ORF522 – Linear and Nonlinear Optimization

15. Subgradient methods

Ed Forum

- Can similar convergence results be made for stochastic gradient descent?
- In backtracking line search, do we choose and fix α and β for each iteration, and if so, what is the interpretation/significance of the value chosen?
- For the first-order characterization (Lipschitz continuous gradient) for Lsmoothness of convex functions, how should I show that it is necessary and sufficient (if a convex function is L-smooth, then it has Lipschitz continuous gradient?

Recap

Equivalent L-smoothness conditions

A convex function f is L-smooth if the following equivalent conditions hold

•
$$\|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2$$
, $\forall x, y$

•
$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2$$
, $\forall x, y$

•
$$\nabla^2 f(x) \leq LI$$
, $\forall x$

Detailed proofs: Theorem 5.8 and 5.12 FMO book

Backtracking line search

Iterations

initialization

$$t = 1, \quad 0 < \alpha \le 1/2, \quad 0 < \beta < 1$$

while $f(x^k - t\nabla f(x^k)) > f(x^k) - \alpha t \|\nabla f(x^k)\|_2^2$ $t \leftarrow \beta t$

Slow convergence

Very dependent on scaling

$$f(x) = (x_1^2 + 20x_2^2)/2$$

$$f(x) = (x_1^2 + 2x_2^2)/2$$

Faster

Non-differentiability

Wolfe's example

$$f(x) = \begin{cases} \sqrt{x_1^2 + \gamma x_2^2} & |x_2| \le x_1 \\ \frac{x_1 + \gamma |x_2|}{\sqrt{1 + \gamma}} & |x_2| > x_1 \end{cases}$$

Gradient descent with exact line search gets stuck at x = (0,0)

In general: gradient descent cannot handle non-differentiable functions and constraints

Today's lecture

[Chapter 3 and 8, FMO][ee364b][Chapter 3, ILCO]

Subgradient methods

- Geometric definitions
- Subgradients
- Subgradient calculus
- Optimality conditions based on subgradients
- Subgradient methods

Geometric definitions

Supporting hyperplanes

Given a set C point x at the boundary of C a hyperplane $\{z \mid a^Tz = a^Tx\}$ is a supporting hyperplane if

$$a^T(y-x) \le 0, \quad \forall y \in C$$

Function epigraph

$$\mathbf{epi} f = \{(x, t) \mid x \in \mathbf{dom} f, \ f(x) \le t\}$$

f is convex if and only if epi f is a convex set

Sublevel sets

$$C_{\alpha} = \{ x \in \mathbf{dom} \, f \mid f(x) \le \alpha \}$$

If f is convex, then C_{α} is convex $\forall \alpha$ Note converse not true, e.g., $f(x) = -e^x$

Subgradients

Gradients and epigraphs

For a convex differentiable function f, i.e.

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \quad \forall y \in \mathbf{dom} f$$

 $(\nabla f(x), -1)$ defines a supporting hyperplane to epigraph of f at (x, f(x))

$$\begin{bmatrix} \nabla f(x) \\ -1 \end{bmatrix}^T \left(\begin{bmatrix} y \\ t \end{bmatrix} - \begin{bmatrix} x \\ f(x) \end{bmatrix} \right) \le 0, \quad \forall (y, t) \in \mathbf{epi} f$$

Subgradient

We say that g is a **subgradient** of function f at point x if

$$f(y) \ge f(x) + g^T(y - x), \quad \forall y$$

Subgradient properties

g is a subgradient of f at x iff (g, -1) supports $\operatorname{epi} f$ at (x, f(x))

g is a subgradient of f iff $f(x) + g^T(y - x)$ is a global underestimator of f

If f is convex and differentiable, $\nabla f(x)$ is a subgradient of f at x

(Sub)gradients and sublevel sets

g being a subgradient of f means $f(y) \geq f(x) + g^T(y-x)$

Therefore, if $f(y) \le f(x)$ (sublevel set), then $g^T(y-x) \le 0$.

f differentiable at x

 $\nabla f(x)$ is normal to the sublevel set $\{y \mid f(y) \leq f(x)\}$

f nondifferentiable at x subgradients define supporting hyperplane to sublevel set through x

Subdifferential

The subdifferential $\partial f(x)$ of f at x is the set of all subgradients

$$\partial f(x) = \{ g \mid g^T(y - x) \le f(y) - f(x), \quad \forall y \in \mathbf{dom} \, f \}$$

