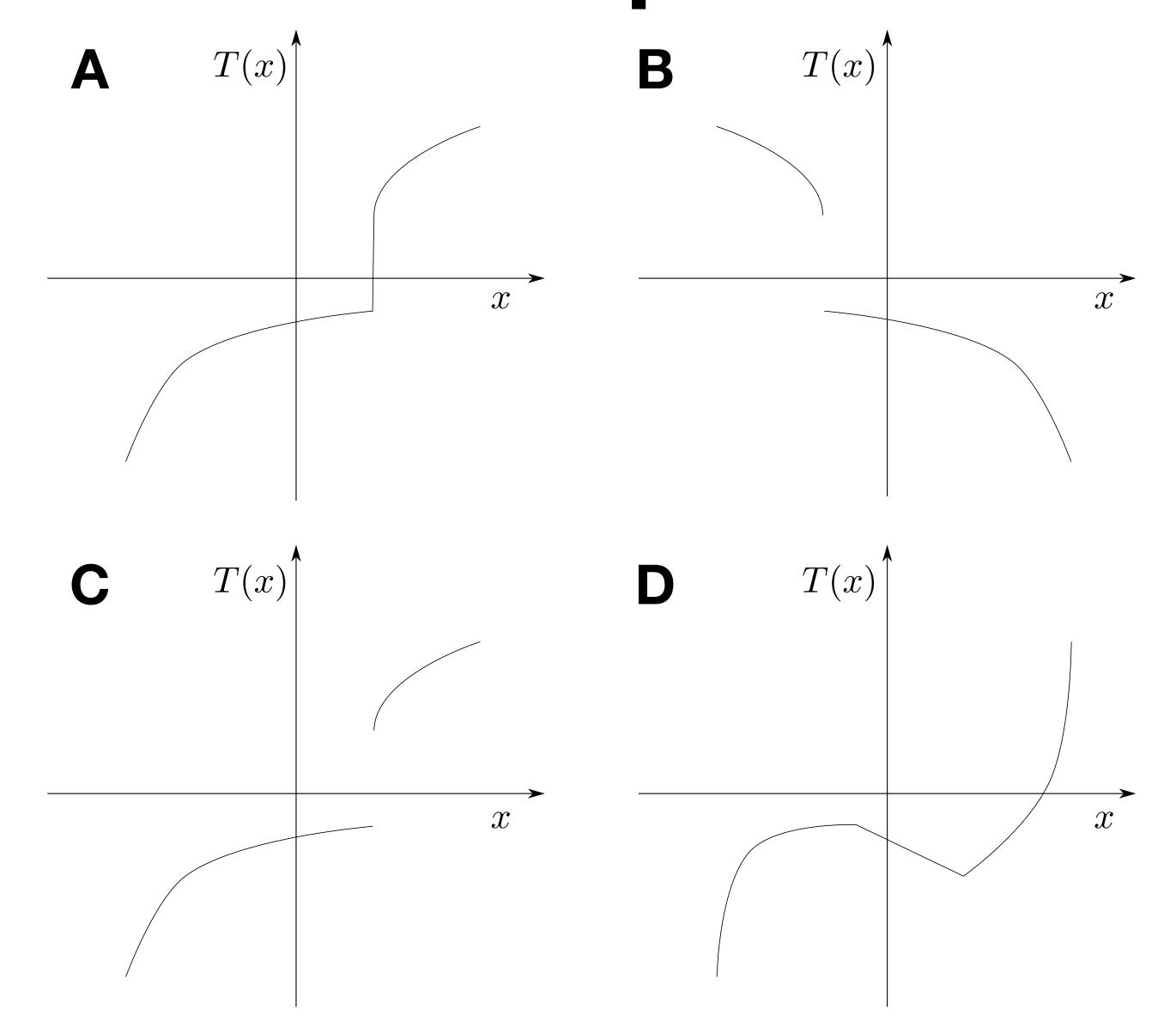


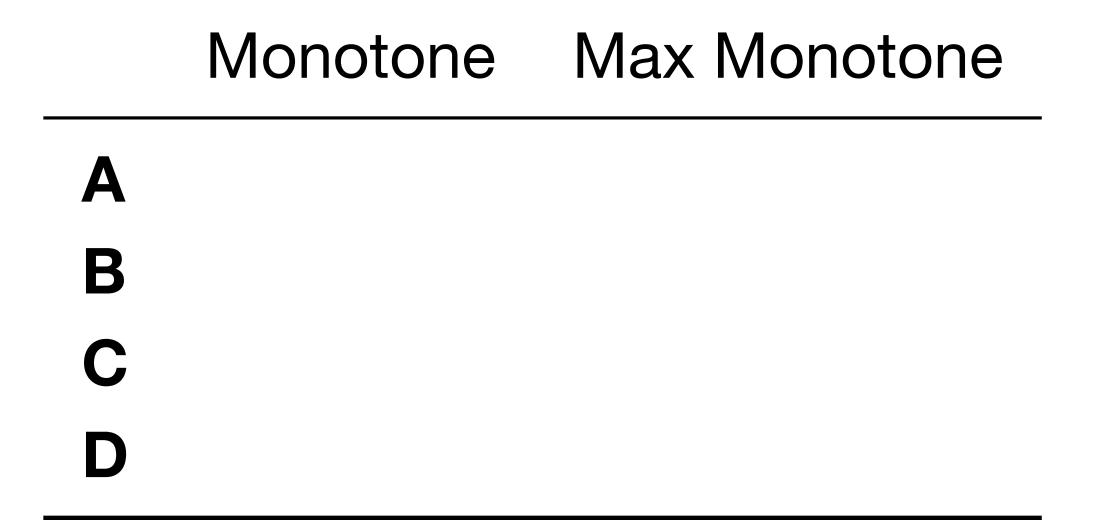
Monotonicity

$$y > x \Rightarrow T(y) \ge T(x)$$

Monotone operators in 1D

Let's fill the table





Monotonicity

$$y > x \Rightarrow T(y) \ge T(x)$$

Continuity

If T single-valued, continuous and monotone, then it's maximal monotone

Monotone operator properties

- $\operatorname{sum} T + R$ is monotone
- nonnegative scaling αT with $\alpha \geq 0$ is monotone
- inverse T^{-1} is monotone
- congruence for $M \in \mathbf{R}^{n \times m}$, then $M^TT(Mz)$ is monotone on \mathbf{R}^m

