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Ed Forum

 Why does limiting it to the vertices make these problems deterministic strategies and no longer random? Is it just something to
do with the problem having the same amount of variables as equations so everything can just be solved?

 What are the advantages and disadvantages of the dual simplex method over the simplex method? For any linear optimization
problem, is it always okay to use both the simplex and dual simplex methods? In what cases is it better to use the dual?

 Dual simplex questions:

1. How can we prove if the primal problem is feasible and the duality gap is zero then the dual
problem is also feasible?

2. Under non-degenerate assumption, why ¢y > 0?

3. What does "The dual simplex is equivalent to the primal simplex applied to the dual problem"
means?

4. We use the dual simplex method to solve the dual problem. So why the example in the slides
o finally output the optimal solution z*?






Optimal mixed strategies

P1: optimal strategy =* Is the solution of

minimize  max x" Ay minimize  max (ATz),
ye Py - j=1,....,n
subjectto x € P, subjectto  z € P, "\

Inner problem over
deterministic
strategies (vertices)

P2: optimal strategy y* is the solution of /
maximize xfg]ijﬂ r' Ay maximize min (Ay);
| ™m 1=1,....m

subjectto y € P, subjectto y € P,

Optimal strategies x* and y* can be computed using linear optimization



Minmax theorem

Theorem
max min ' Ay = min max z’ Ay
ye P, xeP,, ze P, ye P,
Proof
The optimal =* is the solution of The optimal y* is the solution of
minimize t maximize w
subjectto Alz <t1 subjectto Ay > wl
11 =1 11y =1
x>0 y > 0

The two LPs are duals and by strong duality the equality follows. [ s



General forms

Standard form LP

Primal Dual
minimize ¢!z maximize —bly
subjectto Az =b subjectto Aly4+c¢>0
xr > 0

Inequality form LP

Primal Dual
minimize ¢’z maximize —bly
subjectto Az < b subjectto Aly+4+c=0

y 2> 0



Today'’s lecture
[Chapter 5, Bertsimas and Tsitsiklis]

Sensitivity analysis in linear optimization
 Adding new constraints and variables

 Change problem data

» Differentiable optimization



Adding new constraints and
variables



Adding new variables

minimize ¢’z minimize  c'x + cpp1Tnid
subjectto Arxr=b —> subjectto Ax+ A, 1Tn11 =0
xr > 0 Ly Ln+1 > 0

Solution x*, y*

Solution (z*,0), y* optimal for the new problem?



Adding new variables

Optimality conditions

minimize ¢z + cp12n41
subjectto Ax + A, 112,41 =b ——— Solution (z*,0) is still primal feasible
Ly L1 > 0

Is y* still dual feasible?

AZ+1?J* + Cny1 2= 0

Yes Otherwise

(x*,0) still optimal for new problem Primal simplex
10



Adding new variables

Example

minimize  —60x; — 3025 — 20x3 -profit

subjectto 8x; + 6x9 + x3 < 48 material

minimize
subject to

r* = (2,0,8,24,0,0),

dr1 + 229 + 1.523 <20  production
221 + 1.0z + 0.523 < 8  quality control

xr > 0
c = (—60, —30,—-20,0,0,0)
clx 8 6 1 1 0 0
Axr = b A=14 2 15 0 1 0
x > 0 2 15 05 0 0 1T

b = (48, 20, 8)

y* = (0,10,10), c'2z* = —280, basis {1,3,4}
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minimize clz 4+ cp12041

SUbjeCt to Ax + An—l—lxn—l—l =%
Ly L1 > 0

Previous solution

Adding new variables

Example: add new product?

¢ = (—60, —30, —20,0,0,0, —15)

s 6 1 1 0 0 1
A=14 2 15 0 1 0 1

2 15 05 0 0 1 1
b = (48, 20, 8)

r* =(2,0,8,24,0,0), v*=(0,10,10), cla*= —280, basis{1,3,4}

Still optimal

AZ 1y* —|—Cn_|_1 =11 1 1 10
' 110

—10=952>0

Shall we add a
new product?
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Adding new constraints

minimize L minimize C" X

subjectto Az =0 — subjectto Ax =0
r 2> Ay 1T = by

. x>0
Solution z*, y*

Dual
maximize —bly
SUbjeCt to ATy T+ Am+1Ym+1 T C > ()

Solution z*, (y*, 0) optimal for the new problem?
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Adding new constraints

Optimality conditions

maximize —bly
subjectto A'y+ ami1yms1 +¢>0 ——» Solution (y*,0) is still dual feasible

Is x* still primal feasible?

Axr =0

T _

r > 0

Yes Otherwise

™ still optimal for new problem Dual simplex
14



Adding new constraints

Example z* still feasible

x Add new constraint

.

