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Ed Forum

» Can similar convergence results be made for stochastic gradient descent?

* |n backtracking line search, do we choose and fix a and 3 for each iteration,
and if so, what is the interpretation/significance of the value chosen?

* For the first-order characterization (Lipschitz continuous gradient) for L-
smoothness of convex functions, how should | show that it is necessary and
sufficient (if a convex function is L-smooth, then it has Lipschitz continuous
gradient?






Equivalent L-smoothness conditions

A convex function f is L-smooth if the following equivalent conditions hold
V(@) =V f(y)lz < Lilz —yll2,  Va,y

 fy) < fl@)+ V@) (y—2)+ 5lly —2[?, Va.y

» V2f(x) X LI, Vz

Detailed proofs: Theorem 5.8 and 5.12 FMO book



Backtracking line search

Iterations

initialization

t=1, O0<a<1/2, 0<pB<l1

while f(z* —tVf(z")) > f(z") — at|V f(2")]3
t + Bt

admissible



Slow convergence

Very dependent on scaling

f(z) = (21 + 20z3)/2
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Slow convergence



Non-differentiability

Wolfe’s example

ri +yxs  |xe| < ay

flz) = r1 + y|T2)
V147

‘$2| > I

Gradient descent with exact line search gets stuck at x = (0, 0)

In general: gradient descent cannot handle non-differentiable
functions and constraints



Today'’s lecture
[Chapter 3 and 8, FMO][ee364b][Chapter 3, ILCO]

Subgradient methods

* Geometric definitions

* Subgradients

 Subgradient calculus

* Optimality conditions based on subgradients

 Subgradient methods



Geometric definitions




Supporting hyperplanes

Given a set (' point « at the boundary of C
a hyperplane {z | a’ z = a’ z} is a supporting hyperplane if

o' (y—x) <0, YyeC
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Function epigraph
epi f = {(v,t) | x € dom f, f(x) <t}

epi f

f i1s convex If and only if epi f Is a convex set
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Sublevel sets

Co ={x €domf | f(z) < a}

==
If fIs convex, then C, Is convex YV«
Note converse not true, e.qg., f(x \
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Subgradients



Gradients and epigraphs

For a convex differentiable function f, I.e.

f(y) > f(x) +Vf(z)" (y —x), Vy€cdomf

(Vf(x),—1) defines a supporting hyperplane
to epigraph of f at (z, f(x))
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epi f

(Vf(ai), _1)
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Subgradient

We say that g is a subgradient of function f at point z if

fly) > flx)+g" (y—=x), Yy

f(x2) + g3 (x — x2)

e

< f(w2) + g5 (- o)
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Subgradient properties

g is a subgradient of f at x iff (¢, —1)
epi f supports epi f at (z, f(x))

g is a subgradient of f iff f(z) + ¢” (y — )
IS a global underestimator of f

If fis convex and differentiable, V f(x) is

(93, —1) a subgradient of f at z

1, —1
S (g2, 1)
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(Sub)gradients and sublevel sets

g being a subgradient of f means f(y) > f(z) + g7 (y — x)

Therefore, if f(y) < f(x) (sublevel set), then ¢ (y — z) < 0.
L0
f(y) < f(x)
L]
f differentiable at « 7
V f(z) is normal to the sublevel set {y | f(y) < f(z)} Vf(z1)

f nondifferentiable at x
subgradients define supporting hyperplane to sublevel set throgh «

17



Subdifferential

The subdifferential 0f(x) of f at x is the set of all subgradients
Of(x) ={g|g" (y — ) < f(y) — f(x), Vye&dom f}

Properties

» Of(x) is always closed and convex, also for nonconvex f.
(intersection of halfspaces)

- If 0f(x) # (), Va then f is convex (converse not true)
- If f is convex and differentiable at =, then 0f(x) = {V f(x)}

- If fisconvexand 0f(xz) = {g}, then f is differentiable at x and g = V f(x) 18



Example

Absolute value

19



Subgradient calculus



Subgradient calculus

Strong subgradient calculus
Formulas for finding the whole subdifferential 0 f(r) —— Hard

