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Ed Forum

* For the interior-point methods, is the solution only "approximately correct” since it finds a solution
within some tolerance of satisfying the optimality conditions? In this case, do we say that interior-
point methods solve LPs in polynomial time (i.e. the worst-case complexity), or is there some other
variant that can theoretically obtain an exact solution in polynomial time?

 How do people come up with this Logarithmic function? How to interpret the value of this
Logarithmic function as the barriers?

* Are the €’s just some values very close to 0 that the residual norms and sTy have to be less than or
equal to? | assume since we distinguish them based on the primal, dual and gap that they’re
typically different values?

e Since o's bounds are [0,1] inclusive, does that mean there are cases where you would take a full
Newton or centering step?






(Sparse) Cholesky factorization

Every positive definite matrix A can be factored as
A=PLL"P* — P'AP=LL"

P permutation, L lower triangular

Permutations

» Reorder rows/cols of A with P to (heuristically) get sparser L
» P depends only on sparsity pattern of A (unlike LU factorization)
* |f Aisdense, wecanset P =1

Cost
- If A dense, typically O(n?°) but usually much less
» |t depends on the number of nonzeros in A, sparsity pattern, etc.
» Typically 50% faster than LU (need to find only one matrix)



Optimality conditions

Primal Dual
minimize ¢!z minimize ¢!z maximize —bly
subjectto Ax <b - subjectto Ax+s=0> subjectto A‘y+c=0

s >0 y >0

Optimality conditions

Ar+s—b=0
Aty+c=0
$iYi = 0

s,y >0



Analytic

Central path Center 1000
T — OO
minimize ¢’z — 7> " log(s;)
subjectto Az +s=050 |
Set of points (z*(7), s*(7),y* (7))
with 7 > 0 such that
Ar+s5s—-0=0 1/5
Aty +ec¢=0
SiYi = T
s,y > 0
Main idea 1/100
T

Follow central pathas  — 0



Strict complementarity

Primal Dual
minimize ¢z maximize —bly
subjectto Az +s=0b subjectto Aly+c=0

s > ( y > 0

Theorem
If the two problems have feasible solutions, then there exist feasible s and y

with a strict complementary sparsity pattern:
y; > 0,8, =0 or y; = 0,8, >0

In other words, s; +vy; >0

Proof (left as exercise)
Details in [Theorem 10.6, LP]



Main idea

Optimality conditions

hz,s,y) = | Aly+c
SY1

s,y >0

_ALB—I—S—I?_

= (

S = diag(s)
Y = diag(y)

» Apply variants of Newton’s method to solve h(x, s,y) =0

» Enforce s,y > 0 (strictly) at every iteration

» Motivation avoid getting stuck in “corners”



Algorithm step

Linear system

0 A I| |Ay —r, Duality measure
A0 0| |Az| = —Tq = sty
S 0 Y| |As —SY1+oul m

Centering parameter =0 = Newton step
o€ 0,1 c=1 = Centering step towards (x* (), s* (1), y* (1))

Line search to enforce s,y > 0
(z,8,y) « (z,8,y) + a(Az, As, Ay) 9



Primal-dual path-following algorithm

Initialization

1. Given (CC(), S0 ; y()) such that sg, yg > 0

Iterations

1. Choose o € |0, 1]

2. Solve

0 A I
AT 0 0
S 0 Y

ol

where 1 = st y/m

3. Find maximum « such that y + aAy > 0 and s + aAs > 0

4. Update (z,s,y) < (z,s,y) + a(Ax, As, Ay)

10



Path-following algorithm idea

Newton step .

-y

~Centering step. "}

o=1

|

’I

o =0

Combined step

Centering step
It brings towards the central path

and Is usually biased towards s,y > 0.
No progress on duality measure u

Newton step

It brings towards the zero duality
measure ;.. Quickly violates s,y > 0.

