ORF522 – Linear and Nonlinear Optimization

12. Introduction to nonlinear optimization

 What is the problem we are solving in the homogeneous self-dual embedding?

 What is the problem we are solving in the homogeneous self-dual embedding?

Primal

minimize subject to Qu = v

$$u, v \ge 0$$

Dual

minimize 0

subject to $\ Q\mu=\lambda$

$$Q\mu = \lambda$$

$$u = (x, y, \tau)$$

$$v = (0, s, \kappa)$$

 What is the problem we are solving in the homogeneous self-dual embedding?

Primal

minimize

subject to Qu = v

$$u, v \ge 0$$

Dual

minimize

0

subject to $Q\mu = \lambda$

 $\mu, \lambda \geq 0$

$$u = (x, y, \tau)$$

$$v = (0, s, \kappa)$$

LP strict complementarity

$$u^T \lambda = 0, \quad u + \lambda > 0$$

$$v^T \mu = 0, \quad v + \mu > 0$$

 What is the problem we are solving in the homogeneous self-dual embedding?

Primal

minimize 0 subject to Qu=v $u,v\geq 0$

Dual

 $\label{eq:minimize} \begin{array}{ll} \mbox{minimize} & 0 \\ \mbox{subject to} & Q\mu = \lambda \end{array}$

$$u = (x, y, \tau)$$
 $\mu, \lambda \ge 0$
 $v = (0, s, \kappa)$

LP strict complementarity

$$u^{T}\lambda = 0, \quad u + \lambda > 0$$
 $v^{T}\mu = 0, \quad v + \mu > 0$

Self-dual

$$u = \mu, \quad v = \lambda$$

 What is the problem we are solving in the homogeneous self-dual embedding?

Primal

 $\begin{array}{ll} \text{minimize} & 0 \\ \text{subject to} & Qu=v \end{array}$

$$u, v \ge 0$$

Dual

minimize 0

subject to
$$Q\mu=\lambda$$

$$u = (x, y, \tau) \qquad \mu, \lambda \ge 0$$
$$v = (0, s, \kappa)$$

LP strict complementarity

$$u^{T}\lambda = 0, \quad u + \lambda > 0$$

$$v^{T}\mu = 0, \quad v + \mu > 0$$

Self-dual

$$u = \mu, \quad v = \lambda \longrightarrow u + v > 0 \Rightarrow \begin{cases} y + s > 0 \\ \tau + \kappa > 0 \end{cases}$$

Midterm information

Thursday, October 14

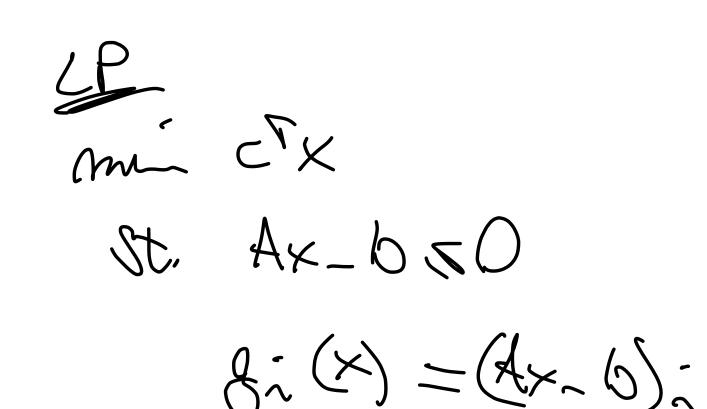
- Take-home (using gradescope)
- Length: can use any material from the class
- Can't communicate with anyone, can't google results
- 24 hours window to complete it
- After download, clock starts: 1.5 hours + 0.5 to submit (total 2 hours)

Today's lecture[Chapter 2-4 and 6, CO] [Chapter A, B, FCA]

- Nonlinear optimization
- Examples
- Convex analysis review
- Convex optimization

What if the problem is no longer linear?

Nonlinear optimization



minimize
$$f(x)$$
 subject to $g_i(x) \leq 0, \quad i = 1, \ldots, m$

$$x = (x_1, \dots, x_n)$$
 Variables

$$f: \mathbf{R}^n \to \mathbf{R}$$
 Nonlinear objective function

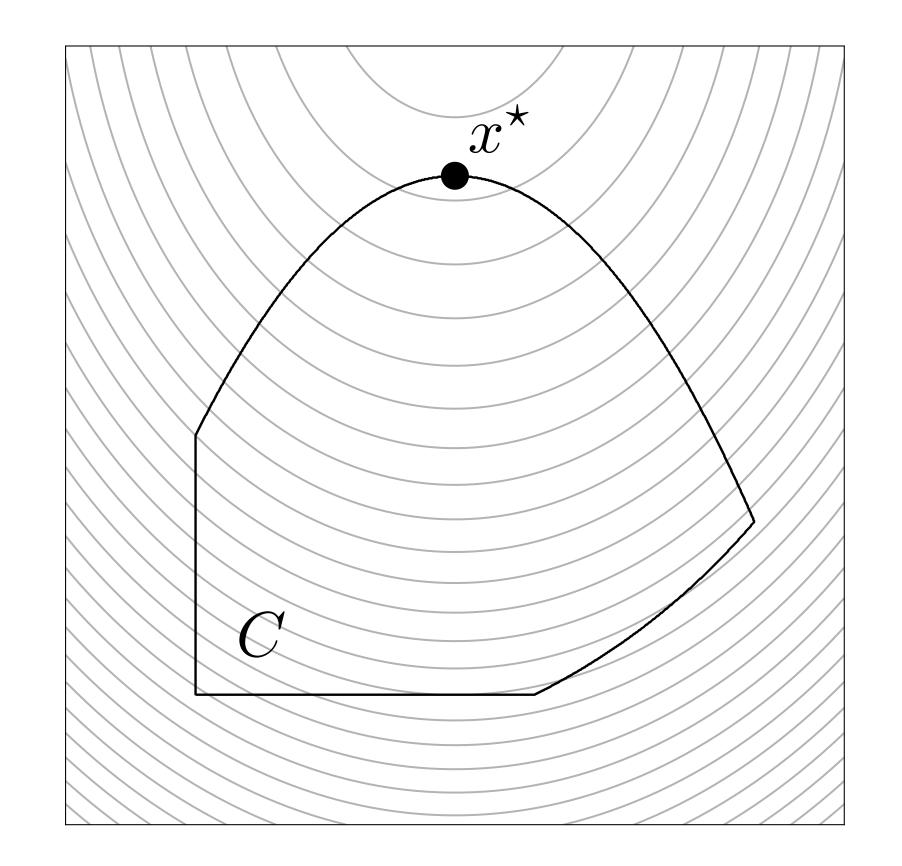
$$g_i: \mathbf{R}^n \to \mathbf{R}$$
 Nonlinear constraints functions

Feasible set

$$C = \{x \mid g_i(x) \le 0, \quad i = 1, \dots, m\}$$

Small example

minimize $0.5x_1^2 + 0.25x_2^2$ subject to $e^{x_1} - 2 - x_2 \le 0$ $(x_1 - 1)^2 + x_2 - 3 \le 0$ $x_1 \ge 0$ $x_2 \ge 1$



Contour plot has curves (no longer lines)

Feasible set is no longer a polyhedron

Integer optimization It's still nonlinear optimization

```
\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in \mathbf{Z} \end{array}
```

