ORF522 - Linear and Nonlinear Optimization

5. The simplex method

Bartolomeo Stellato — Fall 2021

Ed Forum

* Can neighboring basic solutions be infeasible?

Yes!

* |s there a chance that as we move from our starting basic feasible point and check all the neighboring solutions and
find none of them to be aaske=@ptimal, that we miss another point (that isn't neighboring) that could be better? Is
this an issue of identifying local vs. global optima?

“More optimal” does not exist! There is no way to get better solutions there. Proof of this in previous lecture. Yes,
this is due to global optimality for LPs.

* | was under the impression that solvers used a standard step size for each problem and that they did not iteratively
calculate one every single step. Would this not increase computational time in a significant manner..?
Standard step size is not a thing for simplex and interior-point methods. It always changes.

* |I'm not exactly sure why d_j is always equal to one, and how do the equations and the picture correspond exactly?
Directions can be rescaled as we please (and change theta accordingly). We set d_j=1 to simplify the math instead

of having, e.g., d_j=1.947 (which would allow us to derive the same things.
Ve~

o X 05 4cb_ (" AN 4
Standard form polyhedra * *= v

Definition Standard form polyhedron
Standard form LP P={x| Az =b, x > 0}
minimize clo L

subjectto Az =0
Assumption

A e R"™*" has full row rank m < n T

Interpretation
P lives in (n — m)-dimensional subspace

Standard form polyhedra

Visualization

P={x|Az=b, x >0}, n—m=2

S
Q} Three dimensions Higher dimensions %

Constructing basic solution

1. Choose any m independent columns of A: Ag(1y,..., Apm)
2. Letx;, =0forall i # B(1),..., B(m)
3. Solve Ax = b for the remaining (1), .., TB(m)

Constructing basic solution

1. Choose any m independent columns of A: Ag(1y,..., Apm)
2. Letx;, =0forall i # B(1),..., B(m)
3. Solve Ax = b for the remaining (1), .., TB(m)
Basis Basis columns Basic variables
matrix - i i
| | | TBQ)
AB — AB(l) AB(Q) c e AB(m)] LB — —— Solve ABCEB =%
. | . ZB(m)_

Constructing basic solution

1. Choose any m independent columns of A: Ag(1y,..., Apm)
2. Letx;, =0forall i # B(1),..., B(m)
3. Solve Ax = b for the remaining (1), .., TB(m)
Basis Basis columns Basic variables
matrix - i i
| | | TBQ)
AB — AB(l) AB(Q) c e AB(m)] LB — —— Solve ABCEB =%
. | . ZB(m)_

If t5 > 0, then z Is a basic feasible solution

Neighboring solutions

Two basic solutions are neighboring if their
basic indices differ by exactly one variable

Neighboring solutions

Two basic solutions are neighboring if their

basic indices differ by exactly one variable

1 -1
2 0
0 2

Example
3 -2

-1 0

-1 4

Neighboring solutions

Two basic solutions are neighboring if their

basic indices differ by exactly one variable

—2

Example

Neighboring solutions

Two basic solutions are neighboring if their

basic indices differ by exactly one variable

Example

xl_ b
9 To —9d
0 ry| = | —1
4 | x4 14
T5
B=1{1,3,4}

Feasible directions
Conditions Given a basis matrix Ap = _AB(l) .. AB(m)_

P={z|Ax=b, z>0) we have basic feasible solution z:

* Ip solves ABZE‘B =5
» x; =0, Vi # B(1),...,B(m)

Feasible directions

Conditions Given a basis matrix Ap =

Ap)

P={z|Ax=b, z>0) we have basic feasible solution z:

* Ip solves ABZE‘B =5

» x; =0, Vi # B(1),...,B(m)

Let x € P, a vector d Is a feasible direction at «
if 460 > 0 for which z + 6d € P