Affine function T(x) = Ax + b is maximal monotone $\iff A + A^T \succeq 0$

1e 7/2/2/2 eq x P+P7 & 22

Strongly monotone operators

An operator T on ${\bf R}^n$ is μ -strongly monotone if

$$(u-v)^T(x-y) \ge \mu \|x-y\|^2, \quad \mu > 0$$
 (also called μ -coercive)

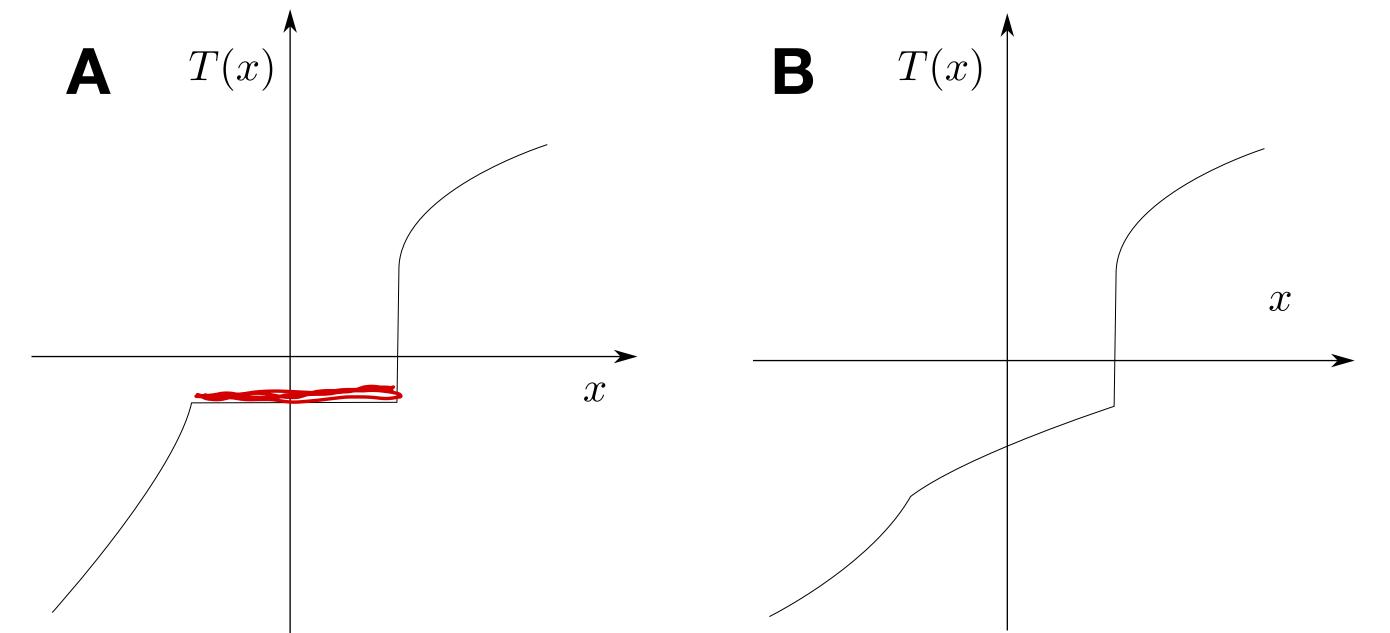
$$\forall (x, u), (y, v) \in \mathbf{gph}T$$

Strongly monotone operators

An operator T on ${\bf R}^n$ is μ -strongly monotone if

$$(u-v)^T(x-y) \ge \mu \|x-y\|^2, \quad \mu > 0$$
 (also called μ -coercive)