Properties

- $\partial f(x)$ is always closed and convex, also for nonconvex f. (intersection of halfspaces)
- If $\partial f(x) \neq \emptyset$, $\forall x$ then f is convex (converse not true)
- If f is convex and differentiable at x, then $\partial f(x) = {\nabla f(x)}$
- If f is convex and $\partial f(x) = \{g\}$, then f is differentiable at x and $g = \nabla f(x)$

Example

Absolute value

$$f(x) = |x|$$

$$\partial f(x) = \begin{cases} \{-1\} & x < 0 \\ [-1,1] & x = 0 \end{cases} = \begin{cases} \mathbf{sign}(x) & x \neq 0 \\ [-1,1] & x = 0 \end{cases}$$

Subgradient calculus

Subgradient calculus

Strong subgradient calculus

Formulas for finding the whole subdifferential $\partial f(x)$ ———— Hard

Weak subgradient calculus

Formulas for finding *one* subgradient $g \in \partial f(x)$ ———— Easy

In practice, most algorithms require only one subgradient g at point x

Basic rules

Nonnegative scaling: $\partial(\alpha f) = \alpha \partial f$ with $\alpha > 0$

Addition: $\partial (f_1 + f_2) = \partial f_1 + \partial f_2$

Affine transformation: f(x) = h(Ax + b), then

$$\partial f(x) = A^T \partial h(Ax + b)$$

Basic rules

Pointwise maxima

Finite pointwise maximum $f(x) = \max_{i=1,...,m} f_i(x)$, then

$$\partial f(x) = \mathbf{conv}\left(\bigcup\{\partial f_i(x) \mid f_i(x) = f(x)\}\right)$$
 (convex hull of active functions)

General pointwise maximum (supremum) $f(x) = \max_{s \in S} f_s(x)$, then

$$\partial f(x) \supseteq \mathbf{conv} \left(\bigcup \{ \partial f_s(x) \mid f_s(x) = f(x) \} \right)$$

Note: Equality requires some regularity assumptions (e.g. S compact and f_s is continuous in S)

Example

Piecewise linear function

$$f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$$

Subdifferential is a polyhedron

$$\partial f(x) = \mathbf{conv}\{a_i \mid i \in I(x)\}$$

$$I(x) = \{i \mid a_i^T x + b_i = f(x)\}$$

Example

Norms

Given $f = ||x||_p$ we can express it as

$$||x||_p = \max_{\|z\|_q \le 1} z^T x,$$

where q such that 1/p + 1/q = 1 defines the dual norm. Therefore,

$$\partial f(x) = \underset{\|z\|_q \le 1}{\operatorname{argmax}} \ z^T x$$

Example:
$$f(x) = ||x||_1 = \max_{\|s\|_{\infty} \le 1} s^T x$$

$$\partial f(x) = J_1 \times \dots \times J_n$$
 where $J_i = \begin{cases} \{-1\} & x < 0 \\ [-1,1] & x = 0 \\ \{1\} & x > 0 \end{cases}$

weak result

$$\mathbf{sign}(x) \in \partial f(x)$$

Basic rules

Composition

 $f(x) = h(f_1(x), \dots, f_k(x)), \quad h \text{ convex nondecreasing, } f_i \text{ convex}$

$$g = q_1 g_1 + \dots + q_k g_k \in \partial f(x)$$

where $q \in \partial h(f_1(x), \dots, f_k(x))$ and $g_i \in \partial f_i(x)$

Proof

$$f(y) = h(f_1(y), \dots, f_k(y))$$

$$\geq h(f_1(x) + g_1^T(y - x), \dots, f_k(x) + g_k^T(y - x))$$

$$\geq h(f_1(x), \dots, f_k(x)) + q^T(g_1^T(y - x), \dots, g_k^T(y - x))$$

$$= f(x) + g^T(y - x)$$

Optimality conditions

Fermat's optimality condition

For any (not necessarily convex) function f where $\partial f(x^*) \neq \emptyset$,

 x^{\star} is a global minimizer if and only if

$$0 \in \partial f(x^{\star})$$

Proof

A subgradient g=0 means that, for all y

$$f(y) \ge f(x^*) + 0^T (y - x^*) = f(x^*)$$

Note differentiable case with $\partial f(x) = \{\nabla f(x)\}$

Example: piecewise linear function

Optimality condition

$$f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$$
 $0 \in \partial f(x) = \mathbf{conv}\{a_i \mid a_i^T x + b_i = f(x)\}$