Feasible direction d
[Alz+60d) =b=— Ad =0
|* x+ 0d > 0

AB(m)_

Feasible direction d

Feasible directions Ao+ 0d) — b Ad =
Computation « x+60d >0

Nonbasic indices
* d; = 1 — Basic direction

Feasible direction d

Feasible directions Ao+ 0d) — b Ad =
Computation « x+60d >0

Nonbasic indices
* d; = 1 — Basic direction

Basic indices

Ad:O:ZAzdz :ABdB—l—Aj = 0= dp = —AglAj
1=1

Feasible direction d

Feamb!e directions Ao+ 0d) — b Ad =
Computation « x+60d >0

Nonbasic indices
* d; = 1 — Basic direction

Basic indices

Ad:O:ZAzdz :ABdB—l—Aj = 0= dp = —AglAj
1=1

Non-negativity (hon-degenerate assumption)

» Non-basic variables: x; = 0. Nonnegative direction d; > 0
« Basic variables: x5 > 0. Therefore 460 > 0 such that x5 + 6dg > 0

Stepsize

What happens if some ¢; < 0?7
We can decrease the cost by bringing z; into the basis

10

Stepsize

What happens if some ¢; < 0?7

We can decrease the cost by bringing z; into the basis

How far can we go?

0" =max{f |0 >0and x + 0d > 0}

d 1s the 7-th basic direction

10

Stepsize

What happens if some ¢; < 0?7

We can decrease the cost by bringing z; into the basis

How far can we go?

0" =max{f |0 >0and x + 0d > 0}

Unbounded
If d > 0, then 6 = oco. The LP I1s unbounded.

d 1s the 7-th basic direction

10

Stepsize

What happens if some ¢; < 0?7

We can decrease the cost by bringing z; into the basis

How far can we go?

0 =max{f |0 >0and x4 60d > 0}

Unbounded

If d > 0, then 6 = oco. The LP I1s unbounded.

Bounded

I@r some ¢, then " = min
{i|d; <0}

(

d 1s the 7-th basic direction

— 11111
di {t€B|d; <0} d@

(SinCe d; >0, 2 g B)

10

Moving to a new basis

Next feasible solution
x + 0°d

11

Moving to a new basis

Next feasible solution
x + 0°d

Let B(¢) € {B(1), ..., B(m)} be the index such that 6* — le“). Then,
B(£)

CEB(g) + H*dB(g) = (

11

Moving to a new basis

Next feasible solution
x + 0°d

Let B(¢) € {B(1), ..., B(m)} be the index such that 6* — le“). Then,
B(£)

CEB(g) + H*dB(g) = (

New solution
* Tp(r) becomes 0 (exits)
- x,; becomes 6* (enters)

Moving to a new basis

Next feasible solution
x + 0°d

L B (£)
dp(e)

Let B(¢) € {B(1),...,B(m)} be the index such that §* = . Then,

CEB(g) + H*dB(g) = (

New solution
* Tp(r) becomes 0 (exits)
- x,; becomes 6* (enters)

_ New basis _
Ap=|Apay oAby [A7 | Apesn - Apem)

An iteration of the simplex method

Initialization
» a basic feasible solution x _
» abasismatrix Ag = |Apny ..., AB@m)
Iteration steps f
1. Compute the reduced costs ¢ [1 4. Compute search direction d WIthA
dj = 1and Apdp = —4; A=
. Solve ATp = cp - 7 -
cc=c—A'p 5. If dg > 0, the problem is unbounded
_ and the optimal value iIs —oco. break
2. If ¢ > 0, x optimal. break |

7 €T
- - 6. Compute step length 0* = ' -
3. Choose j such that¢; < 0 pu P ieng fieBld, <0} (di)

‘ /. Define y such that y = « + 6*d

8. Get new basis B (i exits and j enters) 12

Today’s agenda
[Chapter 3, LO]

 Find initial feasible solution
 Degeneracy

o Complexity

13

Find an initial point in simplex
method

Initial basic feasible solution

minimize ¢!z
subjectto Az =10
xr > 0

How do we get an initial basic feasible solution =z and a basis B ?

Does it exist?