 $\forall (x, u), (y, v) \in \mathbf{gph}T$



Let's fill the table

	Monotone	Strongly Monotone
A		X
В		

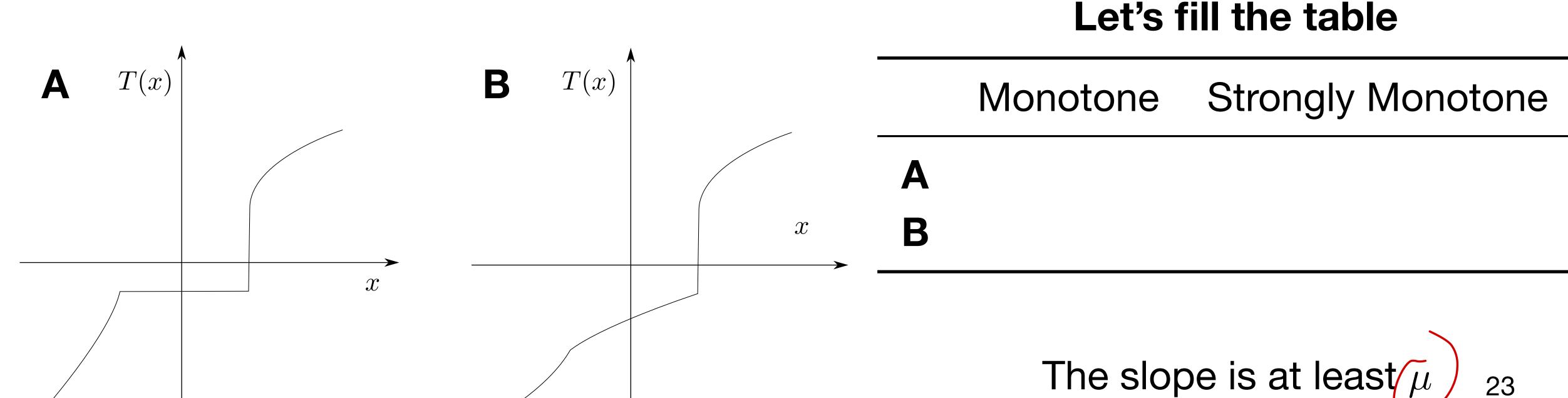
Strongly monotone operators

An operator T on ${\bf R}^n$ is μ -strongly monotone if

$$(u-v)^T(x-y) \ge \mu ||x-y||^2, \quad \mu > 0$$

(also called μ -coercive)

$$\forall (x, u), (y, v) \in \mathbf{gph}T$$



Cocoercive operators

An operator T is β -cocoercive, $\beta > 0$, if

$$(T(x) - T(y))^T (x - y) \ge \beta ||T(x) - T(y)||^2$$

Cocoercive operators

An operator T is β -cocoercive, $\beta > 0$, if

$$(T(x) - T(y))^T (x - y) \ge \beta ||T(x) - T(y)||^2$$

If T is β -cocoercive, then T is $(1/\beta)$ -Lipschitz

Proof
$$\beta \|T(x) - T(y)\|^2 \le (T(x) - T(y))^T (x - y) \le \|T(x) - T(y)\| \|x - y\|$$

$$\implies \|T(x) - T(y)\| \le (1/\beta) \|x - y\|$$

Cocoercive operators

An operator T is β -cocoercive, $\beta > 0$, if

$$(T(x) - T(y))^T (x - y) \ge \beta ||T(x) - T(y)||^2$$

If T is β -cocoercive, then T is $(1/\beta)$ -Lipschitz

Proof
$$\beta \|T(x) - T(y)\|^2 \le (T(x) - T(y))^T (x - y) \le \|T(x) - T(y)\| \|x - y\|$$

 $\Longrightarrow \|T(x) - T(y)\| \le (1/\beta) \|x - y\|$

If T is μ -strongly monotone if and only if T^{-1} is μ -cocoercive

Proof
$$(T(x) - T(x))^T (x - y) \ge \mu ||x - y||^2$$

Inverse: u = T(x) and v = T(y) if and only if $x \in T^{-1}(u)$ and $y \in T^{-1}(v)$ $(u - v)^T (T^{-1}(u) - T^{-1}(v)) \ge \mu \|T^{-1}(u) - T^{-1}(v)\|^2$

Cocoercive and nonexpansive operators

If T is β -cocoercive if and only if $I-2\beta T$ is nonexpansive

Cocoercive and nonexpansive operators

If T is β -cocoercive if and only if $I-2\beta T$ is nonexpansive

Proof
$$\|(I-2\beta T)(y) - (I-2\beta T)(x)\|^2 =$$

 $= \|y - 2\beta T(y) - x - 2\beta T(x)\|^2$
 $= \|y - x\|^2 - 4\beta (T(y) - T(x))^T (y - x) + 4\beta^2 \|T(y) - T(x)\|^2$
 $= |y - x\|^2 - 4\beta ((T(y) - T(x))^T (y - x) - \beta \|T(y) - T(x)\|^2)$
 $\le \|y - x\|^2$

Cocoercive and nonexpansive operators

If T is β -cocoercive if and only if $I-2\beta T$ is nonexpansive

Proof
$$\|(I-2\beta T)(y) - (I-2\beta T)(x)\|^2 =$$

$$= \|y - 2\beta T(y) - x - 2\beta T(x)\|^2$$

$$= \|y - x\|^2 - 4\beta (T(y) - T(x))^T (y - x) + 4\beta^2 \|T(y) - T(x)\|^2$$

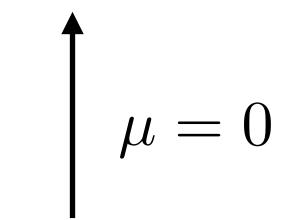
$$= |y - x\|^2 - 4\beta \left((T(y) - T(x))^T (y - x) - \beta \|T(y) - T(x)\|^2 \right)$$

$$\leq \|y - x\|^2 \qquad \text{(cocoercive)}$$

Summary of monotone and cocoercive operators

Monotone

$$(T(x) - T(\mathbf{g}))^T(x - y) \ge 0$$

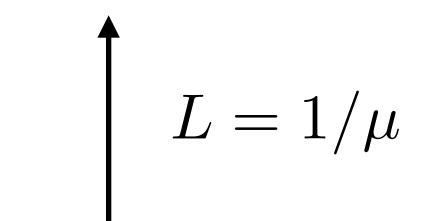


Strongly monotone

$$(T(x) - T(\mathbf{x}))^T (x - y) \ge \mu ||x - y||^2$$

Lipschitz

$$||F(x) - F(y)|| \le L||x - y||$$



Cocoercive

$$(T(x) - T(\mathbf{g}))^{T}(x - y) \ge \mu \|x - y\|^{2} \qquad \longleftrightarrow \qquad (F(x) - F(y))^{T}(x - y) \ge \mu \|F(x) - F(y)\|^{2}$$

$$F = T^{-1}$$

$$G = I - 2\mu F$$

Nonexpansive

$$||G(x) - G(y)|| \le ||x - y||$$
 26

Subdifferential operator and monotonicity

Subdifferential operator monotonicity

$$\partial f(x) = \{g \mid f(y) \ge f(x) + g^T(y - x)\}$$

 $\partial f(x)$ is monotone (also for nonconvex functions)