™ Infeasible




Global sensitivity analysis



Information from primal-dual solution

Goal: extract information from x*,y* about their sensitivity with respect to
changes in problem data

Modified LP
minimize ¢!z
subjectto Az =0+ u

r >0

Optimal cost p* (u)
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Global sensitivity

Dual of modified LP
maximize —(b+u)'y
subjectto ATy +c¢ >0

Global lower bound

Given y* a dual optimal solution for u = 0, then

p*(u) > —(b+u)"y*
=p*(0) —u'y*

It holds for any u

(from weak duality and
dual feasibility)
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Global sensitivity

Example

Take u = td with d € R™ fixed
minimize iz
subjectto Ax =b+td

r > 0

p*(td) is the optimal value as a function of ¢

Sensitivity information (assuming d* y* > 0)

» ¢t < 0 the optimal value increases
« t > 0 the optimal value decreases (hot so much if ¢ is small)
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Optimal value function
p*(vw) =min{c' z | Az =b+u, x >0}

Assumption: p*(0) is finite

Properties
* p*(u) > —oo everywhere (from global lower bound)

» the domain {u | p*(u) < +o0} is a polyhedron

+ p*(u) is piecewise-linear on its domain
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Optimal value function is piecewise linear

Proof
Dual feasible set

p*(u) = min{c'z | Az =b+u, x> 0} D={y|A'y+c>0}

Assumption: p*(0) is finite

If p*(u) finite

X () — (b — Ty — T — T
pr(u) =max—(b—u)'y = max —yiu-—>by

v1,...,Y, are the extreme points of D
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Local sensitivity analysis



Local sensitivity

uw In neighborhood of the origin

Original LP Optimal solution
minimize ¢’z Primal ri=0, i¢B
subjectto Arxr=6 —— TR = Aélb

r > 0 Dual y* = —Ag5 cp
Modified LP Modified dual
minimize ¢’z maximize —(b+u)"y
subjectto Az =0+ u subjectto ATy +c >0
x > 0

Modified optimal solution
rp(u) = A (b+u) = a5 + Az'u
y (u) =y

Optimal basis
does not change
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Derivative of the optimal value function

Modified optimal solution
v (u) = A (b+u) = 2% + Ag'u
y (u) =y

Optimal value function

p*(u) = ¢ z*(u)
=c'a* + cg ALl u

= p*(0) — y*Tu (affine for small u)

Local derivative

5’1?8 iu) — (y* are the shadow prices)
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Sensitivity example

minimize  —60x; — 3022 — 20x3 -profit
subjectto 8z + 6x2 + x3 < 48 material
dr1 + 220 + 1.023 <20  production

221 + L.oxo + 0.023 <8 quality control
xr > 0

r* =(2,0,8,24,0,0), v*=(0,10,10), cla*= —280, basis{1,3,4}
What does y; = 10 mean?

Let’s increase the quality control budget by 1, i.e., u = (0,0, 1)
p*(10) = p*(0) — y* 'u = —280 — 10 = —290
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Differentiable optimization



Training a neural network

Single layer model

v = f(0)

Training

minimize L(0)
0 T

—_—p Vg —

Gradient descent (more on this later)
0 < 0 —tVeLl(0)

Sensitivity
!
oL\  [oLOx\ [Ox\
vot=(5) ~(acar) ~ (@) ¥

Can f be an optimization problem?
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Implicit layers
https://implicit-layers-tutorial.org/
find z(6)
subjectto r(6,xz(0)) =0

(x(0) is implicitly defined by r)

How do we compute derivatives?
O0x(0)
00

Implicit function theorem
Under mild assumptions (non-singularity),

or(0,x(0)) 0x(0)  Or(6,z(0)) 0 - 0x(0) _ ar(0,z(0))\ " ar(0,z(0))

O 00 00 00 _< O ) 00

[Theorem 1. B.1, Dontchev and Rockafellar 2009] 28



Optimization layers

x"(0) = argmin c' Parameters: 6 = {c, A, b}
subjectto Ax <b Solution z* ()

Features

 Add domain knowledge and hard constraints
 End-to-end training and optimization

* Nice theory and algorithms for general convex optimization
* Applications in RL, control, meta-learning, game theory, etc.

Goal
Ox™*(0)
00

Compute

29



Optimality conditions

minimize L r Parameters: 6 = {c, A, b}
subjectto Ax <b Solution x* ()

Solve and obtain primal-dual pair z*, y* (forward-pass)

Optimality conditions

Aty+c=0
diag(y)(Axz — b) =0
y>0,0—Ax >0

Mapping (6, z(6)) = 0

30



Computing derivatives

Take differentials
At y* + ¢ = dAT y* + Atdy =0
diag(y™)(Ax — b) = diag(Ax — b)dy + diag(y™)(dAz™ + Adz — db) +dc =0

Linear system
0 At | [dx _ dAty* + dc

diag(y*)A diag(Axz* —b)| |dy diag(y*)(dAz™ —db)

Example: How does z* change with 6,7

Set db = e;,dA = 0,dc = 0 and solve the linear system.

The solution dx will correspond to ng 31
1



Is it always differentiable?

The linear system matrix must be invertible
(the problem must have unigue solution)

0 At | [dx] B _ dATy* + de
diag(y*)A diag(Az* —0b)| |dy|  |diag(y*)(dAx™ —db)
M q
Remember. implicit function theorem If not, least squares “subdifferential”

2

Dul) (0O OAO) iz [ 1] 4
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Example
Learning to play Sudoku

Sudoku constraint satisfaction problem
minimize 0

subjectto Az = b

r >0, xeZ

1072 :

SE

Linear optimization layer (parameters 6 = {A,b}) *

1073 :

*

r* = argmin 0

subjectto Az =0
r > 0

[OptNet: Differentiable Optimization as a Layer in Neural Networks, B. Amos and J. Z. Kolter ICML 2017]

.

104 :




Sensitivity analysis in linear optimization

Today, we learned to:
 Use the most appropriate primal/dual simplex algorithm when variables and/
or constraints are added

* Analyze sensitivity of the cost with respect to change in the data

* Apply sensitivity analysis to differentiable linear optimization layers
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Next lecture

 Barrier methods for linear optimization
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