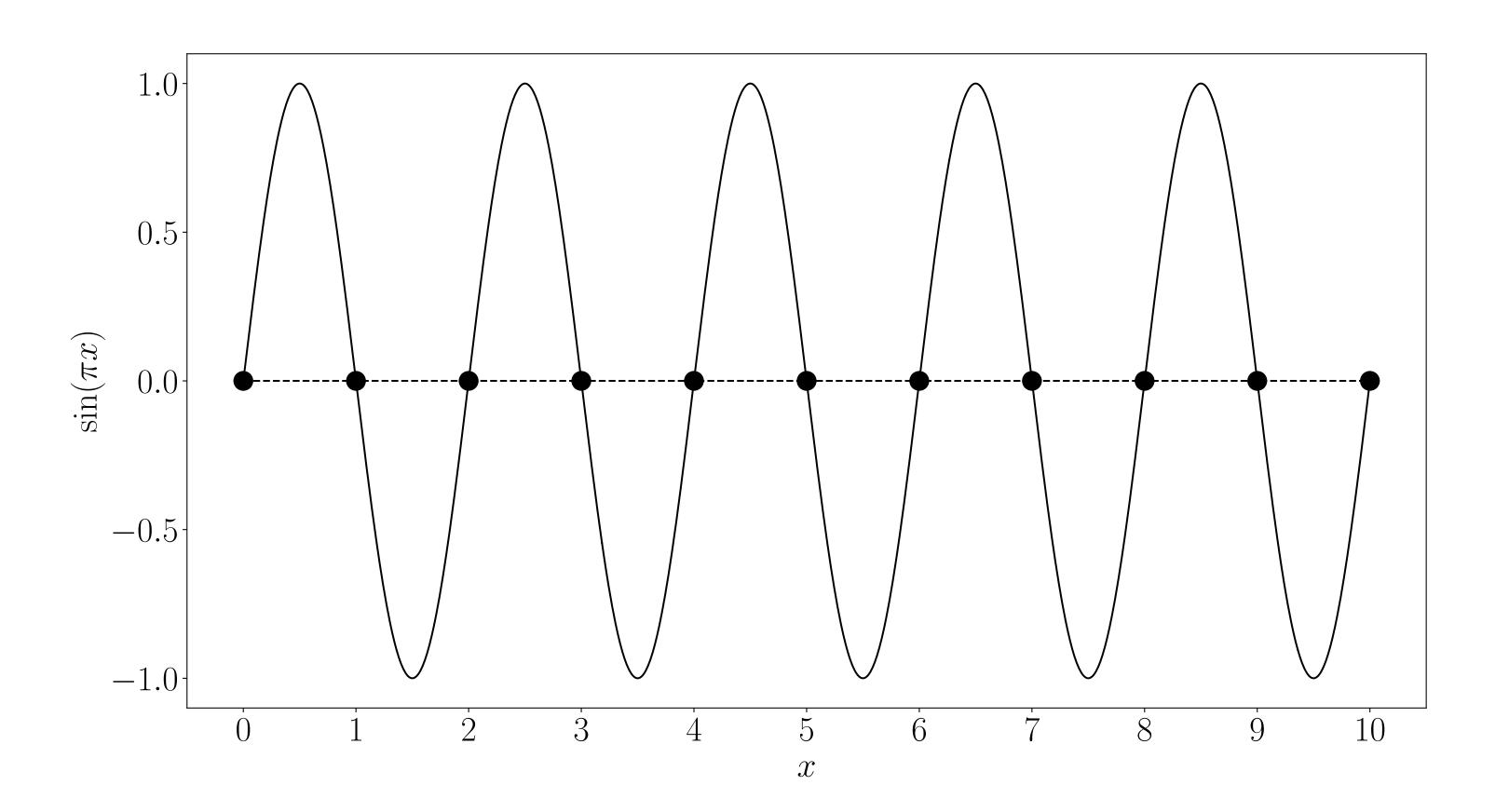
Integer optimization

It's still nonlinear optimization

minimize f(x) subject to $x \in \mathbf{Z}$



minimize f(x)subject to $\sin(\pi x) = 0$



We cannot solve most nonlinear optimization problems

Examples of (solvable) nonlinear optimization

Regression

Fit affine function $f(z) = \alpha + \beta z$ to m points (z_i, y_i)

Approximation problem
$$Ax \approx b$$
 where

Approximation problem
$$Ax \approx b$$
 where $A = \begin{bmatrix} 1 & z_1 \\ \vdots & \vdots \\ 1 & z_m \end{bmatrix}, \quad x = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}, \quad b = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$

Goal minimize
$$||Ax - b||$$

Regression

Fit affine function $f(z) = \alpha + \beta z$ to m points (z_i, y_i)

Approximation problem
$$Ax \approx b$$
 where $A = \begin{bmatrix} 1 & z_1 \\ \vdots & \vdots \\ 1 & z_m \end{bmatrix}, \quad x = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}, \quad b = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$

Goal

minimize
$$||Ax - b||$$

$$1 ext{-norm or }\infty ext{-norm }\Longrightarrow \quad ext{linear optimization}$$

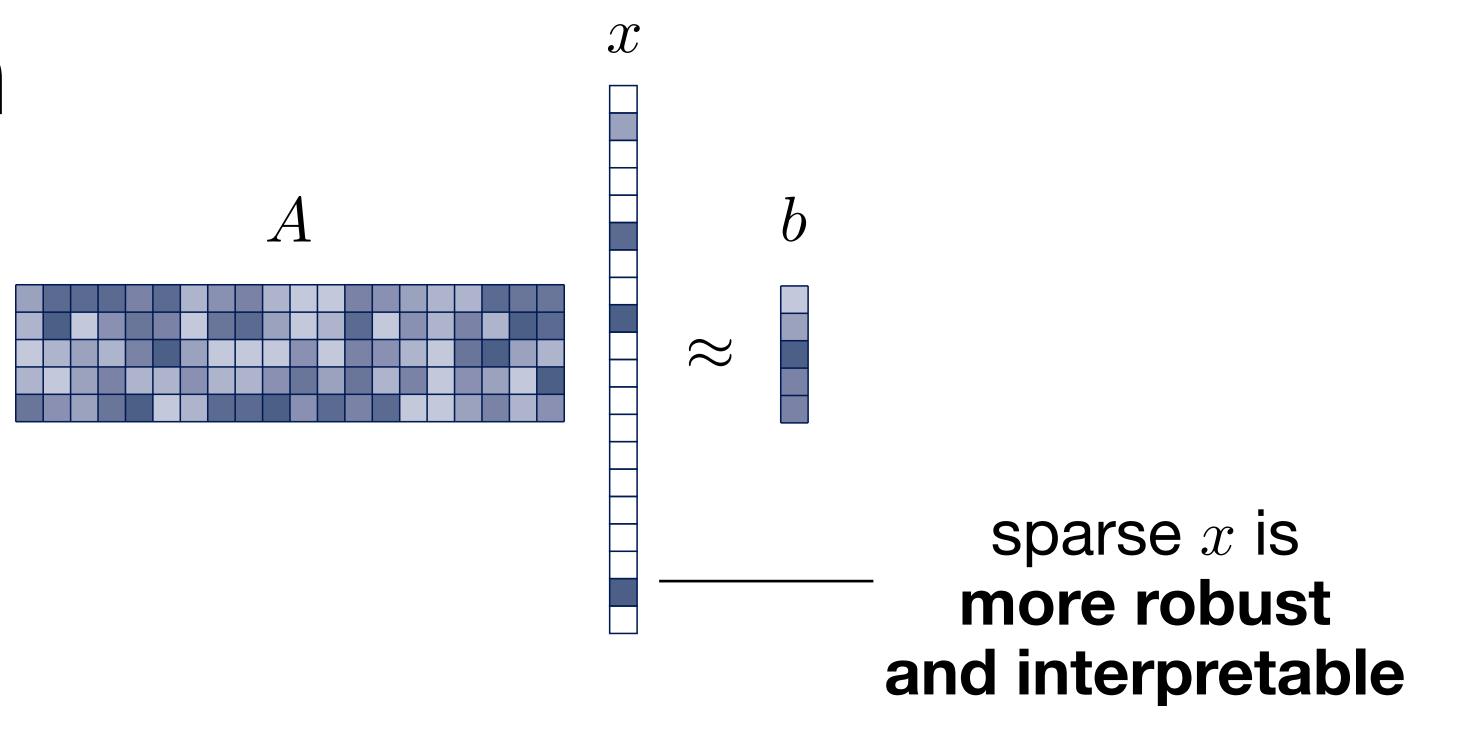
$$2$$
-norm \Longrightarrow least-squares

$$||Ax - b||_2^2 = \sum_{i} (f(z_i) - y_i)^2$$

Sparse regression

Regressor selection

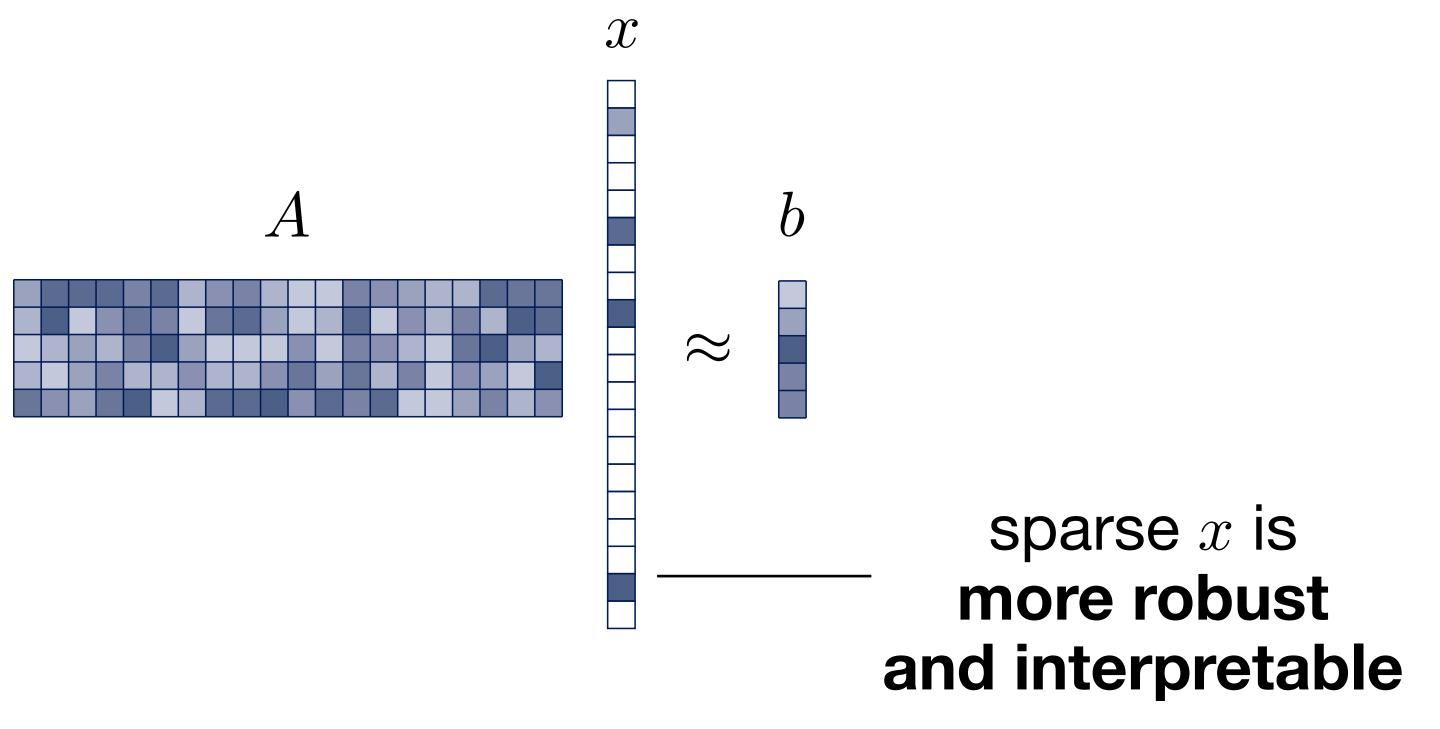
minimize $||Ax-b||_2^2$ subject to $\operatorname{card}(x) \leq k$ (very hard)



