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Ed Forum

» Since there might be multiple subgradients that are very different, is there way
to sometimes choose a 'best' subgradient for a given function that helps the
algorithm converges faster?

* |In Page 41 of Lecture 15, for the first fraction in this page, how do we
conclude that it attains minimum when all t_k are equal based on the fact that
the fraction is convex and symmetric in (t_1,...,t_k)?






Gradients and epigraphs

For a convex differentiable function f, I.e.

f(y) > f(x) +Vf(z)" (y —x), Vy€cdomf

(Vf(x),—1) defines a supporting hyperplane
to epigraph of f at (z, f(x))
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Fermat’s optimality condition

For any (not necessarily convex) function f where 0 f(x*) # 0,
x* Is a global minimizer if and only if

0€df(x™)

Proof
A subgradient ¢ = 0 means that, for all y

f(y) = f(z*) + 0" (y — 2%) = f(27)

Note differentiable case with 0f(z) = {V f(x)} 5



Subgradient method

Convex optimization problem
minimize f(x) (optimal cost f*)

Iterations

el = 2F — 1 g", g € 0f(z™)

g" is any subgradient of f at x"

Not a descent method, keep track of the best point



Implications for step size rules
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Summary subgradient method

« Simple
- Handles general nondifferentiable convex functions
- Very slow convergence O(1/¢?)

* No good stopping criterion

Can we do better?

Can we incorporate constraints?



Today'’s lecture
[Chapter 3 and 6, FMO] [PA] [PMO]

Proximal methods and introduction to operators
* Optimality conditions with subdifferentials
 Proximal operators

* Proximal gradient method

* Operator theory

* Fixed point iterations



Optimality conditions with
subdifferentials




Subgradient of indicator function

The subdifferential of the indicator
functon is the normal cone

0Zc(x) = Ne(o) )

where,

Ne(x)={g|g"(y—x) <0, forallyec C}

Proof

By definition of subgradient g, Z(y) > Ze(z) + ¢* (y — x), Wy
ytC = Ic(y) =
yeC = 0>gqg (y—2x)
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Constrained optimization

Indicator function
of a convex set

S

Constrained form Unconstrained form
minimize  f(x)

minimize T
subjectto xzeC inimize  f(z) + Zc(x)
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First-order optimality conditions from subdifferentials

f convex smooth,
C' convex

minimize f(x) + Zo(x)

Fermat’s optimality condition
0€0(f(z)+Zc(x))

— 0e€{Vf(x)} +Nc(z)
— —Vf(.il}) C Nc(aj)

Equivalent to
Vi) (y—2)>0, VyeC
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Example: KKT of a quadratic program

minimize  (1/2)z? Pz + q''z
subjectto Az <b

—— minimize (1/2)z" Pz 4+ q' = + Ly ap<pr (@)

|dea: [Lecture 13].

N0rm3| Cone tO p0|yh6dr0n Proof: [Theorem 6.46, Variational Analysis,

Gradient Rockafellar & Wets]
Vf(x) = Px+q Niaz<py(z) = {A%yly>0 and y(a; x—b;) =0}
First-order optimality condition KKT Optimality conditions
Pr+q+ A"y =0
y =0
—Vf(z) € 0L{az<ty(z) = N{az<py () +—— Ar —b <0

yilalz—b;)=0, i=1,....m
14



Proximal operators



Composite models

minimize f(x) 4+ g(x)

f(x) convex and smooth
g(x) convex (may be not differentiable)

Examples

» Regularized regression: g(x) = ||z|1
» Constrained optimization: g(z) = Z¢(x)

16



Proximal operator

Definition
The proximal operator of the function g : R — R Is

, 1
prox,(z) — argmin ((2) + 3 = - 3)

Optimality conditions of prox

0€0g(z)+2z—2 =— x—2z¢€0g(z)

Properties
» [t involves solving an optimization problem (not always easy!)