15

Finding an Initial basic feasible solution

minimize c¢lx
subjectto Az =0
r > 0

16

Finding an Initial basic feasible solution

Auxiliary problem

minimize ¢’z minimize 1%y
subjectto Ax =10 —— > subjectto Az +y=0>

16

Finding an Initial basic feasible solution

Auxiliary problem Minimize
minimize ¢’z minimize 11y ~— violations
subjectto Ax =10 —— > subjectto Az +y=0>

r > 0 r >0,y >0

16

Finding an Initial basic feasible solution

Auxiliary problem

Minimize
minimize ¢’z minimize 11y ~— violations
subjectto Ax =0 ——> subjectto Ax+y=0>

Assumption b > 0 w.l.o.g. (if not multiply constraint by —1)
Trivial basic feasible solution: =0,y = b

16

\\ A€l o %%:4’ J(({%?l)(.{ >0
Finding an Initial basic feasible solution

Auxiliary problem

Minimize
minimize ¢z minimize 11y ~— violations
subjectto Ax =10 —— > subjectto Az +y=0>

r >0 r >0,y >0 -
[Aﬂ?i < p.
[N

Assumption b > 0 w.l.o.g. (if not multiply constraint by —1)

Trivial basic feasible solution: =%

Possible outcomes

» Feasible problem (cost = 0): y* = 0 and x* Is a basic feasible solution

» Infeasible problem (cost > 0): y* > 0 are the violations .

Two-phase simplex method

Phase |

1. Construct auxiliary problem such that b > 0
2. Solve auxiliary problem using simplex method starting from (z, y) = (0, b)
3. If the optimal value is greater than 0, problem infeasible. break. (P: $%>

Phase II

1. Recover original problem (drop variables y and restore original cost)
2. Solve original problem starting from the solution = and its basis B.

q—

17

Big-M method

minimize
subject to

ctoe 4+ M1ty
Axr +y =0
r >0,y >0

18

Big-M method

minimize
subject to

Very large
/ constant
cte4+ M1y
Axr +y =0

r >0,y >0

18

Blg'M method Very large
/ constant

minimize c¢lax+ M1ty
subjectto Ax+y =0
r >0,y >0

Incorporate penalty in the cost

» We can still use y = b > 0 as initial basic feasible solution
» |f the problem is feasible, y will not be in the basis.

18

Blg'M method Very large
/ constant

minimize c¢lax+ M1ty
subjectto Ax+y =0
r >0,y >0

Incorporate penalty in the cost

» We can still use y = b > 0 as initial basic feasible solution
» |f the problem is feasible, y will not be in the basis.

Remarks
* Pro: need to solve only one LP

» Con: it is not easy to pick M and it makes the problem badly scaled 3

Degeneracy

Degenerate basic feasible solutions

Inequality form polyhedron

A solution y is degenerate if |Z(Zz)| > n

o>

P={z | Ax < b}

20

Degenerate basic feasible solutions

Standard form polyhedron _
Given a basis matrix Ap = |Apny ... Ap@m)

we have basic feasible solution z:

° ABQZ‘B =%
» x; =0, Vi # B(1),...,B(m)

Degenerate basic feasible solutions

Standard form polyhedron _
Given a basis matrix Ap = |Apny ... Ap@m)

we have basic feasible solution z: If some of the x5 = 0, then
it Is a degenerate solution

° ABQZ‘B =%
» x; =0, Vi # B(1),...,B(m)

21

Degenerate basic feasible solutions

Standard form polyhedron _
Given a basis matrix Ap = |Apny ... Ap@m)
we have basic feasible solution z: _ If some of the x5 = 0, then

E——

e Apzp =b it Is a degenerate solution

» x; =0, Vi # B(1),...,B(m)

P={{x| Az =0b, z >0}

', 2

Degenerate basic feasible solutions

Example

r1+ a9 +2x3 =1
—x1+2x9 — 23 =1

L1,L2,L3 2 0

22

Degenerate basic feasible solutions

Example

r1+x9+2x3 =1
—x1+2x9 — 23 =1

L1,L2,L3 2 0

Degenerate solutions

Basis B = {1,2}, ——» 2 =(0,1,0)