Sparse regression

Regressor selection

minimize
$$||Ax-b||_2^2$$
 subject to $\operatorname{card}(x) \leq k$ (very hard)



Add regularization to the objective

Regularized regression (ridge)

minimize
$$||Ax - b||_2^2 + \gamma ||x||_2^2$$

Regularized regression (lasso)

minimize
$$||Ax - b||_2^2 + \gamma ||x||_1$$

Lasso vs ridge regression

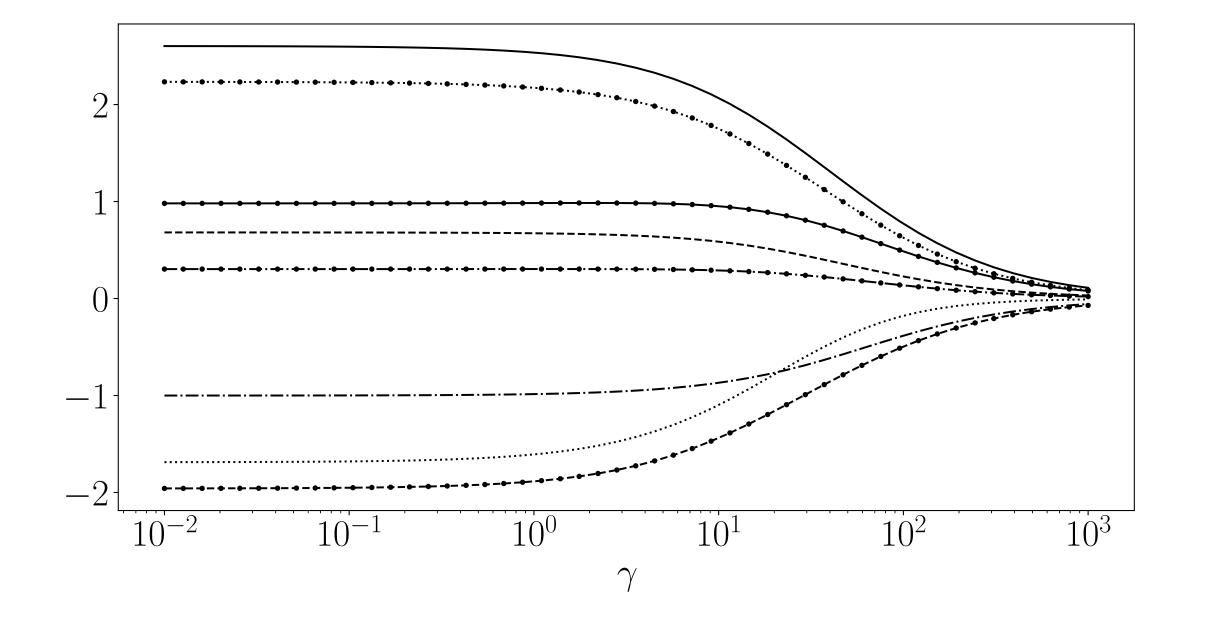
Regularized regression (ridge)

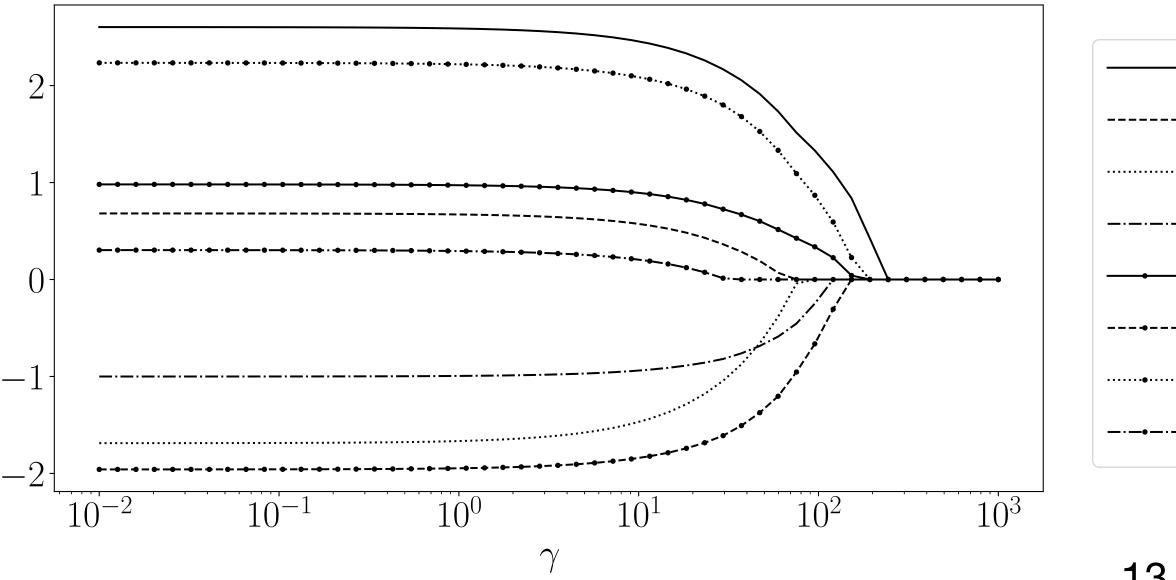
minimize
$$||Ax - b||_2^2 + \gamma ||x||_2^2$$

Regularized regression (lasso)

minimize
$$||Ax - b||_2^2 + \gamma ||x||_1$$

Regularization paths





We have a total of n assets

 x_i is fraction of money invested in asset i p_i is the relative price change of asset i

We have a total of n assets

 x_i is fraction of money invested in asset i p_i is the relative price change of asset i $p^T x$

We have a total of n assets

 x_i is fraction of money invested in asset i p_i is the relative price change of asset i $p^T x$

p random variable: mean μ , covariance Σ

We have a total of n assets

 x_i is fraction of money invested in asset i p_i is the relative price change of asset i $p^T x$

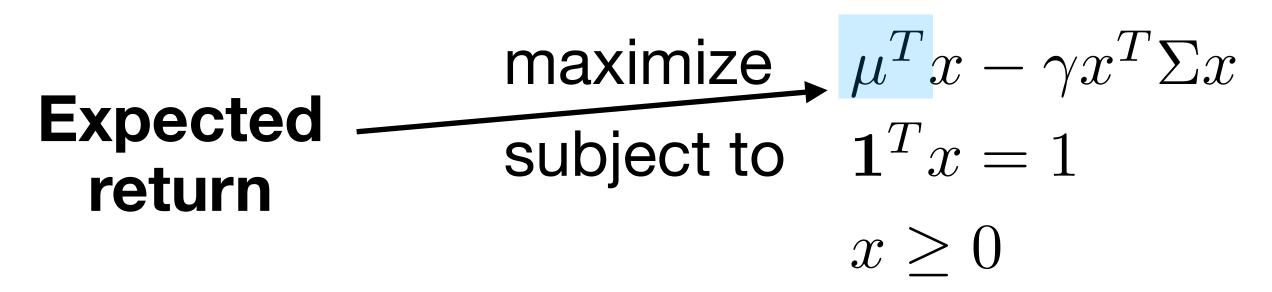
p random variable: mean μ , covariance Σ

$$\begin{array}{ll} \text{maximize} & \mu^T x - \gamma x^T \Sigma x \\ \text{subject to} & \mathbf{1}^T x = 1 \\ & x \geq 0 \end{array}$$

We have a total of n assets

 x_i is fraction of money invested in asset i p_i is the relative price change of asset i $p^T x$

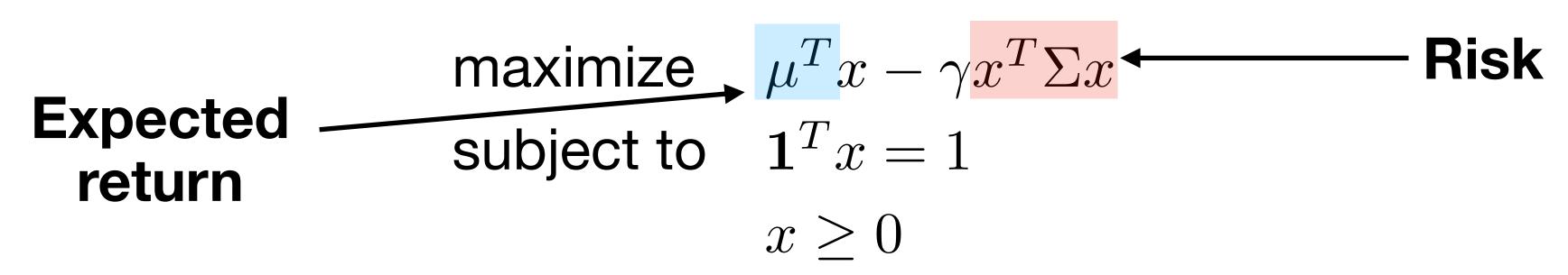
p random variable: mean μ , covariance Σ