» Easy to evaluate for many standard functions, i.e. proxable functions

» Generalizes many well-known algorithms

17



Generalized projection

The prox operator of the indicator function Z. is the projection onto C

proxrs_(v) = argnéin |z — v =1 (v)
T C

Example projectionontoabox C' ={z || <z < u}

Remarks
- Easy for many common sets (e.g., closed form)
» Can be hard for surprisingly simple lets, e.g., C = {Ax < b}

Projections at [p. 156, FMO] 18



Quadratic functions

If g(x) = (1/2)x" Pz + ¢* x + r with P = 0, then

prox, (v) = (I + P) (v —q)

g

Remarks

» Closed-form always solvable (even with P not full rank)
« Symmetric, positive definite and usually sparse linear system
« Can prefactor I + P and solve for different v

19



Separable sum .
f g(x) is block separable, i.e., g(z) = gi(z;)

then, (prox,(v)); = prox, (v;), i=1,...,N

n

Example: g(z) = A||z||1 = ) _._; Az

soft-thresholding

Vi — A U; > A
(Prox,(v)); = proxy . (vi) = Sx(vi) = {0 ;] < A

Vi + A v < —A

(key to parallel/distributed
proximal algorithms)




Basic rules

» Scaling and translation: g¢(x) = ah(x) + b with @ > 0, then
prOXg (ZE) — ProX,; (ZE)
Examples - Affine addition: ¢(x) = h(z) + a’ x + b, then
prox, (r) = prox,(z — a)

» Affine transformation: ¢(x) = h(axz +b), witha # 0,a € R,

1
prox,(r) = - (prox 2, (ax + b) — b)

Proofs (exercise):

- Rearrange proximal term: (1/2)||z — z||5
* Apply prox optimality conditions

Many more examples at [p. 156, FMO] 21



Proximal gradient method



Gradient descent interpretation

Problem
minimize f(x)

Ilterations
"t = oF —tVf(2")

1
Quadratic approximation, replacing Hessian V? f(z*) with ZI
1
" = argmin (%) + V(%) (z = 27) + o[z — 275

23



Let’s exploit the smooth part

f(x) convex and smooth

minimize  f(z) + g(x) g(x) convex (may be not differentiable)

Quadratic approximation of f while keeping ¢
1

| . same as
"t = argmin g(2) + f(z") + V(") (z — ") - o7 |2 —2"[l5 +— gradient descent
Equivalent to Proximal operator
i = argmln tg(z HZ — (2" —tV f(x Hz prox;, (¢ —tV ("))
T !
make g stay close to

small gradient update a



Proximal gradient method

f(x) convex and smooth

minimize  f(z) + g(x) g(x) convex (may be not differentiable)

Iterations
e prox,, (2" —tV f(a"))

Properties

» Alternates between gradient updates of f and proximal updates on ¢
» Usetul If prox,, Is inespensive

» Can handle nonsmooth and constrained problems
25



Special cases

Generalized gradient descent

Smooth
g(xr) =0 = prox,(r)==1x

Constraints

g(x) =1Zc(x) — proxtg(x) = Il ()

Non smooth

flz) =0

Problem
minimize f(x) + g(x)

Ilterations
I prox,, (:ck — tVf(a:k))

Gradient descent
— Pl = 2k ¢tV f(2F)

Projected gradient descent
— "t =TIo(2" — tV f(z"))

Proximal minimization
—>  z"t! = prox, (")
Note: useful if prox,, is cheap *°



What happens if we cannot evaluate the prox?

At every Iteration, it can be very expensive to evaluate

, 1
prox,(z) = argmin ((2) + 5 = — 3)

Idea: solve it approximately!

If you precisely control the prox (x) evaluation errors

you can obtain the same convergence guarantees (and rates)
as the exact evaluations.

27

[Schmidt et al. (2011), “Convergence rates of inexact proximal-gradient methods for convex optimization”]



Example: Lasso
Iterative Soft Thresholding Algorithm (ISTA)

minimize (1/2)||Az — b||2 + \||z||;
f(z) g(x)

Proximal gradient descent Vf(z)=A"(Ax — b)

kA1 prox,, (2% — tV f(zF)) (component wise

PFOth(f) = Sxe () soft-thresholding)

Closed-form iterations

"t = Sy (27 — tAT (A" — b))
28



Example: Lasso
Iterative Soft Thresholding Algorithm (ISTA)

A e R°VUX100 Closed-form iterations
minimize (1/2)||Ax — b||5 + Aljz||: pF = Sy, (2% — tAT (AzF — b))
hgradient 0.001/v/k + 1
peradient LI/ Better convergence

Can we prove convergence
generally?