Subdifferential operator monotonicity

$$\partial f(x) = \{ g \mid f(y) \ge f(x) + g^T(y - x) \}$$

 $\partial f(x)$ is monotone (also for nonconvex functions)

Proof Suppose $u \in \partial f(x)$ and $v \in \partial f(y)$ then

$$f(y) \ge f(x) + u^T(y - x), \qquad f(x) \ge f(y) + v^T(x - y)$$

By adding them, we can write $(u-v)^T(x-y) \ge 0$

Subdifferential operator monotonicity

$$\partial f(x) = \{ g \mid f(y) \ge f(x) + g^T(y - x) \}$$

 $\partial f(x)$ is monotone (also for nonconvex functions)

Proof Suppose $u \in \partial f(x)$ and $v \in \partial f(y)$ then

$$f(y) \ge f(x) + u^T(y - x), \qquad f(x) \ge f(y) + v^T(x - y)$$

By adding them, we can write $(u-v)^T(x-y) \ge 0$

Maximal monotonicity

Strongly monotone and cocoercive subdifferential

f is μ -strongly convex $\iff \partial f \ \mu$ -strongly monotone $(\partial f(x) - \partial f(y))^T (x-y) \ge \mu \|x-y\|^2$

Strongly monotone and cocoercive subdifferential

f is μ -strongly convex $\iff \partial f \mu$ -strongly monotone $(\partial f(x) - \partial f(y))^T (x-y) \ge \mu \|x-y\|^2$

f is L-smooth

 $\iff \partial f \text{ L-Lipschitz and } \partial f = \nabla f \text{:} \qquad \|\nabla f(x) - \nabla f(y)\| \leq L\|x - y\|$ $\iff \partial f (1/L) \text{-cocoercive: } (\nabla f(x) - \nabla f(y))^T (x - y) \geq (1/L) \|\nabla f(x) - \nabla f(y)\|^2$

Strongly monotone and cocoercive subdifferential

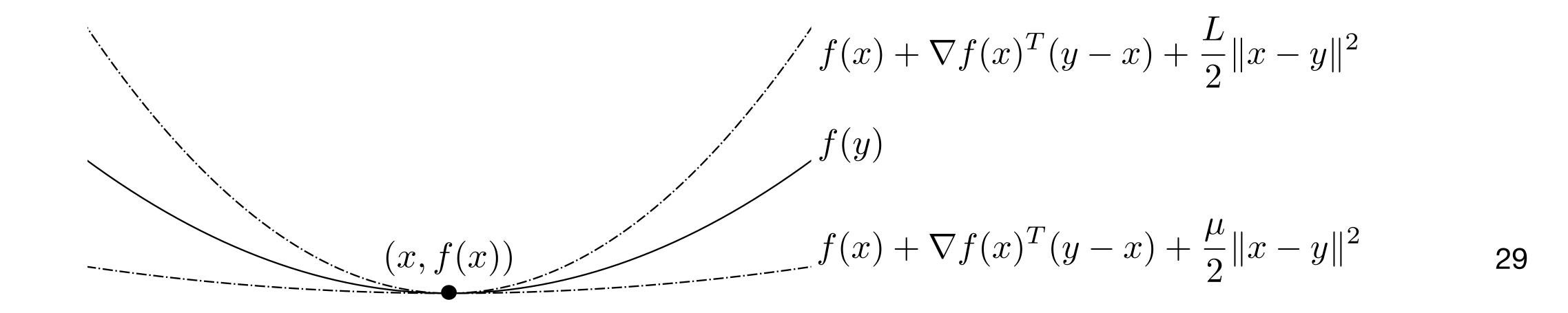
f is μ -strongly convex \iff ∂f μ -strongly monotone

$$(\partial f(x) - \partial f(y))^T (x - y) \ge \mu ||x - y||^2$$

f is L-smooth

 $\iff \partial f \ L$ -Lipschitz and $\partial f = \nabla f$: $\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$

 $\iff \partial f\left(1/L\right)$ -cocoercive: $(\nabla f(x) - \nabla f(y))^T(x-y) \geq (1/L)\|\nabla f(x) - \nabla f(y)\|^2$



Inverse of subdifferential

If
$$f$$
 is CCP, then, $(\partial f)^{-1} = \partial f^*$

Inverse of subdifferential

If
$$f$$
 is CCP, then, $(\partial f)^{-1} = \partial f^*$

Proof

$$(u,v) \in \mathbf{gph}(\partial f)^{-1} \iff (v,u) \in \mathbf{gph}\partial f$$

$$\iff u \in \partial f(v)$$

$$\iff 0 \in \partial f(v) - u$$

$$\iff v \in \operatorname*{argmin} f(x) - u^{T}x$$

$$x$$

$$\iff f^{*}(u) = u^{T}v - f(v)$$

Inverse of subdifferential

If
$$f$$
 is CCP, then, $(\partial f)^{-1} = \partial f^*$

Proof

$$(u,v) \in \mathbf{gph}(\partial f)^{-1} \iff (v,u) \in \mathbf{gph}\partial f$$

