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u,v > 0 A >0
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LP strict complementarity Self-dual
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Midterm information
Thursday, October 14

* Take-home (using gradescope)

 Can use any material from the class

 Can’t communicate with anyone, can’t google results
* |Length: 24 hours window to complete it

» After download, clock starts: 1.5 hours + 0.5 to submit (total 2 hours)

No office hours on midterm day



Today'’s lecture
[Chapter 2-4 and 6, CO] [Chapter A, B, FCA]

* Nonlinear optimization
 Examples
 Convex analysis review

 Convex optimization



What if the problem is no longer linear?



Nonlinear optimization

minimize  f(x)
subjectto g¢g;(x) <0, i=1,...,m

r = (21,...,Z,) Variables
JR" =R Nonlinear objective function

gi - R" = R Nonlinear constraints functions

Feasible set
C=A{x]gi(x) <0, +1=1,...,m}



Small example

minimize  0.5x% + 0.25x3
subjectto et —2 — 29 <0
(1 — 1)2 + 22 —3 <0
1 > 0
o > 1

Contour plot has curves
(no longer lines)

Feasible set is
no longer a polyhedron



Integer optimization

It’s still nonlinear optimization

minimize  f(x) L0
subjectto z € Z
0.97
A D W S0 W S W S Y G G
. n —0.97
minimize  f(x)
subject to sin(wx) =0 I,




We cannot solve most nonlinear
optimization problems




Examples of (solvable) nonlinear
optimization



Regression

Fit affine function f(z) = a+ 5z to m points (z;, y;)

Approximation problem Az ~ b where A=

1-norm or co-norm —

2-norm —

Goal

minimize ||Ax — b

linear optimization

least-squares

| Az — b3 =) _(f(z:) —v:)?

(

8}

B
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Sparse regression

Regressor selection A

minimize  ||Az — b||3 w I

subjectto card(z) <k

| sparse x Is
(very hard) . more robust
and interpretable

Add regularization to the objective

Regularized regression (ridge) Regularized regression (lasso)

minimize ||Ax — b||5 + v||z]|3 minimize ||Ax — b||5 + v||z|:
12



Regularized regression (ridge)

minimize ||Axz — b||3 + v||z||3

Lasso vs ridge regression

Regularized regression (lasso)

minimize

Regularization paths
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Portfolio optimization

We have a total of n assets

x; IS fraction of money invested in asset ¢ Returns
p; 1S the relative price change of asset : pla

p random variable: mean pu, covariance .

Portfolio optimization

maximize | plx — yal Sx+—Risk

7
Expected subjectto 1'z =1
return
z =0 Risk-aversion i

parameter



Convex analysis review



Extended real-value functions

f(z) on domf

Extended-value extension

. f(r) = € domf
00 r ¢ domf

Always possible to evaluate functions
domf = {z | f(x) < oo}
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Indicator functio

Constrained form
minimize  f(x)
subjectto xzeC

ns

Indicator function

S

Unconstrained form

minimize f(xz) + Zo(x)
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Convex set
Definition
Forany x,y € C'and any a € |0, 1]

Convex

Examples
° Rn
» Hyperplanes
» Hyperspheres
» Polyhedra

ar+ (1—a)yeC

Not convex

Examples

» Cardinality constraint card(z) < k
AL
* Any disjoint set
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Convex combinations

Convex combination

ar1z1 + -+ agxy forany zq,...,zx and aq, ..., such that o; > 0, 37 a; = 1

Convex hull

k
conVC’—{Zaia’;ixiEC, o, >0, 21=1,...,k, 1Ta—1}
i=1
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Cones

Cone

rec(C = teecC forall t>0

Convex cone
Ir1,To € C =

t1x1 + toxo € C for all t1,t9 > 0
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Conic combinations

Conic combination
o1xr1 + -+ apxg forany x4, ..., 2 and a4, ..., o such that a; > 0

Conic hull

k
{ZO@QZ‘@f@EC, a; > 0, Zl,,k}
1=1
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Cones

Examples

Nonnegative orthant
R} ={z e R" |z >0}

Norm-cone
{(z,t) | ||z|| <t} (if 2-norm, second-order cone)

Positive semidefinite cone
S" ={XeS"|z'Xz>0, foral zeR"}
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Normal cone

For any set C' and point x € (', we define

Ne(x)={glg"(y—=) <0, forallye C}

N¢(z) is always convex

What if £ € int.S?
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Gradient

Derivative

If f(z): R™ — R™ continuously differentiable, we define
Df(x)ijzﬁg;(j), i=1...m j=1....n