We have a total of n assets

 x_i is fraction of money invested in asset i p_i is the relative price change of asset i $p^T x$

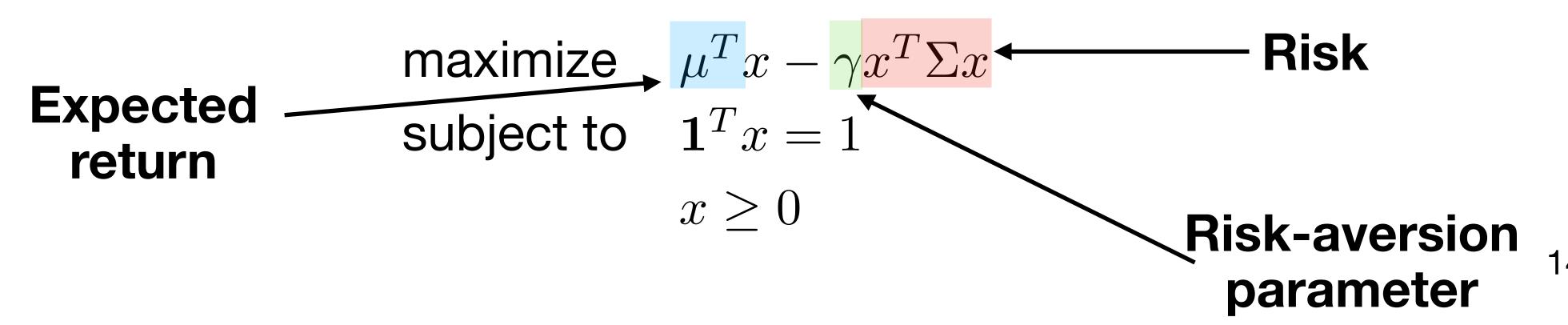
p random variable: mean μ , covariance Σ



We have a total of n assets

 x_i is fraction of money invested in asset i p_i is the relative price change of asset i $p^T x$

p random variable: mean μ , covariance Σ



Convex analysis review

Extended real-value functions

$$f(x)$$
 on $dom f$

Extended-value extension

$$\tilde{f}(x) = \begin{cases} f(x) & x \in \mathbf{dom}f \\ \infty & x \notin \mathbf{dom}f \end{cases}$$

Always possible to evaluate functions

$$\mathbf{dom}\tilde{f} = \{x \mid \tilde{f}(x) < \infty\}$$

Indicator functions

Indicator function

$$\mathcal{I}_C(x) = \begin{cases} 0 & x \in C \\ \infty & x \notin C \end{cases}$$

Constrained form

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in C \end{array}$

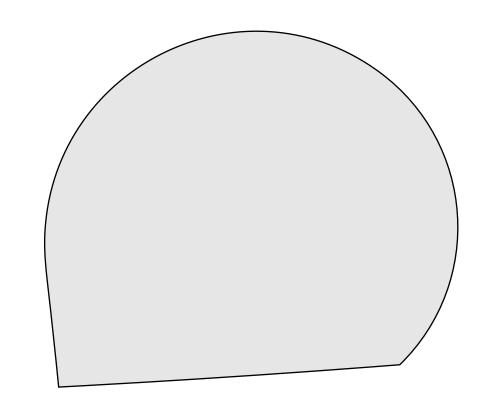
Unconstrained form

minimize
$$f(x) + \mathcal{I}_C(x)$$

Convex set

Definition

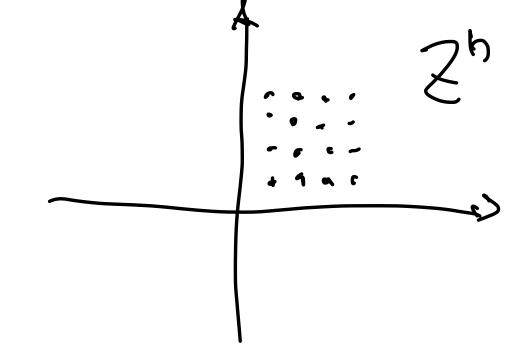
For any $x, y \in C$ and any $\alpha \in [0, 1]$

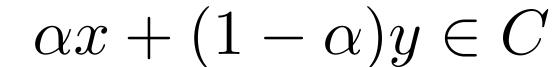


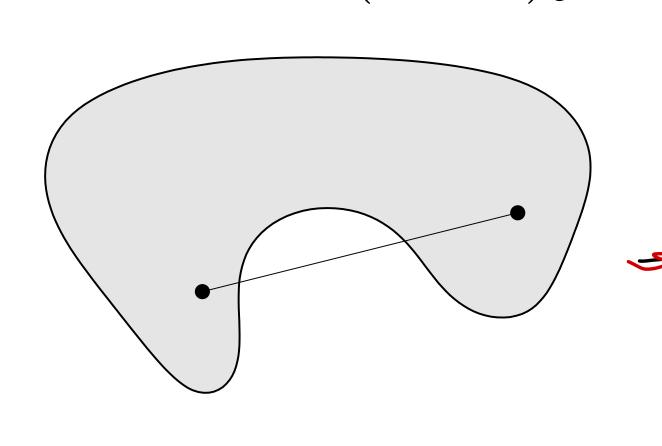
Convex

Examples

- \mathbf{R}^n
- Hyperplanes
- Hyperspheres
- Polyhedra

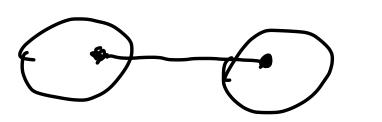






Examples

- Cardinality constraint $card(x) \le k$
- \mathbf{Z}^n
- Any disjoint set



Cond(x/51)

Convex combinations

Convex combination

$$\alpha_1 x_1 + \cdots + \alpha_k x_k$$
 for any x_1, \ldots, x_k and $\alpha_1, \ldots, \alpha_k$ such that $\alpha_i \geq 0$, $\sum_{i=1}^k \alpha_i = 1$

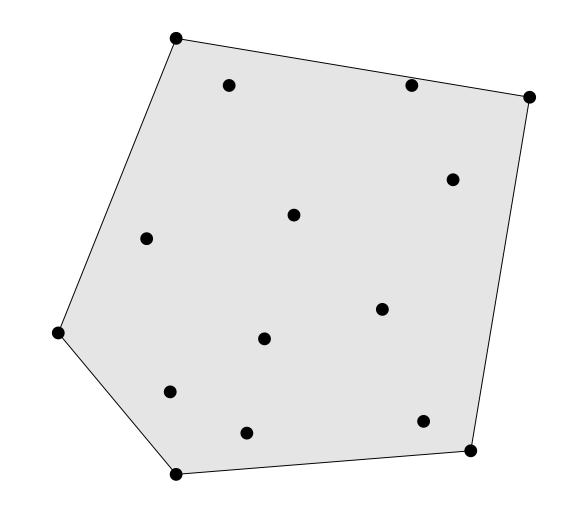
Convex combinations

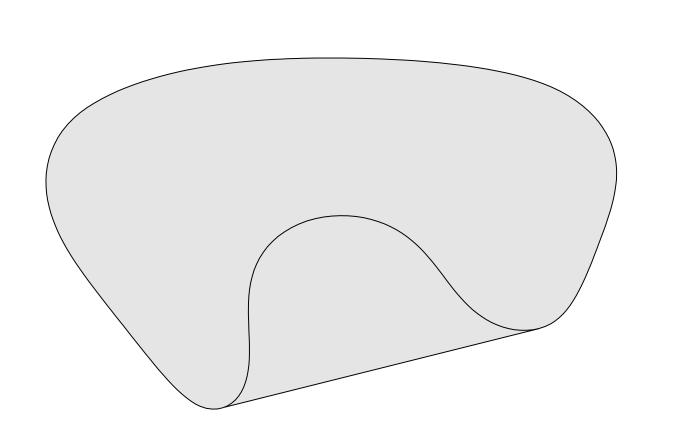
Convex combination

 $\alpha_1 x_1 + \cdots + \alpha_k x_k$ for any x_1, \ldots, x_k and $\alpha_1, \ldots, \alpha_k$ such that $\alpha_i \ge 0$, $\sum_{i=1}^k \alpha_i = 1$

Convex hull

$$\operatorname{conv} C = \left\{ \sum_{i=1}^k \alpha_i x_i \mid x_i \in C, \quad \alpha_i \ge 0, \quad i = 1, \dots, k, \quad \mathbf{1}^T \alpha = 1 \right\}$$