$$\iff u \in \partial f(v)$$

$$\iff 0 \in \partial f(v) - u$$

$$\iff v \in \operatorname*{argmin}_{x} f(x) - u^{T}x$$

$$\iff f^{*}(u) = u^{T}v - f(v)$$

Therefore, $f(v) + f^*(u) = u^T v$. If f is CCP, then $f^{**} = f$ and we can write

$$f^{**}(v) + f^*(u) = u^T v \iff (u, v) \in \mathbf{gph}\partial f^*$$

Strong convexity is the dual of smoothness

$$f$$
 is μ -strongly convex \iff f^* is $(1/\mu)$ -smooth

Strong convexity is the dual of smoothness

$$f$$
 is μ -strongly convex \iff f^* is $(1/\mu)$ -smooth

Proof

$$f$$
 μ -strongly convex $\iff \partial f$ μ -strongly monotone $\iff (\partial f)^{-1} = \partial f^*$ μ -cocoercive $\iff f^*$ $(1/\mu)$ -smooth

Strong convexity is the dual of smoothness

$$f$$
 is μ -strongly convex \iff f^* is $(1/\mu)$ -smooth

Proof

$$f$$
 μ -strongly convex $\iff \partial f$ μ -strongly monotone $\iff (\partial f)^{-1} = \partial f^*$ μ -cocoercive $\iff f^*$ $(1/\mu)$ -smooth

Remark: strong convexity and (strong) smoothness are dual

Operators in optimization problems

minimize f(x)subject to Ax = b

Lagrangian

$$L(x,y) = f(x) + y^T (Ax - b)$$

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & Ax = b \end{array}$$

Lagrangian

$$L(x,y) = f(x) + y^T (Ax - b)$$

KKT operator

$$T(x,y) = \begin{bmatrix} \partial_x L(x,y) \\ -\partial_y L(x,y) \end{bmatrix} = \begin{bmatrix} \partial f(x) + A^T y \\ b - Ax \end{bmatrix} = \begin{bmatrix} r^{\text{dual}} \\ -r^{\text{prim}} \end{bmatrix}$$

zero set $\{(x,y) \mid 0 \in T(x,y)\}$ is the set of primal-dual optimal points

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & Ax = b \end{array}$$

Lagrangian

$$L(x,y) = f(x) + y^T(Ax - b)$$

KKT operator

$$T(x,y) = \begin{bmatrix} \partial_x L(x,y) \\ -\partial_y L(x,y) \end{bmatrix} = \begin{bmatrix} \partial f(x) + A^T y \\ b - Ax \end{bmatrix} = \begin{bmatrix} r^{\text{dual}} \\ -r^{\text{prim}} \end{bmatrix}$$

zero set $\{(x,y) \mid 0 \in T(x,y)\}$ is the set of primal-dual optimal points

Monotonicity

$$T(x,y) = \begin{bmatrix} \partial f(x) \\ b \end{bmatrix} + \begin{bmatrix} 0 & A^T \\ -A & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & Ax = b \end{array}$$

Lagrangian

$$L(x,y) = f(x) + y^T (Ax - b)$$

KKT operator

$$T(x,y) = \begin{bmatrix} \partial_x L(x,y) \\ -\partial_y L(x,y) \end{bmatrix} = \begin{bmatrix} \partial f(x) + A^T y \\ b - Ax \end{bmatrix} = \begin{bmatrix} r^{\text{dual}} \\ -r^{\text{prim}} \end{bmatrix}$$

zero set $\{(x,y) \mid 0 \in T(x,y)\}$ is the set of primal-dual optimal points

Monotonicity M

$$T(x,y) = \begin{bmatrix} \partial f(x) \\ b \end{bmatrix} + \begin{bmatrix} 0 & A^T \\ -A & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

skew-symmetric

sum of monotone operators

```
minimize f(x)
subject to Ax = b
```

Lagrangian

minimize
$$f(x)$$
 \longrightarrow $L(x,y) = f(x) + y^T(Ax - b)$ subject to $Ax = b$

Lagrangian

minimize
$$f(x)$$
 $L(x,y) = f(x) + y^T (Ax - b)$ subject to $Ax = b$

Dual problem

maximize
$$g(y) = \min_{x} L(x, y) = -\max_{x} -L(x, y) = -(f^*(-A^Ty) + y^Tb)$$

Lagrangian

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & Ax = b \end{array}$$

$$L(x,y) = f(x) + y^T(Ax - b)$$

Dual problem

maximize
$$g(y) = \min_{x} L(x, y) = -\max_{x} -L(x, y) = -(f^*(-A^Ty) + y^Tb)$$

Operator

Monotonicity

$$T(y) = b - Ax$$
, where $x = \operatorname{argmin}_z L(z, y)$ \longrightarrow If f CCP, then T is monotone

Lagrangian

$$\begin{array}{ccc} \text{minimize} & f(x) \\ \text{subject to} & Ax = b \end{array}$$

$$L(x,y) = f(x) + y^T (Ax - b)$$

Dual problem

$$\text{maximize} \overbrace{g(y)} = \min_x L(x,y) = -\max_x -L(x,y) = -(f^*(-A^Ty) + y^Tb)$$

Operator

Monotonicity

Proof

$$0 \in \partial_x L(x,y) = \partial f(x) + A^T y \iff (x) = (\partial f)^{-1} (-A^T y)$$
 Therefore, $T(y) = b - A(\partial f)^{-1} (-A^T y) = \partial_y \left(b^T y + f^* (-A^T y) \right) = \partial(-g)$