Combined step
Best of both worlds with longer

steps 11



Today'’s lecture
[Chapter 14, NO][Chapter 22, LP]

 Mehrotra predictor-corrector algorithm

* |mplementation detalls

» Homogeneous self-dual embedding

* |nterior-point vs simplex

12



Predictor-corrector algorithm



Main idea:

Predict and select centering parameter
Predict
Compute Newton direction

T Estimate
- Centering step. 3

5 =1 How good is the Newton step?

(how much can i decrease?)

o |
Newton step <. = -
o =10 N

Select centering parameter

Very roughly:
Pick o =~ 0 If Newton step is good

Combined step Pick 0 =~ 1 if Newton step Is 1tzlad



Select centering parameter

Newton step
(Axy, Asq, Ay,)

Maximum step-size

a, = max{a € [0,1] | s + aAs, > 0}

ag = max{a € [0,1] | y + aAy, > 0}

Duality measure candidate
(after Newton step)

(s + CVpASa)T(y + agAyg)

g —
Tr

Centering parameter heuristic o

3
- (%)
_—— g — -
v

15



Mehrotra correction

Newton step

0 A I]| Ay, —T)
AT 0 0| |Az,| = | —ry
S 0 Y| |Ase| |-SY1| ——  si(Aya)i +yi(Asa)i + siyi =0
Full step

Complementarity violation

(5i+(As4)i)(Yi + (AYa)i) = (Asa)i(AYa)i 7 0 depends on step length

Corrected direction

0 A I
AT 0 0
S 0 Y

Ay
Az
As

—SY1 - AS,AY,1+oul

AS, = diag(As,)
AY(I — diag(Aya>

16



Mehrotra predictor-corrector algorithm

Initialization

Given (z, s,y) such that s,y > 0

1. Termination conditions
r, =Ax+s—b, 1y =Aly+ec, p= (sTy)/m

If [|[7,], |7, © @are small, break Optimal solution (z*, s*, y*)

2. Newton step (affine scaling)

0 A I [Ay, —T)
A0 0 Az, —7y
S 0 Y| |As, —-SY1




Mehrotra predictor-corrector algorithm

3. Barrier parameter
a, = max{a € [0,1] | s + aAs, > 0}
ag = max{a € |0,1] | y + aAy, > 0}

(s oszsa)T(y agAy,)
m

Mg —

(%)

4. Corrected direction

0 A I] |Ay —T)
A0 0 Ax| = —7g
S 0 Y| |As —SY1—-AS5,AY,1+oul




Mehrotra predictor-corrector algorithm

5. Update iterates
a, = max{a > 0| s+ alAs > 0}
ag =max{a > 0|y + alAy > 0}

Avoid corners
(z,8) = (z,s) + min{1, na, } (Ax, As) n=1—¢~ 0.99
y =y +min{l, nog Ay

19



Implementation details



Search equations

Step 2 (Newton) and 4 (Corrected direction) solve equations of the form

0 A I [Ay
AT 0 0 Ax| = | b,

S 0 Y| |As s
351 T
The Newton step right hand side: by | = | —Td
s —SY1
_by_ i —Tp ]
The corrector step right hand side: [0z | = —Td
by| | -SY1-AS,AY,1+opul




Solving the search equations

Our linear system is not symmetric

0 A I]| |Ay b,
AT 0 0 Ax| = | b,
S 0 Y| |As by

Substitute last equation, As = Y ~1(b, — SAy), into first

Y1 A '

AT

A'"ST'YYAAr =b, + AT STYh, — AT ST b,

0

Ay
Ax

b, — Y lb,

b

Substitute first equation, Ay = S~'Y(AAx — b, + Y 'b), into second

22



Simplified linear system

Coefficient matrix
B=A"S"'YA
Characteristics
» A is large and sparse
- S~1Y is positive and diagonal, different at each iteration
» B is positive definite if rank(A) = n
- Sparsity pattern of B is the pattern of A’ A (independent of S~'Y)

Cholesky factorizations
B = PLL"' P*
» Reordering only once to get P Per-iteration