Cones

Cone

 $x \in C \implies tx \in C \quad \text{for all} \quad t \ge 0$

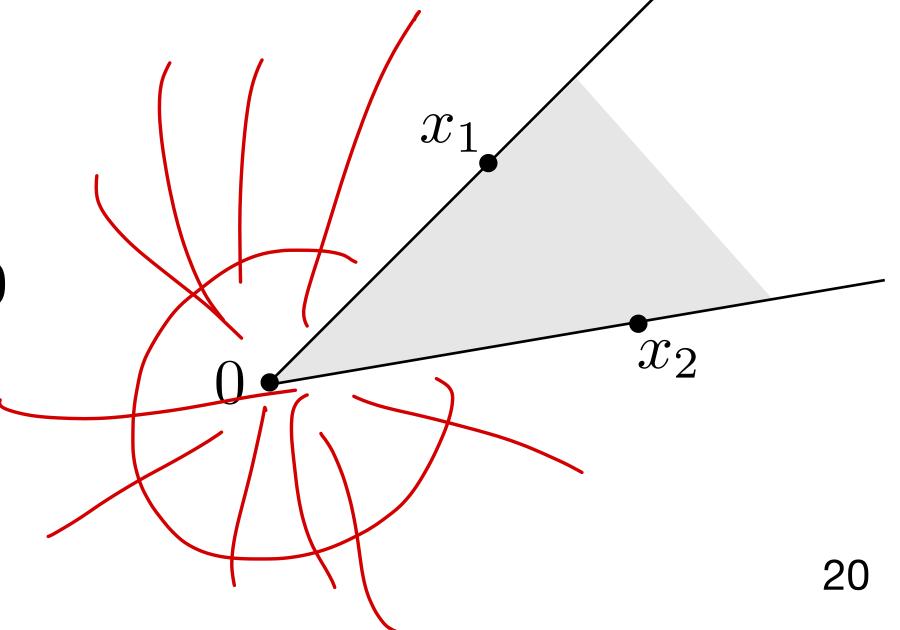
Cones

Cone

$$x \in C \implies tx \in C \quad \text{for all} \quad t \ge 0$$

Convex cone

 $x_1, x_2 \in C \implies t_1 x_1 + t_2 x_2 \in C \text{ for all } t_1, t_2 \ge 0$



Conic combinations

Conic combination

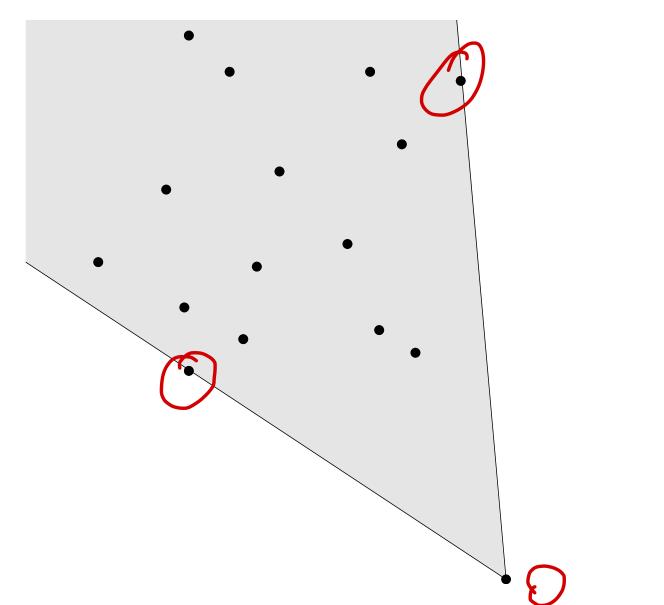
 $\alpha_1 x_1 + \cdots + \alpha_k x_k$ for any x_1, \ldots, x_k and $\alpha_1, \ldots, \alpha_k$ such that $\alpha_i \geq 0$

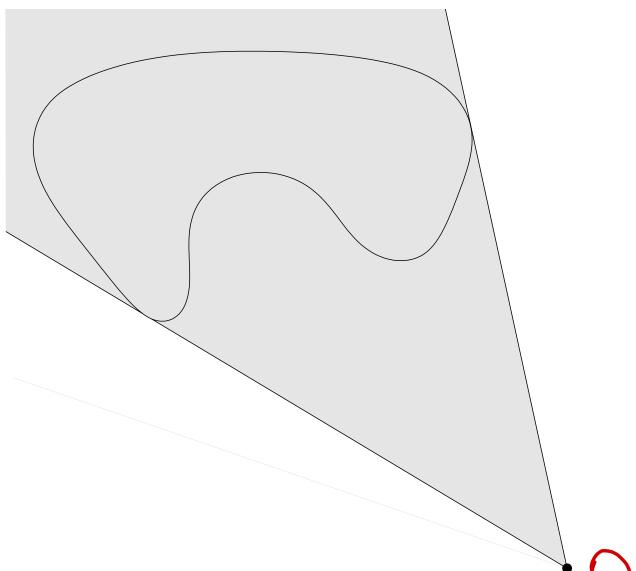
Conic combinations

Conic combination

 $\alpha_1 x_1 + \cdots + \alpha_k x_k$ for any x_1, \ldots, x_k and $\alpha_1, \ldots, \alpha_k$ such that $\alpha_i \geq 0$

$$\left\{ \sum_{i=1}^{k} \alpha_i x_i \mid x_i \in C, \quad \alpha_i \ge 0, \quad i = 1, \dots, k \right\}$$





Cones

Examples

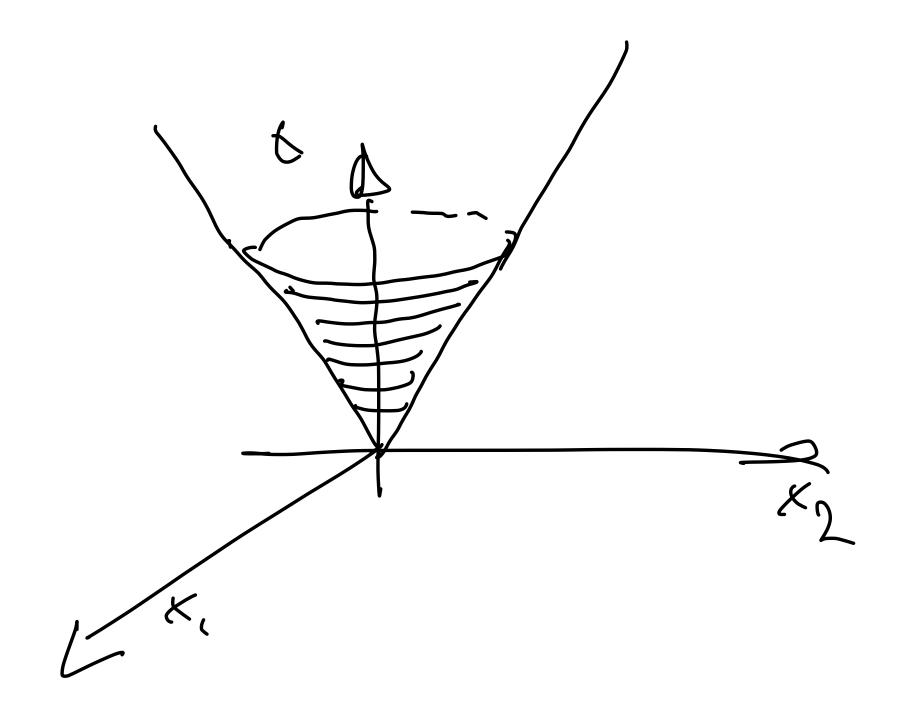
Nonnegative orthant

$$\mathbf{R}_{+}^{n} = \{ x \in \mathbf{R}^{n} \mid x \ge 0 \}$$

Norm-cone

$$\{(x,t) \mid ||x|| \le t\}$$

(if 2-norm, second-order cone)



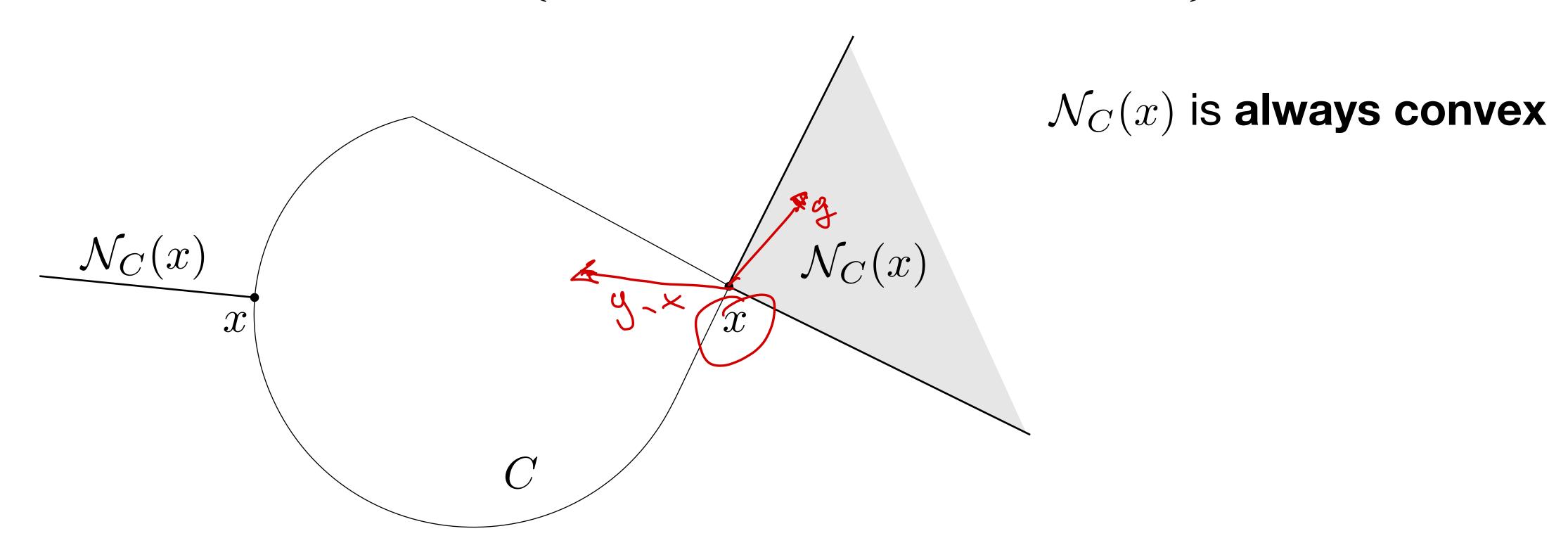
Positive semidefinite cone

$$\mathbf{S}^n_+ = \{X \in \mathbf{S}^n \mid \underline{z^T X z} \ge 0, \quad \text{for all} \quad z \in \mathbf{R}^n \}$$