Weak subgradient calculus
Formulas for finding one subgradient g € 0f(x) — > Easy

In practice, most algorithms require only one subgradient ¢ at point x

21



Basic rules

Nonnegative scaling: d(af) = adf with a > 0

Addition: 8(f1 + fg) — 8f1 + 8f2

Affine transformation: f(z) = h(Ax + b), then

Of(x) = A* Oh(Ax + b)

22



Basic rules

Pointwise maxima

Finite pointwise maximum f(x) = max f;(xz), then

0f(x) = conv (U{@fi(:c) | fi(x) = f(a:)}) (convex hull of active functions)

General pointwise maximum (supremum) f(z) = max fs(x), then
SE

0f (v) 2 conv (| J{0f.(@) | fo(w) = F()})

Note: Equality requires some regularity assumptions
(e.g. S compact and f, is continuous in s)
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Example

Piecewise linear function

f(r) = max (a;-rm + b;)

1=1,....m

Subdifferential is a polyhedron
Of(x) =convia; |i € I(x)}

I(x) ={i|a; v+ b; = f(z)}




Example

Norms
Given f = ||x||, we can express it as

X — INlax ZTZE
H Hp 9

l2]]q <1

where ¢ such that 1/p 4+ 1/q = 1 defines the dual norm. Therefore,

Of(x) = argmax z'

2]l <1
Example: f(z) =||z||1 = |\Iﬁ1a§1STx

-l e <0 weak result
é)f(:c) = J X - X J, where J;, = [—1, 1] r =0

1 o sign(x) € df(x) 3



Basic rules

Composition

Proof
fly) =h(f1(y), - [r(y))
> h(fi(x)+ g1 (y—x),..., fe(z) + g; (v — 2))
> h(fr(x), .. fe(@) + ' (9] (y—2),..., 95 (y — x))
= f(z)+g (y—x)




Optimality conditions




Fermat’s optimality condition

For any (not necessarily convex) function f where 0 f(x*) # 0,
x* Is a global minimizer if and only if

0€df(x™)

Proof
A subgradient ¢ = 0 means that, for all y

f(y) = f(z*) + 0" (y — 2%) = f(27)

Note differentiable case with 0f(z) = {V f(x)} 28



Example: piecewise linear function

Optimality condition
f(x) = max (a; x4+ b;) - 0€0f(x) =conv{a; | aj x+b; = f(z)}

In other words, x> is optimal if and only if 3\ such that

A>0, 1"A=1, » Na; =0
= T~ (0 € af(x))
where \; = 0 if a; * + b; < f(x*)
Same KKT optimality conditions as the primal-dual problems
minimize t maximize bT)\

subjectto Az +b < t1 subjectto A'A =0
A>0, 1TA=1 29



Subgradient method



Negative subgradients are not necessarily descent directions

f(x) = |x1| + 2|22

r = (1,0)

g1 = (1,0) € 0f(x) and
—g1 IS a descent direction

g2 = (1,2) € 0f(x) and
— (g9 IS Not a descent direction

31



Subgradient method

Convex optimization problem
minimize f(x) (optimal cost f*)

Iterations

el = 2F — 1 g", g € 0f(z™)

g" is any subgradient of f at x"

Not a descent method, keep track of the best point

32



Step sizes

Line search can lead to suboptimal points

Step sizes pre-specified, not adaptively computed
(different than gradient descent)

Fixed: tp =tfork=0,...

(goes to 0 but not too fast)
e.g., tp = 0(1/]{7)

O O
Diminishing: th < 00, Zt’f — ~o Square summable but not summable
k=0 k=0
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Convergence

Assumptions
» fis convex with dom f = R"

* f(x*) > —oo (finite optimal value)

» f Is Lipschitz continuous with constant GG > 0, I.e.

f(2) = fW)l < Gllz —yll2, Va,y

which is equivalent to ||g||o < G, Vg € df(x), Vo
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Convergence

Lipschitz continuity equivalence

f 1s Lipschitz continuous with constant GG > 0, I.e.