- One numerical factorizaton per interior-point iteration O(n*) —— complexity

» Forward/backward substitution twice per iteration O(nz) 0(713) 23



Convergence

Mehrotra’s algorithm

No convergence theory

Examples where it diverges (rare!)
Fantastic convergence in practice — Less than 30 iterations

Floating point

Theoretical iteration complexity operations

Alternative versions (slower than Mehrotra) 3 5
. N . O(n®?)
converge in O(y/n) iterations

Average iteration complexity
Average iterations complexity is O(log n) — O(n”logn)

24



Warm-starting

Interior-point methods are difficult to warm-start

Badly centered
initial point

Previous solution

Hard to make progress
with long steps

25



Homogeneous self-dual
embedding




Optimality conditions

Primal

minimize

T

C
subjectto Ax +s=0>
s >0

Optimality conditions

s,y >0

0

—A

CT

AT

0
bT

maximize
subject to

X

_I_

Dual
—bTy
Aty+c=0
y > 0

Any (xz*, s*,y*) satisfying these conditions is optimal

What happens if the problem is infeasible?

27



How do you detect infeasibility/unboundedness?

Primal Dual
minimize ¢!z maximize —bly
subjectto Ax + s =05 subjectto Aly+4+c=0

s >0 y > 0

Alternatives (Farkas lemma) Write feasibility problem and dualize...

- primal feasible: Axr +s=0b, s>0
- primal infeasible: Ay =0, bly<0, y>0  (primalinfeasibility certificate)

- dual feasible: A’y +c=0, y>0

. dual infeasible: Az <0. ¢z <0 (dual infeasibility certificate)
28



Derivation

Introduce two new variables x, 7 > 0

Homogeneous self-dual embedding

o] [ o
s| =] —A
_I{_ _—CT

AL ¢
0 b
b0

s, Y,k, 7 >0

The homogeneous self-dual embedding

0
Q=|—-A
s
u=(x,y,T)
v = (0, s, k)

29




The homogeneous self-dual embedding

Properties Ou = v 0 AT ¢
w,v >0 Q=|-A 0 b
_—cT —ptL 0
u=(x,y,T)
v=(0,s, k)
Matrix
. () is skew-symmetric: Q' = —-Q = uw!'Qu=0

culov proofQu—v=0 = v Qu—ulv=0 = ulv=0 1N

Homogeneous
(u,v) satisfy Qu =wv, (v,u) >0 = «a(u,v) with a > 0 feasible

Always feasible
a=0 = (0,0)is feasible



Self-dual problem

minimize 0
subjectto Qu = v Q skew-symmetric: QT = —Q
w,v > 0
The dual is identical to the primal
Proof

g(v, \, ) = minimize L(u,v, v, \, 1) = v (Qu —v) — M u — p' v

U,V

Dual
oL
o= Q'v—X\=0 minimize 0O
oL . . - — subjectto Qu =\
%—_V — U= ~ V=—H :LLa)\ZO

- K



From self-duality to strict complementarity

Primal
minimize (O
subjectto Qu =v

u,v > 0

LP strict complementarity
wA=0, u+A>0

vin=0, v+pu>0

Dual
minimize 0 u=(z,y,T)
subjectto Qu =\ v = (0, s, k)
fhy A >0
Self-dual Strict complementarity
+s5 >0
u=p, v=A C uto>0 =

T+Kr>0

32



The homogeneous self-dual embeddlng

Outcomes 0 0 AT [+
Find x, s, y, k, 7 such that s| = —-A 0 b
K _—CT —bt O [T
s, Y, k, T >0

Note. By strict complementarity, we can ensure k + 7 > 0

Case 1: feasibility
r>0,k=0  define (2,38,9) = (a*/7,8/7,4*/T)

520, y=20, s

A

—— (z,8,7) is a solution to the original problem



The homogeneous self-dual embeddlng

Outcomes 0 0 AT [+
Find x, s, y, k, 7 such that s| = —-A 0 b
K _—CT —bt O [T
s, Y, k, T >0