Normal cone

For any set C and point $x \in C$, we define

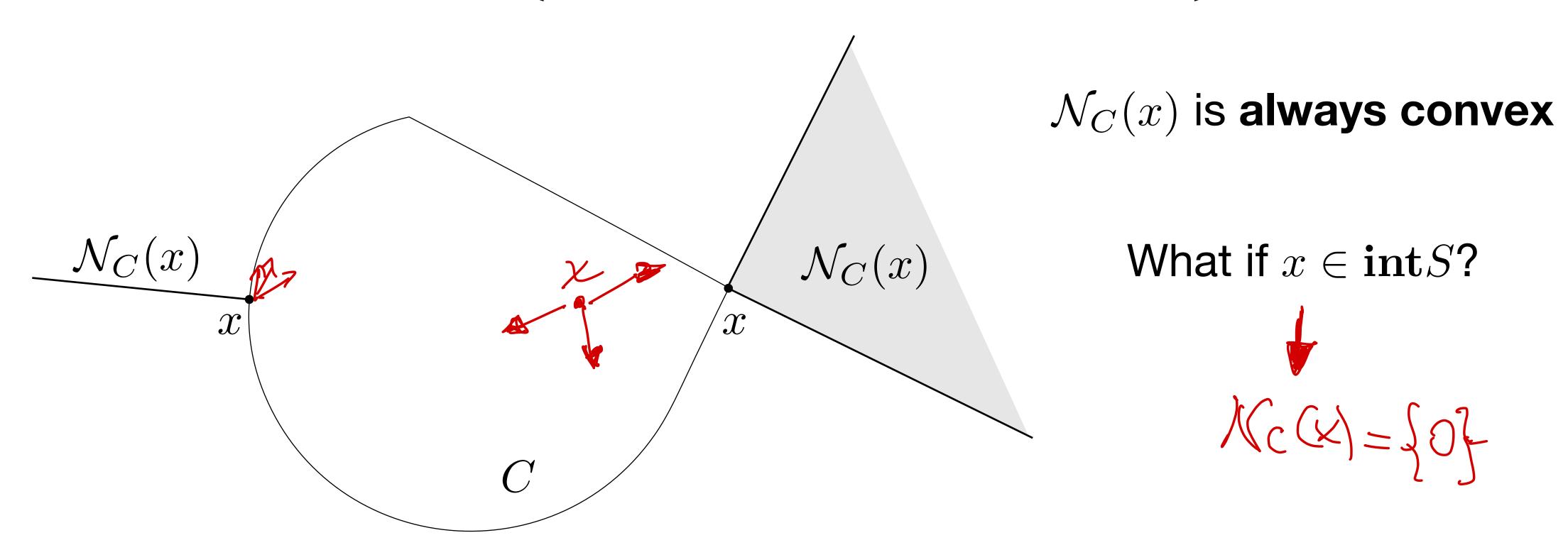
$$\mathcal{N}_C(x) = \left\{ g \mid g^T(y - x) \le 0, \text{ for all } y \in C \right\}$$



Normal cone

For any set C and point $x \in C$, we define

$$\mathcal{N}_C(x) = \left\{ g \mid g^T(y - x) \le 0, \text{ for all } y \in C \right\}$$



Gradient

Derivative

If $f(x): \mathbf{R}^n \to \mathbf{R}^m$ continuously differentiable, we define

$$Df(x)_{ij} = \frac{\partial f_i(x)}{\partial x_j}, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

Gradient

Derivative

If $f(x): \mathbf{R}^n \to \mathbf{R}^m$ continuously differentiable, we define

$$Df(x)_{ij} = \frac{\partial f_i(x)}{\partial x_j}, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

Gradient If $f: \mathbf{R}^n \to \mathbf{R}$, we define

$$\nabla f(x) = Df(x)^T$$

Example

$$f(x) = (1/2)x^T P x + q^T x$$
$$\nabla f(x) = P x + q$$

Gradient

Derivative

If $f(x): \mathbf{R}^n \to \mathbf{R}^m$ continuously differentiable, we define

$$Df(x)_{ij} = \frac{\partial f_i(x)}{\partial x_j}, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

Gradient

If $f: \mathbf{R}^n \to \mathbf{R}$, we define

$$\nabla f(x) = Df(x)^T$$

Example

$$f(x) = (1/2)x^T P x + q^T x$$
$$\nabla f(x) = P x + q$$

First-order approximation

$$f(y) \approx f(x) + \nabla f(x)^T (y - x)$$
 (affine function of y)

Hessian

Hessian matrix (second derivative)

If $f(x): \mathbf{R}^n \to \mathbf{R}$ second-order differentiable, we define

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

Hessian

Hessian matrix (second derivative)

If $f(x): \mathbf{R}^n \to \mathbf{R}$ second-order differentiable, we define

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

Example

$$f(x) = (1/2)x^T P x + q^T x$$
$$\nabla^2 f(x) = P$$

Hessian

Hessian matrix (second derivative)

If $f(x): \mathbf{R}^n \to \mathbf{R}$ second-order differentiable, we define

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

Example

$$f(x) = (1/2)x^T P x + q^T x$$
$$\nabla^2 f(x) = P$$

Second-order approximation

$$f(y) \approx f(x) + \nabla f(x)^T (y-x) + (1/2)(y-x)^T \nabla^2 f(x)(y-x)$$
 (quadratic function of y)