________________ — Can we combine different
operators?

_______________________

0 100 200 300 400 500 29



Introduction to operators



Operators

An operator 1" maps each point in R" to a subset of R"

» set valued 7'(x) returns a set
- single-valued T'(x) (function) returns a singleton

The domain of T'is the set dom T = {x | T'(z) # ()}

Example

» The subdifferential 0f is a set-valued operator
» The gradient V f Is a single-valued operator

=

31



Graph and inverse operators

Graph
The graph of an operator 7' is defined as

gphT = {(z,y) |y € T'(v)}

In other words, all the pairs of points (x,y) such that y € T'(x).

Inverse
The graph of the inverse operator 7! is defined as

gphT ™' = {(y,2) | (z,y) € gphT}

Therefore, y € T'(x) ifand only if x € T 1(y).

32



Zero
x 1S a zero of 7' If

Zero set

0eT(x)

The setof allthe zeros  T71(0) ={x |0 T(x)}

Example
f T =0fand f : R" — R, then
0 € T'(x) means that x minimizes f

Many problems
can be posed as finding zeros
of an operator

33



Fixed points

z IS a fixed-point of a single-valued operator 7' if

r="T(x)

Set of fixed points fix7T = {x € domT |z =T(z)} = (I —T) *(0)

Examples
» Identity 7'(x) = z. Any point is a fixed point
» Zero operator T'(x) = 0. Only 0 is a fixed point

34



Lipschitz operators

An operator 7' is L-Lipschitz if
|T(z) —T(y)|| < Lllz —yll, Vz,y€domT

Fact If 7" is Lipschitz, then it is single-valued
Proof If y = T'(z),z =T(z),then [ly — 2| < Lllz —z|| =0 =y =2 N

For L =1 we say 7' Is nonexpansive
For L. < 1 we say T’ is contractive (with contraction factor L)

35



Lipschitz operators examples

Lipschitz affine functions

maximum singular value

T(z) = Az +b L= A = \/Auax(ATA)

Lipschitz differentiable functions
T such that there exists derivative DI’ +——

derivative is bounded
|DT||s < L

36



Lipschitz operators and fixed points

Given a L-Lipschitz operator T and a fixed point r = T'z,
|Te —z|| = ||[Te — Tz| < Lijr — z|

A contractive operator (L < 1) can have at most
one fixed point, i.e., fixT = {z}

Proof
If z,y € fixT and x # y then

|z =yl = IT(z) =T(y)|l <l -yl (contradiction)

A nonexpansive operator (L = 1) need not
have a fixed point

Example T'(x) = x + 2

37



Combining Lipschitz operators

17 1s L1-Lipschitz and 15 Is Lo-Lipschitz

The composition 7,75 Is L L,-Lipschitz
Proof ||111Tox — TiToy|l2 < Ly||Tex — Toyl|ls < LiLao|lz —yll2 IR

» Composition of nonexpansive is nhonexpansive
« Composition of nonexpansive and contractive is contractive

The weighted average 017 + (1 —0)15, 0 € (0,1) is (AL, 4+ (1—60)L-)-Lipschitz
Proof (exercise)

» Weighted average of nonexpansive is nonexpansive
» Weighted average of nonexpansive and contractive is contractive

38



Fixed point iterations



Fixed point iteration

Apply operator

until you reach r € fix T

Main approach

1. Find a suitable 7" such that x € fix T’ solve your problem
2. Show that the fixed point iteration converges

Fixed point residual to terminate
r® =T (z") — 2"

40



Contractive fixed point iterations

Contraction mapping theorem
If T'is L-Lipschitz with L < 1 (contraction), the iteration

ph = T(xk) >
3
converges to x, the unique fixed point of T° /B T
Properties "
» Distance to ¥ decreases at each step
|z" —z|| < L|j2" — 7|
41

(iteration is Fejer monotone)

 Linear convergence rate L



Contraction mapping theorem

Proof
The sequence z* is Cauchy

< (Lé_1 + - 1)ka+1 — ka

(Lipschitz constant)

1 k+1 _ _k
< | (geometric series)

L" 1 0 (Lipschitz constant)
——[|la" —o°|

Therefore it converges to a point £ which must be the (unique) fixed point of T’

VA

The convergence is linear (geometric) with rate L

|z¥ — | = |T(«"") = T(@)]| < Lll«"" — 2| < L2 — 27| B



Nonexpansive fixed point iterations

If T'is L-Lipschitz with L = 1 (honexpansive), the iteration
et = T (2")

need not converge to a fixed point, even if one exists.