f(z) = f(y)| < Gllz —yll2,

which is equivalent to ||g||lo < G, Vg € df(x), Vo

Proof

If |g|| < G for all subgradients, pick x,g, € 0f(x)and y,g, € 0f(y). Then,

9y (x —y) > f(z) = f(y) > g, (. —y)
—  Gllz—yl2 > f(z) — f(y) = —Gllz —yl2

If |lg|lo > G for some g € 0f(x). Take y = x

fly)> flx)+g (y—x) = f(z)+]

g/

g
g

v,y

5 such that || — y||. = 1:

0> f(z) +G
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Convergence

Theorem
Given a convex, GG-Lipschitz continuous f with finite optimal value,
the subgradient method obeys

where ||z° — 2*||s < R

36



Convergence

Proof

Key quantity: euclidean distance to optimal set
(not function value since it can go up and down)

|2FH — 2% |2 = ||z — trg® — 2¥||3
— ||2® — 2* % — th(gk)T(ka — ) + tngng
< ||z" — 2|5 — 2tk (f(2") — ) + t2llg"]I3

using subgradient definition f* = f(a*) > f(z") + (¢*)* (x* — z*)



Convergence

Proof (continued)

Combine inequalities for: = 0, ... .k

[ A o —l’HQ—QZt z') = f*)

1=0
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Convergence

Proof (continued)

Combine it with

> ti(f(@h) = )

to get

[V




Implications for step size rules

fkes o f* <
. 21 o t
Fixed: t, =tfork=0,... May be suboptimal
2
R% + G2(k + 1)1 o fE <oy G
ko fx < lim fbestéf |
fbest f — 2(]‘6 n 1)t k— o0 2
> > Optimal
= = = = . 2 L
Diminishing: Y th<oo, » tp=o0 fim fE — f

e.g.,tk:T/(k+1)ortk:7/\/k+1 40



Optimal step size and convergence rate

For a tolerance ¢ > 0, let’s find the optimal ¢, for a fixed &:
k
R+ G?Y 7  t

P S €
2 S:z’—() Ly
Convex and symmetric in (to, ..., ts) R? + G?(k + 1)t?
Hence, minimum when t; =t 2(k + 1)t
Optimal choice t = .
GvVEk+1
Convergence rate Ilterations required
RG k= O(1/¢)

fkl)cest R f* < ,
Vk+1 (gradient descent £ = O(1/¢))
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Stopping criterion

Terminating when

IS really, really slow.

Bad news

There is not really a good stopping criterion for the subgradient method

42



Optimal step size when f* is known
Polyak step size
fa*) = £

[idlE:

t =

Motivation: minimize righthand side of

|27 = 2¥[[3 < 2" — 22 = 2t (f(2%) = F) + L llg" 13

Obtaining  (f(z%) = f)* < (=™ —2*[3 — [|l2" — 2"[|3) G*

QR Ilterations required

: . k *
Applying recursively, 7 . — f* < i k= O(1/€)

still slow
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Example: 1-norm minimization

C e T
minimize f(x) = ||Az — b||; g= A" sign(Ax —b) € 0f(x)
Fixed step size Diminishing step size
10*;
—— ¢ =10.0010 —— 0.01/VEk+1
"""" t = 0.0005 10°: - 0.001/vE + 1
"""""""" t = 0.0001 ‘\“ 0.01/0{j i 1)
. T t — 00001 \ o POIyak
_\
10~ —= __.E__E___-___.____
—5- | | | | | —5- | | | | |
10 0 1000 2000 3000 4000 5000 6000 10 0 1000 2000 3000 4000 5000 6000
k k

Efficient packages to automatically compute (sub)gradients:
Python: JAX, PyTorch
Julia: Zygote.jl, ForwardDift.jl, ReverseDift.]l



Summary subgradient method

« Simple
- Handles general nondifferentiable convex functions
- Very slow convergence O(1/¢?)

* No good stopping criterion

Can we do better?

Can we incorporate constraints?

45



Subgradient methods

Today, we learned to:

 Define subgradients

* Apply subgradient calculus

* Derive optimality conditions from subgradients

* Define subgradient method and analyze its convergence

46



Next lecture

* Proximal algorithms

47