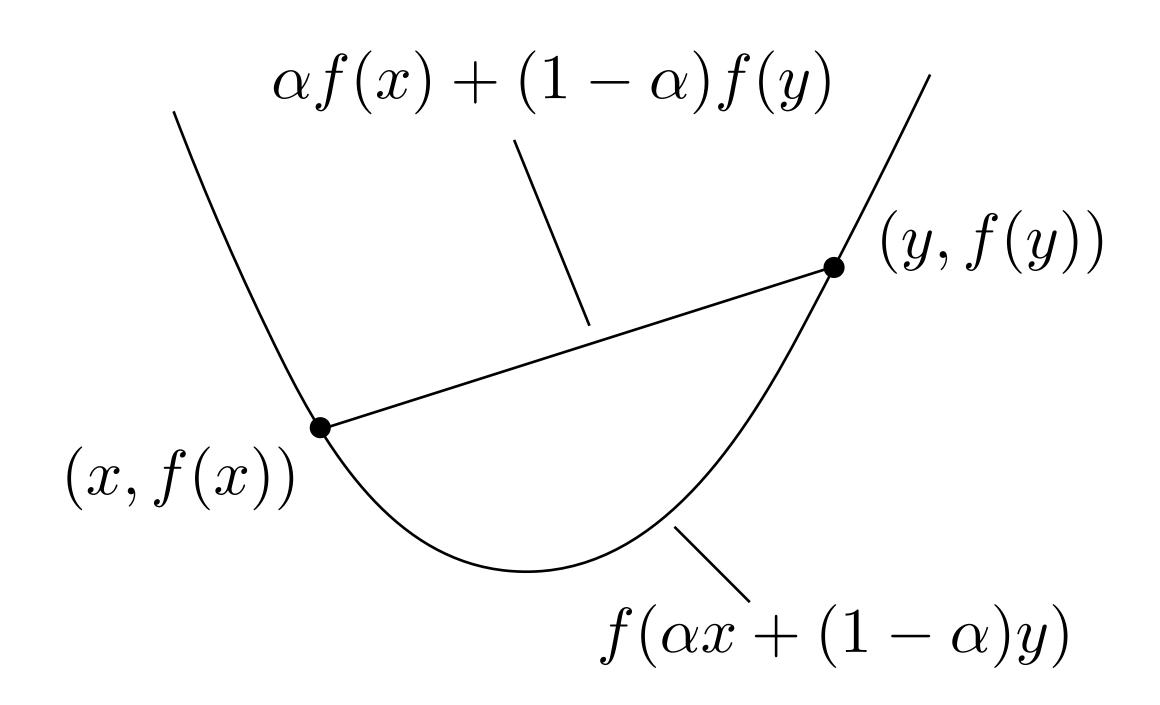
Convex optimization

Convex functions

Convex function

For every $x, y \in \mathbf{R}^n$, $\alpha \in [0, 1]$

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

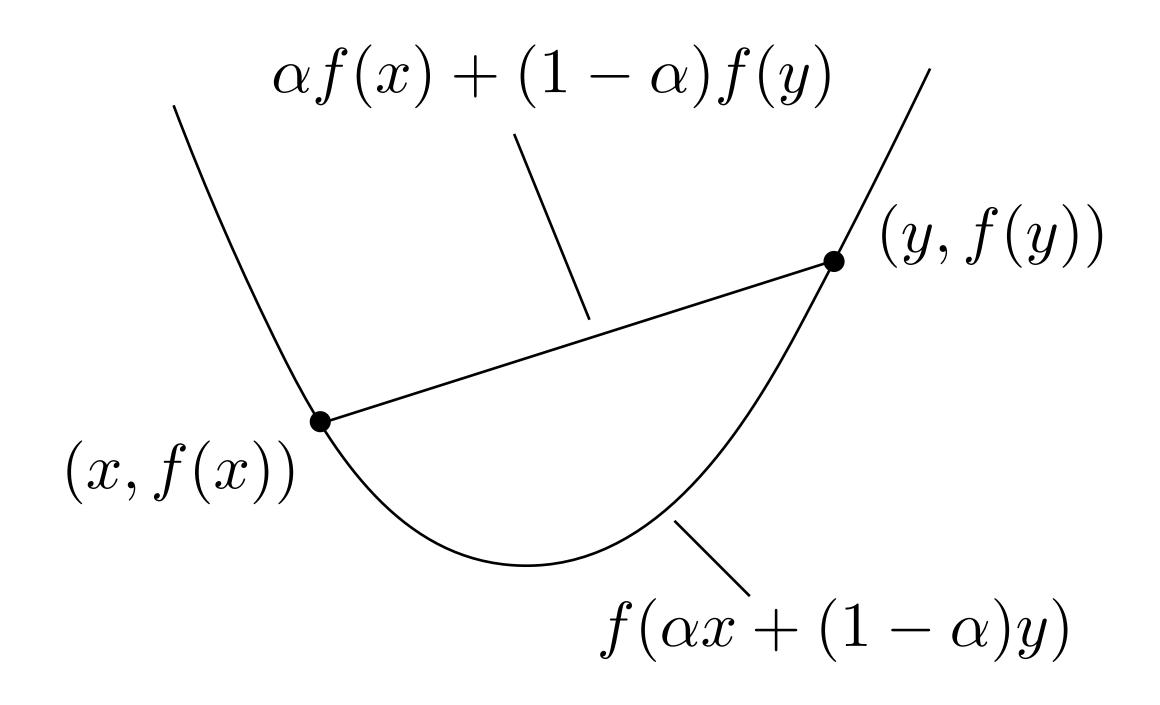


Convex functions

Convex function

For every $x, y \in \mathbf{R}^n$, $\alpha \in [0, 1]$

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$



Concave function

f is concave if and only if -f is convex

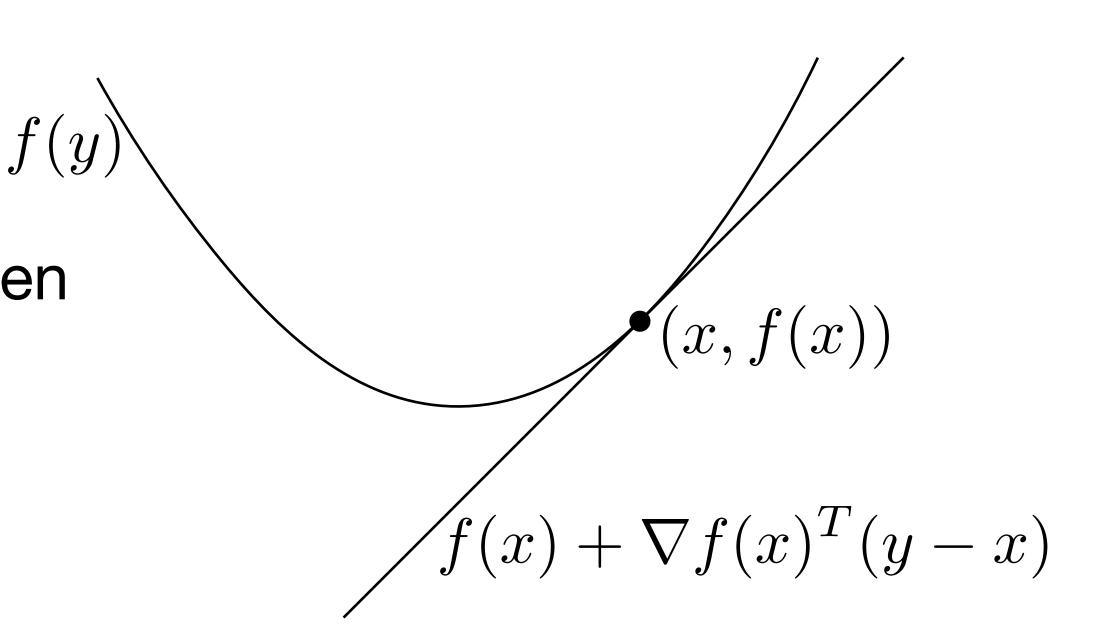
Convex conditions

First-order

Let f be a continuous differentiable function, then it is convex if and only if dom f is convex and

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all $x, y \in \mathbf{dom} f$



Convex conditions

First-order

Let f be a continuous differentiable function, then it is convex if and only if dom f is convex and

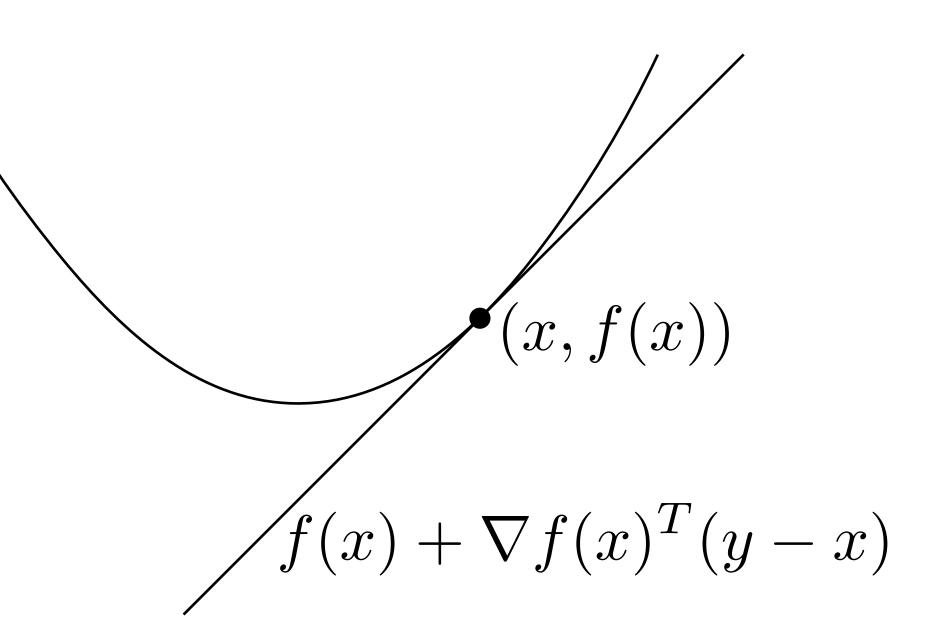
$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all $x, y \in \mathbf{dom} f$

If f is twice differentiable, then f is convex if and only if dom f is convex and

$$\nabla^2 f(x) \succeq 0$$

for all $x \in \mathbf{dom} f$



f(y)

Basic definition (inequality)

First and second order conditions (gradient, hessian)

Basic definition (inequality)

First and second order conditions (gradient, hessian)

Hard!

Basic definition (inequality)

First and second order conditions (gradient, hessian)

Convex calculus (directly construct convex functions)

- Library of basic functions that are convex/concave
- Calculus rules or transformations that preserve convexity

Hard!

Basic definition (inequality)

First and second order conditions (gradient, hessian)

Convex calculus (directly construct convex functions)

- Library of basic functions that are convex/concave
- Calculus rules or transformations that preserve convexity

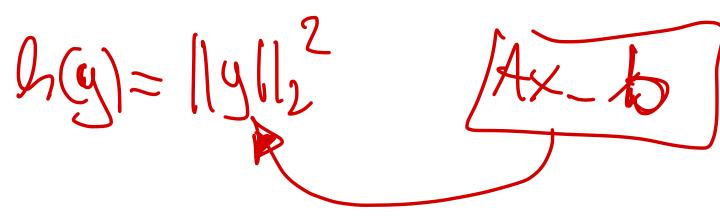
Easy!

Hard!

29

Disciplined Convex Programming

Convexity by construction



General composition rule

 $h(f_1(x), f_2(x), \dots, f_k(x))$ is convex when h is convex and for each i

- h is nondecreasing in argument i and f_i is convex, or
- h is nonincreasing in argument i and f_i is concave, or
- f_i is affine

Disciplined Convex Programming

Convexity by construction

General composition rule

 $h(f_1(x), f_2(x), \dots, f_k(x))$ is convex when h is convex and for each i

- h is nondecreasing in argument i and f_i is convex, or
- h is nonincreasing in argument i and f_i is concave, or
- f_i is affine

Disciplined Convex Programming

Convexity by construction

General composition rule

 $h(f_1(x), f_2(x), \dots, f_k(x))$ is convex when h is convex and for each i

- h is nondecreasing in argument i and f_i is convex, or
- h is nonincreasing in argument i and f_i is concave, or
- f_i is affine

Only sufficient condition

Check your functions at https://dcp.stanford.edu/

More details and examples in ORF523

Convex optimization problems

minimize
$$f(x)$$
 subject to $g_i(x) \leq 0, \quad i = 1, \dots, m$

$$f: \mathbf{R}^n \to \mathbf{R}$$
 Convex objective function

$$g_i: \mathbf{R}^n \to \mathbf{R}$$
 Convex constraints functions

Convex feasible set

$$C = \{x \mid g_i(x) \le 0, \quad i = 1, \dots, m\}$$

Modelling software for convex optimization

Modelling tools simplify the formulation of convex optimization problems

- Construct problems using library of basic functions
- Verify convexity by general composition rule
- Express the problem in input format required by a specific solver