In other words, x^* is optimal if and only if $\exists \lambda$ such that

$$\lambda \geq 0, \quad \mathbf{1}^T \lambda = 1, \quad \sum_{i=1}^m \lambda_i a_i = 0$$
 where $\lambda_i = 0$ if $a_i^T x^\star + b_i < f(x^\star)$

Same KKT optimality conditions as the primal-dual problems

$$\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & Ax+b \leq t\mathbf{1} \end{array}$$

$$\begin{array}{ll} \text{maximize} & b^T \lambda \\ \text{subject to} & A^T \lambda = 0 \\ & \lambda \geq 0, \quad \mathbf{1}^T \lambda = 1 \end{array}$$

Subgradient method

Negative subgradients are not necessarily descent directions

$$f(x) = |x_1| + 2|x_2|$$

$$g_1=(1,0)\in\partial f(x)$$
 and $-g_1$ is a descent direction

$$g_2=(1,2)\in\partial f(x)$$
 and $-g_2$ is not a descent direction

Subgradient method

Convex optimization problem

minimize f(x) (optimal cost f^*)

Iterations

$$x^{k+1} = x^k - t_k g^k, \qquad g^k \in \partial f(x^k)$$

 g^k is any subgradient of f at x^k

Not a descent method, keep track of the best point

$$f_{\text{best}}^k = \min_{i=1,\dots,k} f(x^i)$$

Step sizes

Line search can lead to suboptimal points

Step sizes *pre-specified*, not adaptively computed (different than gradient descent)

k=0

Fixed:
$$t_k = t$$
 for $k = 0, \dots$

Diminishing:
$$\sum_{k=0}^{\infty} t_k^2 < \infty$$
, $\sum_{k=0}^{\infty} t_k = \infty$

k=0

Square summable but not summable (goes to 0 but not too fast)

e.g.,
$$t_k = O(1/k)$$

Assumptions

- f is convex with $dom f = \mathbf{R}^n$
- $f(x^*) > -\infty$ (finite optimal value)
- f is Lipschitz continuous with constant G > 0, i.e.

$$|f(x) - f(y)| \le G||x - y||_2, \quad \forall x, y$$

which is equivalent to $||g||_2 \leq G$, $\forall g \in \partial f(x), \ \forall x$

Lipschitz continuity equivalence

f is Lipschitz continuous with constant G > 0, i.e.

$$|f(x) - f(y)| \le G||x - y||_2, \quad \forall x, y$$

which is equivalent to $||g||_2 \leq G$, $\forall g \in \partial f(x), \ \forall x$

Proof

If $||g|| \leq G$ for all subgradients, pick $x, g_x \in \partial f(x)$ and $y, g_y \in \partial f(y)$. Then,

$$g_x^T(x - y) \ge f(x) - f(y) \ge g_y^T(x - y)$$

$$\implies G||x - y||_2 \ge f(x) - f(y) \ge -G||x - y||_2$$

If $||g||_2 > G$ for some $g \in \partial f(x)$. Take $y = x + g/||g||_2$ such that $||x - y||_2 = 1$:

$$f(y) \ge f(x) + g^{T}(y - x) = f(x) + ||g||_{2} > f(x) + G$$

Theorem

Given a convex, G-Lipschitz continuous f with finite optimal value, the subgradient method obeys

$$f_{\text{best}}^k - f^* \le \frac{R^2 + G^2 \sum_{i=0}^k t_i^2}{2 \sum_{i=0}^k t_i}$$

where $||x^0 - x^*||_2 \le R$

Proof

Key quantity: euclidean distance to optimal set

(not function value since it can go up and down)

$$||x^{k+1} - x^*||_2^2 = ||x^k - t_k g^k - x^*||_2^2$$

$$= ||x^k - x^*||_2^2 - 2t_k (g^k)^T (x^k - x^*) + t_k^2 ||g^k||_2^2$$

$$\leq ||x^k - x^*||_2^2 - 2t_k (f(x^k) - f^*) + t_k^2 ||g^k||_2^2$$

using subgradient definition $f^* = f(x^*) \ge f(x^k) + (g^k)^T (x^* - x^k)$

Proof (continued)