Case 2: infeasibility
r=0k>0 —— c'x+bly <0 (impossible). Must have infeasibility

If b1y < 0then § = y/(—b'y) is a certificate of primal infeasibility
ATy—O bTA:—1<O, y > 0

f ¢!z < 0then & = x/(—c!z) is a certificate of dual infeasibility
Az <0, ¢'2=-1<0



Interior-point method for homogeneous self-dual embedding

Linear complementarity problem

Qu = v
ut v =

w,v >0

_Q AT
vV U

Au
AV

Equations
h(u,v) = Qu—v =0
UV1
w,v >0
Directions
_ —7r. _ re = Qu — v
_—UVl +opl 1= (u'v)/d

Line search to enforce u,v > 0

(u,v) < (u,v) + a(Au, Av)

Interior-point methods can solve linear complementarity problems

35



Interior-point vs simplex



Example

minimize  —10x7 — 1225 — 125

subjectto x1 + 229 + 223 < 20
201 + 2o + 23 < 20
201 + 229 + x5 < 20

r1,22,x3 = 0

¢ =(—10,-12, —12)

minimize ¢z 1 2 2
subjectto Ax <b A=12 1 2
r > 0 _2 2 1_

b = (20,20, 20) .



Example with real solver
CVXOPT (open-source)

Code ()lItFHUt

pcost dcost

import numpy as np

import cvxpy as cp : -1.3077e+02 -2.3692e+02

0

l: -1.3522e+02 -1.4089e+02

2: -1.3599e+02 -1.3605e+02

3: -1.3600e+02 -1.3600e+02

4: -1.3600e+02 -1.3600e+02
Optimal solution found.

C np.array([-10, -12, -12])
A np.array([[1l, 2

[2, 1

[2, 2

2

r 21,

r 21,

r 111)
0, 207)

np.array([20,
len(c)
. Solution
cp.Variable(n)
problem = cp.Problem(cp.Minimize(c @ x),
[A @ x <= b, x >= 0])
problem.solve(solver=cp.CVXOPT, verbose=True)

In [3]: x.value

Out[3]: array([3.99999999, 4.

[The CVXOPT linear and quadratic cone program solvers, L. Vandenberghe 2010] 38



Average interior-point complexity
Random LPs

—_
D

Number of iterations

0

@)

minimize
subject to

Iterations: O(logn)

—_
A

—_
DO

—_
-

— C(C'log(x)

oo

0 200 400

(f

600

300

1000

CTZE

Ax < b

n variables
3n constraints

Time: O(n”logn)

| —— C2’log(x)

600 800 1000
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Comparison between interior-point method and simplex

Primal simplex Dual simplex Primal-dual interior-point
* Primal feasibility * Dual feasibility * |nterior condition
e Zero duality gap e Zero duality gap l

* Primal feasibility
Dual feasibility Primal feasibility » Dual feasibility

e Zero duality gap
Exponential worst-case complexity Polynomial worst-case complexity
Requires feasible point Allows Infeasible start

Can be warm-started Cannot be warm-started 0



Which algorithm should | use?

Dual simplex Interior-point (barrier)
e Small-to-medium problems  Medium-to-large problems
 Repeated solves with varying data » Sparse structured problems

How do solvers with multiple options decide?
Concurrent Optimization

Why not both? (crossover)

Interior-point —  Few simplex steps
41


https://www.gurobi.com/documentation/9.0/refman/concurrent_optimizer.html

Interior-point methods implementation

Today, we learned to:

* Apply Mehrotra predictor-corrector algorithm

 EXxploit linear algebra to speedup computations

* Detect infeasibility/unboundedness with homogeneous self-dual embedding
* Analyze empirical complexity

 Compare interior-point and simplex methods

42



Next lecture

* |ntroduction to nonlinear optimization

43