Gradient Example

If f:R"™ — R, we define f(x)=(1/2)z" Px +q' z
Vf(z) = Df(x)" Vf(z) =Pz +q

First-order approximation

f(y) =~ f(x) +Vf(z) (y — )

(affine function of y)
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Hessian

Hessian matrix (second derivative)
If f(x): R™ — R second-order differentiable, we define

0* .
vzf(m)’b] — ax{a(ija 1, =1,...,n
Example
f(x)=(1/2)z" Pz +q' x
Vf(z) =P

Second-order approximation

fly) = f(x) + V(@) (y— )+ (1/2)(y — )" V2 f(2)(y — )
(quadratic function of y)
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Convex optimization



Convex functions

Convex function
For every z,y € R", o € [0, 1] flaz+ (1 —-a)y) < af(x) + (1 —a)f(y)

Concave function
f I1s concave If and only If — f Is convex
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Convex conditions

First-order )

Let f be a continuous differentiable function, then
it is convex if and only if dom f is convex and

f(y) > f(x) + V()" (y — )

forall z,y € domf

Second-order
If f Is twice differentiable, then f is convex if

and only if dom f Is convex and
Vi f(z) =0

forall x € domf
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Verifying convexity

Basic definition (inequality)

First and second order conditions (gradient, hessian)

Convex calculus (directly construct convex functions)

* Library of basic functions that are convex/concave
» (Calculus rules or transformations that preserve convexity

—_—

—_—

Hard!

Easy!
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Disciplined Convex Programming

Convexity by construction

General composition rule

h(fi(x), fa(x),..., fu(x)) is convex when h is convex and for each i
Only sufficient
* h IS nondecreasing in argument ¢ and f; IS convex, or condition
* h IS honincreasing in argument ¢ and f; IS concave, or
» f; Is affine

Check your functions at https://dcp.stanford. edu/
More details and examples in ORF523
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Convex optimization problems

minimize  f(x)

subjectto g¢g;(x) <0, 2=1,...,m
f:R"—=R Convex obijective function
gi: R" = R Convex constraints functions

Convex feasible set
C={{x]gi(x) <0, i=1,...,m}
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Modelling software for convex optimization

Modelling tools simplify the formulation of convex optimization problems
* Construct problems using library of basic functions
* Verify convexity by general composition rule

* EXpress the problem in input format required by a specific solver

Examples

o CVX, YALMIP (Matlab)
 CVXPY (Python)
e Convex.jl (Julia)
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Solving convex optimization problems
CVXPY

minimize  ||[Az — b||2
subjectto 0< <1

X = cp.Variable(n)

objective = cp.Minimize(cp.norm(A*x - b))
constraints = [0 <= x, X <= 1]

problem = cp.Problem(objective, constraints)

result = problem.solve()

print (x.value)
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Local vs global minima (optimizers)

minimize  f(x)
subjectto xz e C

Local optimizer «
f(y) > f(z), Wy Global optimizer

such that ||z — y|[s < R fly) > f(z), VyeC
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Optimality and convexity

Theorem

For a convex optimization problem, any local minimum is a global minimum

Global optimizer x
fly) =2 f(z), Vyel

Local optimizer «

fly) = f(z), Yy
such that ||z — y|ls < R
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Optimality and convexity
Proof (contradiction)

Suppose that f is convex and z is a local (not global) minimum for f, i.e.,
f(y) > f(z), Vysuchthat |z —y|2 < R.

Therefore, there exists a feasible z such that ||z — z|| > R and f(z) < f(x).

R
2|z — x||o R
Then, ||y — |2 = a|lz — 2|l = R/2 < R, and
by convexity of the feasible set, vy is feasible.

Consider y = (1 — a)x + az with a =

Y

By convexity of f we have f(y) < (1 —a)f(z) + af(z) < f(x),
which contradicts the local optimum definition.

Therefore, z is globally optimal.
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"...In fact, the great watershed in optimization
Isn't between linearity and nonlinearity, but
convexity and nonconvexity."

R. Tyrrell Rockafellar, in SIAM Review, 1993
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Nonlinear optimization

Topics of this part of the course

Conditions to characterize minima

Algorithms to find (local) minima

(if applied to convex problems, they find global minima)
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Introduction to nonlinear optimization

Today, we learned to:

Define nonlinear optimization problems

Understand convex analysis fundamentals (sets, cones, functions, and
gradients)

Verify convexity and construct convex optimization problems
Define convex optimization problems in CVXPY

Understand the importance of convexity vs nonconvexity in optimization
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Next lecture

* Optimality conditions in nonlinear optimization
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