Modelling software for convex optimization

Modelling tools simplify the formulation of convex optimization problems

- Construct problems using library of basic functions
- Verify convexity by general composition rule
- Express the problem in input format required by a specific solver

Examples

- CVX, YALMIP (Matlab)
- CVXPY (Python)
- Convex.jl (Julia)

Solving convex optimization problems cvxpy

```
minimize ||Ax - b||_2 subject to 0 \le x \le 1
```

```
x = cp.Variable(n)
objective = cp.Minimize(cp.norm(A*x - b))
constraints = [0 <= x, x <= 1]
problem = cp.Problem(objective, constraints)

# The optimal objective value is returned by `problem.solve()`.
result = problem.solve()

# The optimal value for x is stored in `x.value`.
print(x.value)</pre>
```

Local vs global minima (optimizers)

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in C \end{array}$

Local optimizer x

$$f(y) \geq f(x), \quad \forall y$$
 such that $||x-y||_2 \leq R$

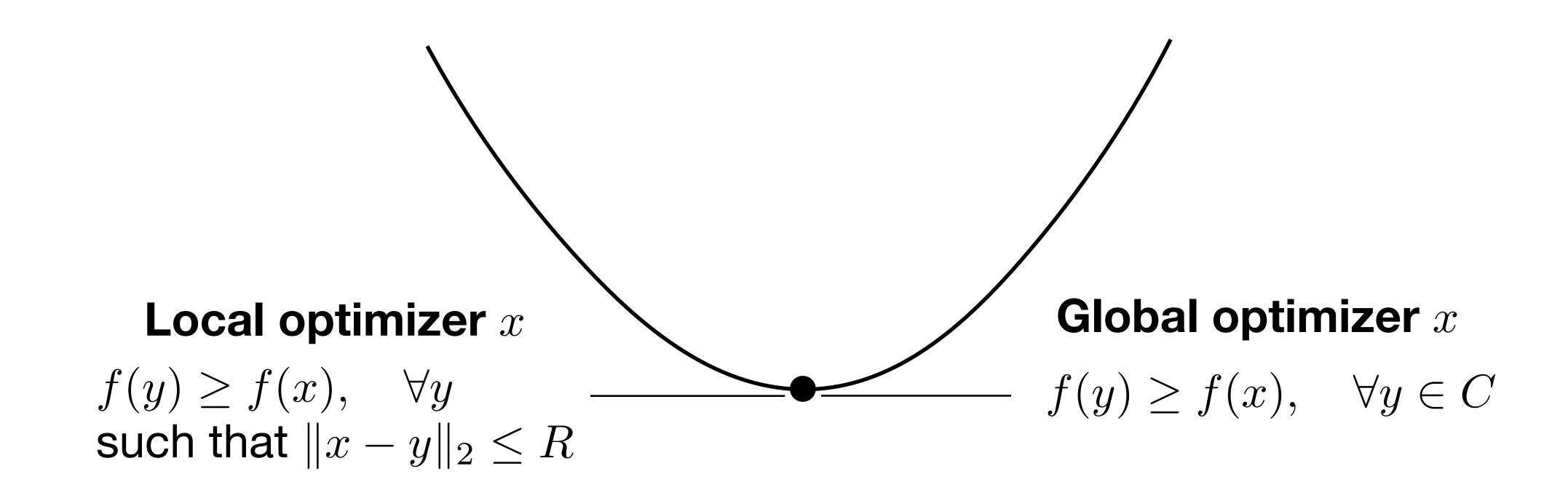


Global optimizer x

$$f(y) \ge f(x), \quad \forall y \in C$$

Theorem

For a convex optimization problem, any local minimum is a global minimum



Proof (contradiction)

Suppose that f is convex and x is a local (not global) minimum for f, i.e.,

$$f(y) \ge f(x)$$
, $\forall y$ such that $||x - y||_2 \le R$.

Therefore, there exists a feasible z such that ||z-x||>R and f(z)< f(x).

Proof (contradiction)

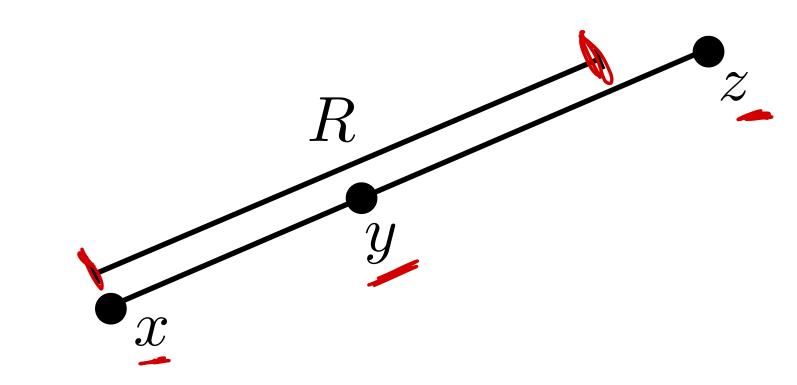
Suppose that f is convex and x is a local (not global) minimum for f, i.e.,

$$f(y) \ge f(x)$$
, $\forall y \text{ such that } ||x - y||_2 \le R$.

Therefore, there exists a feasible z such that ||z - x|| > R and f(z) < f(x).

Consider
$$y=(1-\alpha)x+\alpha z$$
 with $\alpha=\frac{R}{2\|z-x\|_2}$. Then, $\|y-x\|_2=\alpha\|z-x\|_2=R/2< R$, and

by convexity of the feasible set, y is feasible.



Proof (contradiction)

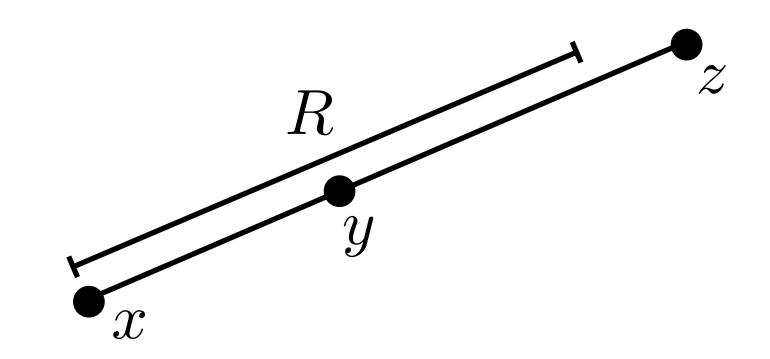
Suppose that f is convex and x is a local (not global) minimum for f, i.e.,

$$f(y) \ge f(x), \quad \forall y \text{ such that } ||x - y||_2 \le R.$$

Therefore, there exists a feasible z such that ||z - x|| > R and f(z) < f(x).

Consider
$$y = (1 - \alpha)x + \alpha z$$
 with $\alpha = \frac{R}{2\|z - x\|_2}$.

Then, $||y-x||_2 = \alpha ||z-x||_2 = R/2 < R$, and by convexity of the feasible set, y is feasible.



By convexity of f we have $f(y) \leq (1 - \alpha)f(x) + \alpha f(z) < f(x)$, which contradicts the local optimum definition.

Proof (contradiction)

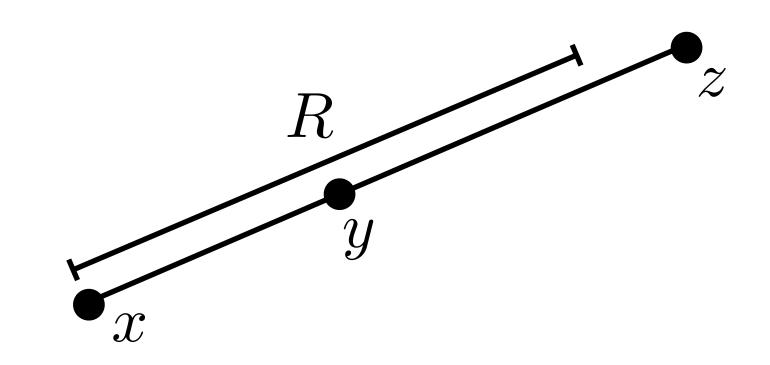
Suppose that f is convex and x is a local (not global) minimum for f, i.e.,

$$f(y) \ge f(x)$$
, $\forall y \text{ such that } ||x - y||_2 \le R$.

Therefore, there exists a feasible z such that ||z - x|| > R and f(z) < f(x).

Consider
$$y = (1 - \alpha)x + \alpha z$$
 with $\alpha = \frac{R}{2\|z - x\|_2}$.

Then, $||y - x||_2 = \alpha ||z - x||_2 = R/2 < R$, and by convexity of the feasible set, y is feasible.



By convexity of f we have $f(y) \le (1 - \alpha)f(x) + \alpha f(z) < f(x)$, which contradicts the local optimum definition.

Therefore, x is globally optimal.

"...in fact, the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."

R. Tyrrell Rockafellar, in SIAM Review, 1993

Nonlinear optimization

Topics of this part of the course

Conditions to characterize minima

Algorithms to find (local) minima

(if applied to convex problems, they find global minima)

Introduction to nonlinear optimization

Today, we learned to:

- Define nonlinear optimization problems
- Understand convex analysis fundamentals (sets, cones, functions, and gradients)
- Verify convexity and construct convex optimization problems
- Define convex optimization problems in CVXPY
- Understand the importance of convexity vs nonconvexity in optimization

Next lecture

• Optimality conditions in nonlinear optimization