22

Degenerate basic feasible solutions

Example

r1+x9+2x3 =1
—x1+2x9 — 23 =1

L1,L2,L3 2 0

Degenerate solutions
Basis B = {1,2}, ——» 2 =(0,1,0)
Basis B={2,3}, — y=(0,1,0)

22

Cycling

Stepsize

min

6. Compute step length 6~
{1€B|d; <0}

23

Cycling

Stepsize

6. Compute step length 6 = min (
{1€B|d; <0}

If: € B, d; < 0and x; = 0 (degenerate)
0* =0

23

Cvclin
y g 6. Compute step length 6* = min (%)

Stepsize {ieB|d; <0}

|

If: € B, d; < 0and x; = 0 (degenerate)
0* =0

Therefore y = z + *x = x and B 74 B g?f;r:esnciltgtézpsand cost

23

Cvclin
y g 6. Compute step length 6* = min (%)

Stepsize {ieB|d; <0}

|

If: € B, d; < 0and x; = 0 (degenerate)
0* =0

Same solution and cost

Therefore y =z + 0*x =z and B #£ B Different basis

Finite termination no longer guaranteed!

How can we fix it?

23

Cvclin '
y g 6. Compute step length 6* = min (:EZ)

Stepsize {ieB|d; <0}

|

If: € B, d; < 0and x; = 0 (degenerate)
0* =0

_ .o F Same solution and cost
Thereforey =z +0*r=xand B=B Different basis

Finite termination no longer guaranteed!

How can we fix it?

Pivoting rules

23

Pivoting rules

Choose the index entering the basis

Simplex iterations
3. Choose j such that ¢, < 0

24

Pivoting rules

Choose the index entering the basis

Simplex iterations
3. Choose j suchthatc; <0 ~ — Which ;?

24

Pivoting rules

Choose the index entering the basis

Simplex iterations
3. Choose j suchthatc; <0 ~ — Which ;?

Possible rules

- Smallest subscript: smallest ; such that c; < 0
* Most negative: choose j with the most negative c;
- Largest cost decrement: choose ; with the largest 0*|c;]

24

Pivoting rules

Choose index exiting the basis
Simplex iterations

6. Compute step length 6* = min
{1€B|d; <0}

(

Lg

di

)

25

Pivoting rules

Choose index exiting the basis
We can have more than

Simplex iterations one ¢ for which z; =0
(next solution is degenerate)

6. Compute step length 6 = min (mz) —_—

11€B]d; <0} Which i?

25

Pivoting rules

Choose index exiting the basis
We can have more than

Simplex iterations one ¢ for which z; =0
(next solution is degenerate)

:1’/‘.
6. Compute step lenagth 6* = ' P e
P P TS {iegil?@} ()

Which ;?

Smallest index rule
L g

Smallest 7 such that 6* = -

25

Bland’s rule to avoid cycles

Theorem

If we use the smallest index rule for choosing both the ; entering the basis
and the 1 leaving the basis, then no cycling will occur.

20

Bland’s rule to avoid cycles

Theorem

If we use the smallest index rule for choosing both the ; entering the basis
and the 1 leaving the basis, then no cycling will occur.

Proof idea [Ch 3, Sec 4, LP][Sec 3.4, LO]

 Assume Bland’s rule is applied and there exists a cycle with different bases.
* Obtain contradiction.

20

Perturbation approach to avoid cycles

27

Perturbation approach to avoid cycles

27

Complexity

Complexity

Basic operation: one simplex iteration

Estimate complexity of an algorithm

» Write number of basic operations as a function of problem dimensions
» Simplify and keep only leading terms

29

Complexity

Notation
We write g(x) ~ O(f(x)) if and only if there exist ¢ > 0 and an z(such that

g(z)| < cf(x), V> x0

30

Complexity

Notation
We write g(x) ~ O(f(x)) if and only if there exist ¢ > 0 and an z(such that

00— ;
P /
/
- /
- // oM
I N - ng Polynomial
1 » / _
- — Practical
= | | 7 -=== nlog(n)
o oS _
1@0 Exponential
o/ Impractical
. 1/
I
00 20 40 60 30 100

P and NP

Complexity class P

There exists a polynomial
time algorithms to solve it

31

P and NP

Complexity class P

There exists a polynomial
time algorithms to solve it

Complexity class NP

Given a candidate solution,
there exists a polynomial
time algorithm to verity it.