Combine inequalities for i = 0, ..., k

$$||x^{k+1} - x^{\star}||_{2}^{2} \le ||x^{0} - x^{\star}||_{2}^{2} - 2\sum_{i=0}^{k} t_{i}(f(x^{i}) - f^{\star}) + \sum_{i=0}^{k} t_{i}^{2}||g^{i}||_{2}^{2}$$

$$\leq R^2 - 2\sum_{i=0}^k t_i (f(x^i) - f^*) + G^2 \sum_{i=0}^k t_i^2$$

Using $||x^{k+1} - x^*||_2^2 \ge 0$ we get

$$2\sum_{i=0}^{k} t_i (f(x^i) - f^*) \le R^2 + G^2 \sum_{i=0}^{k} t_i^2$$

Proof (continued)

$$2\sum_{i=0}^{k} t_i (f(x^i) - f^*) \le R^2 + G^2 \sum_{i=0}^{k} t_i^2$$

Combine it with

$$\sum_{i=0}^{k} t_i (f(x^i) - f(x^*)) \ge \left(\sum_{i=0}^{k} t_i\right) \min_{i=0,\dots,k} (f(x^i) - f^*) = \left(\sum_{i=0}^{k} t_i\right) (f_{\text{best}}^k - f^*)$$

to get

$$f_{\text{best}}^k - f^* \le \frac{R^2 + G^2 \sum_{i=0}^k t_i^2}{2 \sum_{i=0}^k t_i}$$

Implications for step size rules

$$f_{\text{best}}^k - f^* \le \frac{R^2 + G^2 \sum_{i=0}^k t_i^2}{2 \sum_{i=0}^k t_i}$$

Fixed:

$$t_k = t$$
 for $k = 0, \dots$

$$f_{\text{best}}^k - f^* \le \frac{R^2 + G^2(k+1)t^2}{2(k+1)t}$$

May be suboptimal

$$\lim_{k \to \infty} f_{\text{best}}^k \le f^* + \frac{G^2 t}{2}$$

Diminishing:
$$\sum_{k=0}^{\infty} t_k^2 < \infty, \quad \sum_{k=0}^{\infty} t_k = \infty$$

e.g.,
$$t_k = \tau/(k+1)$$
 or $t_k = \tau/\sqrt{k+1}$

Optimal

$$\lim_{k \to \infty} f_{\text{best}}^k = f^*$$

Optimal step size and convergence rate

For a tolerance $\epsilon > 0$, let's find the optimal t_k for a fixed k:

$$\frac{R^2 + G^2 \sum_{i=0}^{k} t_i^2}{2 \sum_{i=0}^{k} t_i} \le \epsilon$$

Convex and symmetric in (t_0, \ldots, t_k) Hence, minimum when $t_i = t$

$$\frac{R^2 + G^2(k+1)t^2}{2(k+1)t}$$

Optimal choice
$$t = \frac{R}{G\sqrt{k+1}}$$

Convergence rate

$$f_{\text{best}}^k - f^* \le \frac{RG}{\sqrt{k+1}}$$

Iterations required

$$k = O(1/\epsilon^2)$$

(gradient descent $k = O(1/\epsilon)$)

Stopping criterion

Terminating when

$$\frac{R^2 + G^2 \sum_{i=0}^{k} t_i^2}{2 \sum_{i=0}^{k} t_i} \le \epsilon$$

is really, really slow.

Bad news

There is not really a good stopping criterion for the subgradient method

Optimal step size when f^* is known

Polyak step size

$$t_k = \frac{f(x^k) - f^*}{\|g^k\|_2^2}$$

Motivation: minimize righthand side of

$$||x^{k+1} - x^*||_2^2 \le ||x^k - x^*||_2^2 - 2t_k(f(x^k) - f^*) + t_k^2||g^k||_2^2$$

Obtaining
$$(f(x^k) - f^*)^2 \le (\|x^{k+1} - x^*\|_2^2 - \|x^k - x^*\|_2^2) G^2$$

Applying recursively,
$$f_{\mathrm{best}}^k - f^\star \leq \frac{GR}{\sqrt{k+1}}$$

Iterations required

$$k = O(1/\epsilon^2)$$
still slow

Example: 1-norm minimization

Efficient packages to automatically compute (sub)gradients: *Python:* JAX, PyTorch *Julia:* Zygote.jl, ForwardDiff.jl, ReverseDiff.jl

Summary subgradient method

- Simple
- Handles general nondifferentiable convex functions
- Very slow convergence $O(1/\epsilon^2)$
- No good stopping criterion

Can we do better?

Can we incorporate constraints?

Subgradient methods

Today, we learned to:

- Define subgradients
- Apply subgradient calculus
- Derive optimality conditions from subgradients
- Define subgradient method and analyze its convergence

Next lecture

Proximal algorithms