Lagrangian

$$L(x,y) = f(x) + y^T (Ax - b)$$

Dual problem

maximize
$$g(y) = \min_{x} L(x, y) = -\max_{x} -L(x, y) = -(f^*(-A^Ty) + y^Tb)$$

Operator

Monotonicity

$$T(y) = b - Ax$$
, where $x = \operatorname{argmin}_z L(z, y)$ \longrightarrow If f CCP, then T is monotone

Proof

$$0 \in \partial_x L(x,y) = \partial f(x) + A^T y \iff x = (\partial f)^{-1}(-A^T y)$$

$$\text{Therefore, } T(y) = b - A(\partial f)^{-1}(-A^T y) = \partial_y \left(b^T y + f^*(-A^T y)\right) = \partial(-g)$$

Operators in algorithms

Forward step operator

The forward step operator of T is defined as

$$I - \gamma T$$

In general monotonicity of T is not enough for convergence

Forward step operator

The forward step operator of T is defined as

$$I - \gamma T$$

In general monotonicity of T is not enough for convergence

Example

minimize

KKT operator

$$T(x,y) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Monotone (skew-symmetric)

$$\begin{array}{ll} \text{minimize} & x \\ \text{subject to} & x = 0 \end{array} \qquad T(x,y) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad A + A^T = 0 \succeq 0$$

Forward step operator

The forward step operator of T is defined as

$$I - \gamma T$$

In general monotonicity of T is not enough for convergence

Example

minimize x

KKT operator

$$T(x,y) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Monotone (skew-symmetric)

minimize
$$x$$
 subject to $x = 0$ $T(x,y) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} A + A^T = 0 \succeq 0$

Forward step

$$(I - \gamma T) \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & -\gamma \\ \gamma & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \end{bmatrix} \longrightarrow$$

$$\left\| \begin{bmatrix} 1 & -\gamma \\ \gamma & 1 \end{bmatrix} \right\|_{2} > 1, \quad \forall \gamma$$

f L-smooth $\iff \nabla f (1/L)$ -cocoercive $\iff I - (2/L) \nabla f$ nonexpansive

f L-smooth $\iff \nabla f (1/L)$ -cocoercive $\iff I - (2/L)\nabla f$ nonexpansive

Construct averaged iterations

$$I-\sqrt{\gamma}\nabla f=(1-\alpha)I+\alpha(I-(2/L)\nabla f)$$
 where $\alpha=\gamma L/2\in(0,1)$ \iff $\gamma\in(0,2/L)$

f L-smooth $\iff \nabla f (1/L)$ -cocoercive $\iff I - (2/L) \nabla f$ nonexpansive

Construct averaged iterations

$$I-\gamma\nabla f=(1-\alpha)I+\alpha(I-(2/L)\nabla f)$$
 where $\alpha=\gamma L/2$ \in $(0,1)$ \iff $\gamma\in(0,2/L)$ (to be averaged)

$$f$$
 L -smooth $\iff \nabla f (1/L)$ -cocoercive $\iff I - (2/L)\nabla f$ nonexpansive

Construct averaged iterations

$$I-\gamma\nabla f=(1-\alpha)I+\alpha(I-(2/L)\nabla f)$$
 where $\alpha=\gamma L/2$ \in $(0,1)$ \iff $\gamma\in(0,2/L)$ (to be averaged)

Remark

- Only smoothness assumption gives sublinear convergence
- Similar result we obtained in gradient descent lecture

Resolvent and Cayley operators

The **resolvent** of operator A is defined as

$$R_A = (I + A)^{-1}$$

The Cayley (reflection) operator of A is defined as

$$C_A = 2R_A - I = 2(I+A)^{-1} - I$$

Properties

- If A is maximal monotone, dom $R_A = \operatorname{dom} C_A = \mathbf{R}^n$ (Minty's theorem)
- If A is monotone, R_A and C_A are nonexpansive (thus functions)
- Zeros of A are fixed points of R_A and C_A

Resolvent and Cayley operators

The **resolvent** of operator A is defined as

$$R_A = (I + A)^{-1}$$

The Cayley (reflection) operator of A is defined as

$$C_A = 2R_A - I = 2(I + A)^{-1} - I$$

Properties

- If A is maximal monotone, $\operatorname{dom} R_A = \operatorname{dom} C_A = \mathbf{R}^n$ (Minty's theorem)
- If A is monotone, R_A and C_A are nonexpansive (thus functions)
- Zeros of A are fixed points of R_A and C_A

Fixed points of R_A and C_A are zeros of A Proof

$$R_A = (I + A)^{-1}$$

$$x \in \mathbf{fix} \, R_A$$
 $0 \in A(x) \iff x \in (I+A)(x)$ $\iff (I+A)^{-1}(x) = x$ $\iff x = R_A(x)$

Fixed points of R_A and C_A are zeros of A Proof

$$R_A = (I + A)^{-1}$$

$$x \in \mathbf{fix} R_A$$
 $0 \in A(x) \iff x \in (I+A)(x)$ $\iff (I+A)^{-1}(x) = x$ $\iff x = R_A(x)$

$$x \in \mathbf{fix} \, C_A$$
 $C_A(x) = 2R_A(x) - I(x) = 2x - x = x$

If A is monotone, then R_A is nonexpansive $\frac{1}{2}$

If
$$(x,u)\in \mathbf{gph}R_A$$
 and $(y,v)\in \mathbf{gph}R_A$, then
$$u+A(u)\ni x, \qquad v+A(v)\ni y$$