31

P and NP

Complexity class P Complexity class N'P Complexity class N P-hard
There exists a polynomial Given a candidate solution, At least as hard as the
time algorithms to solve it there exists a polynomial hardest problem in NP

time algorithm to verity it.

31

P and NP

Complexity class P Complexity class N'P Complexity class N P-hard
There exists a polynomial Given a candidate solution, At least as hard as the
time algorithms to solve it there exists a polynomial hardest problem in NP

time algorithm to verity it. l

We don’t know any
polynomial time
algorithm

31

P and NP

Complexity class P Complexity class N'P Complexity class N P-hard
There exists a polynomial Given a candidate solution, At least as hard as the
time algorithms to solve it there exists a polynomial hardest problem in NP

time algorithm to verity it. l

We don’t know any
polynomial time
algorithm

Million dollar problem: P = N'P?
- We know that P c NP
» Does it exist a polynomial time algorithm for A/P-hard problems? 31

Complexity of the simplex method

Example of worst-case behavior

Innocent-looking problem
minimize —x,,
subjectto 0<z <1

2" vertices

2™ /2 vertices: cost =1
2™ /2 vertices: cost = 0

32

Complexity of the simplex method

Example of worst-case behavior

Innocent-looking problem
minimize —x,,
subjectto 0<z <1

2" vertices

2™ /2 vertices: cost =1
2™ /2 vertices: cost = 0

Perturb unit cube
minimize —x,
subjectto e<z; <1

€xi—1 <x; <1 —ex;_q,

Pi=2. ...

, TV

32

Complexity of the simplex method ..

Example of worst-case behavior T /\
minimize -z, #{

subjectto e<z; <1

GLEi_lSZUiSl—EﬁZ'_l, iZZ,...,TL - k.
L1

33

Complexity of the simplex method ..

Example of worst-case behavior :c/*.
minimize —x,,
subjectto e<z; <1

€$i_1§$i<1—€$i_1, iZZ,...,?’L

L1
Theorem
» The vertices can be ordered so that each one Is adjacent to and has a
lower cost than the previous one

» There exists a pivoting rule under which the simplex method terminates
after 2" — 1 iterations

33

Complexity of the simplex method

Example of worst-case behavior

minimize —x,,
subjectto e<z; <1 |

€$i_1§$i<1—€$i_1, iZZ,...,?’L

L1
Theorem
» The vertices can be ordered so that each one Is adjacent to and has a
lower cost than the previous one

» There exists a pivoting rule under which the simplex method terminates
after 2" — 1 iterations

Remark
A different pivot rule would have converged in one iteration.

» We have a bad example for every pivot rule.

33

Complexity of the simplex method

We do not know any polynomial
version of the simplex method,
no matter which pivoting rule we
picKk.

—— Still open research question!

34

Complexity of the simplex method

We do not know any polynomial

version of the simplex method, —» Still open research question!
no matter which pivoting rule we

picKk.

Worst-case
There are problem instances where the simplex method will run an exponential

number of iterations in terms of the dimensions n and m: O(2")

34

Complexity of the simplex method

We do not know any polynomial
version of the simplex method,
no matter which pivoting rule we
picKk.

—— Still open research question!

Worst-case
There are problem instances where the simplex method will run an exponential

number of iterations in terms of the dimensions n and m: O(2")

Good news: average-case

Practical performance is very good. On average, it stops in O(n) iterations.
34

The simplex method

Today, we learned to:
 Formulate auxiliary problem to find starting simplex solutions
* Apply pivoting rules to avoid cycling in degenerate linear programs

 Analyze complexity of the simplex method

35

Next lecture

 Numerical linear algebra
 “Realistic” simplex implementation

« Examples

36