Example X
» Let T be a rotation around the origin

+ T is nonexpansive and has a fixed point z = 0 0
- ||2*|| never decreases

43



Example a =1/2,2 =0

Averaged operators

We say that an operator 7" is a—averaged with o € (0, 1) if T

T=(1—-a)l+aR
and R IS honexpansive.

S|

44




Averaged operators fixed points

We say that an operator 1" is a—averaged with o € (0, 1) if
T=(1—-a)l+aR

Fact If ' is a«-averaged, then fixT' = fix R
Proof z=T(z)=(1—a)l(Z)+ aR(Z)
= (1-a)z + aR(z)

ar = aR(Z)

T = R(Z) B

<
<

45



Averaged fixed point iterations

If T"'= (1 - a)l + aR is a-averaged
(a € (0,1) and R nonexpansive), the iteration \
k+1 T(Cbk) ; 1

converges to r € fix 7T

(also called damped, averaged
or Mann-Krasnosel’skii iteration)

Properties
» Distance to x decreases at each step (Fejer monotone)

» Sublinear convergence to fixed-point residual

1 _
|R(z") — 2| < |27 — 7 46

- \/(k + 1Da(l — a)




Averaged fixed point iterations

Proof
Use the identity (proof by expanding)

(1 -a)a+ad|® = (1-a)lall* + albp|* — a(l - a)la - b]*
and apply it to

a b
obtaining
|27 = 2)* = (1 = a)[la" — Z||* + a|R(z") — 2||* — a(1 - a)||2" — R(z")|]
< (1 — Oz) ® — Z||? + al|z" — CI_ZHQ — a(l — Oz)H.ﬁEk — R(x )|| (honexpansive)
= [|2" - 2|* = a(l = a)llz" — R(z")|]

lterations are Fejer monotone

47



Averaged fixed point iterations

Proof (continued
( ) iterate righthand side over kksteps

[" ! =z < ]2 = z2]* —a(l —a) ) _ [a* — R(z")|?

1=0
- 1
Since ||z*T1 — z||? > 0, we have ; |2" — R(x")]|* < o1 o) |2” — z||?
k
Using » [|z' — R(z")|> > (k+1) min ||z" - R(z%)||?, we obtain
P 1=0,...,
. . 1
: b _ R(x* 2 < 0 =112
2o I T RO S a1
: : . L kN 112 1 O — |12
(R is nonexpansive — min at k) |[|z" — R(z")||* < |z” — || Il 48

~ (E+1Da(l —a)



Average fixed point iteration convergence rates

1 _
|R(z") — 2| < |27 — 7

~ V(k+1a(l = a)

Iterations

IR@*) — 2] < —=|a” — 2] = (1/2)ak + (1/2)R(ab)

Remarks

» Sublinear convergence (same as subgrad method),
INn general not the actual rate
- o = 1/2 is very common for averaged operators 49



How to design an algorithm

Problem
minimize  f(x)

Algorithm (operator) construction

1. Find a suitable 7" such that x € fix T’ solve your problem
2. Show that the fixed point iteration converges

If T" is contractive — linear convergence
If T'Is averaged — sublinear convergence

Most first order algorithms can be constructed in this way

50



Proximal methods and introduction to operators

Today, we learned to:

* Derive optimality conditions for constrained optimization problems using
subdifferentials

 Define and evaluate proximal operators for various common functions

* Apply proximal operators to generalize gradient descent (vanilla, projected,
proximal)

 Use operator theory to construct general fixed-point iterations and prove
their convergence

51



Next lecture

 Monotone operators and operator splitting algorithms
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