If A is monotone, then R_A is nonexpansive \mathbf{Proof}

If
$$(x,u)\in \mathbf{gph}R_A$$
 and $(y,v)\in \mathbf{gph}R_A$, then
$$u+A(u)\ni x, \qquad v+A(v)\ni y$$

Subtract to get $u - v + (A(u) - A(v)) \ni x - y$

If A is monotone, then R_A is nonexpansive $\frac{1}{2}$

If $(x,u)\in \mathbf{gph}R_A$ and $(y,v)\in \mathbf{gph}R_A$, then $u+A(u)\ni x, \qquad v+A(v)\ni y$

Subtract to get $u - v + (A(u) - A(v)) \ni x - y$

Multiply by $(u-v)^T$ and use monotonicity of A (being also a function: $\in \to =$),

$$||u - v||^2 \le (x - y)^T (u - v)$$

If A is monotone, then R_A is nonexpansive $\frac{1}{2}$

If $(x, u) \in \mathbf{gph} R_A$ and $(y, v) \in \mathbf{gph} R_A$, then

$$u + A(u) \ni x, \qquad v + A(v) \ni y$$

Subtract to get $u - v + (A(u) - A(v)) \ni x - y$

Multiply by $(u-v)^T$ and use monotonicity of A (being also a function: $\in \to =$),

$$||u - v||^2 \le (x - y)^T (u - v)$$

Apply Cauchy-Schwarz and divide by ||u-v|| to get

$$||u-v|| \le ||x-y||$$

If A is monotone, then C_A is nonexpansive

Proof

Given $u = R_A(x)$ and $v = R_A(y)$ (R_A is a function)

$$||C(x) - C(y)||^2 = ||(2u - x) - (2v - y)||^2$$

$$= ||2(u - v) - (x - y)||^2$$

$$= 4||u - v||^2 - 4(u - v)^T(x - y) + ||x - y||^2$$

$$\leq ||x - y||^2$$

Note R_A monotonicity (prev slide): $||u-v||^2 \leq (u-v)^T(x-y)$

If A is monotone, then C_A is nonexpansive

Proof

Given $u = R_A(x)$ and $v = R_A(y)$ (R_A is a function)

$$||C(x) - C(y)||^2 = ||(2u - x) - (2v - y)||^2$$

$$= ||2(u - v) - (x - y)||^2$$

$$= 4||u - v||^2 - 4(u - v)^T(x - y) + ||x - y||^2$$

$$\leq ||x - y||^2$$

Note R_A monotonicity (prev slide): $||u-v||^2 \leq (u-v)^T(x-y)$

Remark

 R_A is nonexpansive since it is the average of I and C_A :

$$R_A = (1/2)I + (1/2)C_A = (1/2)I + (1/2)(2R_A - 1)$$

Role of maximality

We mostly consider maximal operators A because of

Theory: A, R_A and C_A do not bring iterates outside their domains

Practice: hard to compute R_A and C_A for non-maximal monotone operators, e.g., when $A = \partial f(x)$ where f nonconvex.

Resolvent of subdifferential: proximal operator

$$\mathbf{prox}_f = R_{\partial f} = (I + \partial f)^{-1}$$

Proof

Let $z = \mathbf{prox}_f(x)$, then

$$z = \underset{u}{\operatorname{argmin}} f(u) + \frac{1}{2} ||u - x||^{2}$$

$$\iff 0 \in \partial f(z) + z - x \quad \text{(optimality conditions)}$$

$$\iff x \in (I + \partial f)(z)$$

$$\iff z = (I + \partial f)^{-1}(x)$$

Resolvent of normal cone: projection

 $\mathcal{N}_C(x)$

$$R_{\partial \mathcal{I}_C} = \Pi_C(x)$$

Let $f = \mathcal{I}_C$, the indicator function of a convex set C

Recall: $\partial \mathcal{I}_C(x) = \mathcal{N}_C(x)$ normal cone operator

$$u = (I + \partial \mathcal{I}_C)^{-1}(x) \iff u = \underset{z}{\operatorname{argmin}} \mathcal{I}_C(u) + (1/2)||z - x||^2 = \Pi_C(x)$$

 $\mathcal{N}_C(x)$

Resolvent of normal cone: projection

 $\mathcal{N}_C(x)$

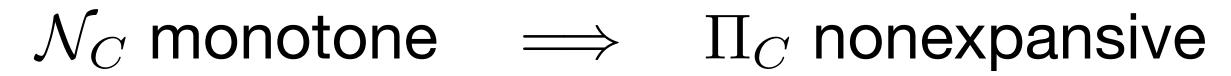
$$R_{\partial \mathcal{I}_C} = \Pi_C(x)$$

Proof

Let $f = \mathcal{I}_C$, the indicator function of a convex set C

Recall: $\partial \mathcal{I}_C(x) = \mathcal{N}_C(x)$ normal cone operator

$$u = (I + \partial \mathcal{I}_C)^{-1}(x) \iff u = \underset{z}{\operatorname{argmin}} \mathcal{I}_C(u) + (1/2)||z - x||^2 = \Pi_C(x)$$



Proof of monotonicity

$$u \in \mathcal{N}_C(x) \Rightarrow u^T(z-x) \leq 0, \ \forall z \in C \Rightarrow u^T(y-x) \leq 0$$
$$v \in \mathcal{N}_C(y) \Rightarrow v^T(z-y) \leq 0, \ \forall z \in C \Rightarrow v^T(x-y) \leq 0$$

add to obtain monotonicity

Building contractions

Given T L-Lipschitz and μ -strongly monotone, then $I-\gamma T$ converges linearly at rate $\sqrt{1-2\gamma\mu+\gamma^2L^2}$, with optimal step $\gamma=\mu/L^2$.

Given T L-Lipschitz and μ -strongly monotone, then $I-\gamma T$ converges linearly at rate $\sqrt{1-2\gamma\mu+\gamma^2L^2}$, with optimal step $\gamma=\mu/L^2$.

Proof

$$||(I - \gamma T)(x) - (I - \gamma T)(y)||^2 = ||x - y + \gamma T(x) - \gamma T(y)||^2$$

$$= ||x - y||^2 - 2\gamma (T(x) - T(y))^T (x - y) + \gamma^2 ||T(x) - T(y)||^2$$

$$\leq (1 - 2\gamma \mu + \gamma^2 L^2) ||x - y||^2$$

Given T L-Lipschitz and μ -strongly monotone, then $I-\gamma T$ converges linearly at rate $\sqrt{1-2\gamma\mu+\gamma^2L^2}$, with optimal step $\gamma=\mu/L^2$.

$$\begin{split} \|(I-\gamma T)(x)-(I-\gamma T)(y)\|^2 &= \|x-y+\gamma T(x)-\gamma T(y)\|^2 & \text{monotone} \\ &= \|x-y\|^2 - 2\gamma \frac{(T(x)-T(y))^T(x-y)}{(T(x)-T(y))^T(x-y)} + \gamma^2 \|T(x)-T(y)\|^2 \\ &\leq (1-2\gamma \mu + \gamma^2 L^2) \|x-y\|^2 \end{split}$$

strongly

Given T L-Lipschitz and μ -strongly monotone, then $I-\gamma T$ converges linearly at rate $\sqrt{1-2\gamma\mu+\gamma^2L^2}$, with optimal step $\gamma=\mu/L^2$.

Proof

$$\begin{split} \|(I-\gamma T)(x)-(I-\gamma T)(y)\|^2 &= \|x-y+\gamma T(x)-\gamma T(y)\|^2 & \text{monotone} \\ &= \|x-y\|^2 - 2\gamma \frac{(T(x)-T(y))^T(x-y)}{(T(x)-T(y))^T(x-y)} + \gamma^2 \frac{\|T(x)-T(y)\|^2}{(T(x)-T(y))^2} \\ &\leq (1-2\gamma \mu + \gamma^2 L^2) \|x-y\|^2 \end{split}$$

Remarks

- It applies to gradient descent with L-smooth and μ -strongly convex f
- Better rate in gradient descent lecture. We can get it by bounding derivative: $\|D(I-\gamma\nabla^2f(x))\|_2 \leq \max\{|1-\gamma L|,|1-\gamma\mu|\}$. Optimal step $\gamma=2/(\mu+L)$ and factor $(\mu/L-1)(\mu/L+1)$.

strongly

Resolvent contractions

If A is μ -strongly monotone, then

$$R_A = (I + A)^{-1}$$

is a contraction with Lipschitz parameter $1/(1 + \mu)$

Resolvent contractions

If A is μ -strongly monotone, then

$$R_A = (I + A)^{-1}$$

is a contraction with Lipschitz parameter $1/(1+\mu)$

Proof

$$A \ \mu$$
-strongly monotone $\implies (I+A) \quad (1+\mu)$ -strongly monotone $\implies R_A = (I+A)^{-1} \quad (1+\mu)$ -cocoercive $\implies R_A \quad (1/(1+\mu))$ -Lipschitz

Cayley contractions

If A is μ -strongly monotone and L-Lipschitz, then

$$C_{\gamma A} = 2R_{\gamma A} - I = 2(I + \gamma A)^{-1} - I$$

is a contraction with factor $\sqrt{1-4\gamma\mu/(1+\gamma L)^2}$

Remark need also Lipschitz condition

Proof [Page 20, PMO]

Cayley contractions

If A is μ -strongly monotone and L-Lipschitz, then

$$C_{\gamma A} = 2R_{\gamma A} - I = 2(I + \gamma A)^{-1} - I$$

is a contraction with factor $\sqrt{1-4\gamma\mu/(1+\gamma L)^2}$

Remark need also Lipschitz condition

Proof [Page 20, PMO]

If, in addition, $A=\partial f$ where f is CCP, then $C_{\gamma A}$ converges with factor $(\sqrt{\mu/L}-1)/(\sqrt{\mu/L}+1)$ and optimal step $\gamma=1/\sqrt{\mu L}$

Proof

[Linear Convergence and Metric Selection for Douglas-Rachford Splitting and ADMM, Giselsson and Boyd]

Requirements for contractions

${\bf Operator}\ A$

Function
$$f$$
 $(A = \partial f)$

Forward step

$$I - \gamma A$$

$$\mu\text{-strongly monotone}$$

$$\mu ext{-strongly convex} \ L ext{-smooth}$$

Resolvent

$$R_A = (I + A)^{-1}$$

$$\mu\text{-strongly monotone}$$

$$\mu ext{-strongly convex} \ L ext{-smooth}$$

Cayley

$$C_A = 2(I+A)^{-1} - I$$

$$\mu$$
-strongly monotone L -Lipschitz

$$\mu ext{-strongly convex} \ L ext{-smooth}$$

faster convergence

Key to contractions: strong monotonicity/convexity

Operator theory

Today, we learned to:

- Use conjugate functions to define duality
- Define monotone and cocoercive operators and their relations
- Relate subdifferential operator and monotonicity
- Recognize monotone operators in optimization problems
- Apply operators in algorithms: forward step, resolvent, Cayley
- Understand requirements for building contractions

Next lecture

Operator splitting algorithms