ORF522 – Linear and Nonlinear Optimization 5. The simplex method ### Ed Forum Can neighboring basic solutions be infeasible? Yes! • Is there a chance that as we move from our starting basic feasible point and check all the neighboring solutions and find none of them to be more optimal, that we miss another point (that isn't neighboring) that could be better? Is this an issue of identifying local vs. global optima? "More optimal" does not exist! There is no way to get better solutions there. Proof of this in previous lecture. Yes, this is due to global optimality for LPs. - I was under the impression that solvers used a standard step size for each problem and that they did not iteratively calculate one every single step. Would this not increase computational time in a significant manner..? Standard step size is not a thing for simplex and interior-point methods. It always changes. - I'm not exactly sure why d_j is always equal to one, and how do the equations and the picture correspond exactly? Directions can be rescaled as we please (and change theta accordingly). We set d_j=1 to simplify the math instead of having, e.g., d_j=1.947 (which would allow us to derive the same things. # Recap ## Standard form polyhedra ### **Definition** #### Standard form LP $$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$ ### **Assumption** $A \in \mathbf{R}^{m \times n}$ has full row rank $m \leq n$ ### Interpretation P lives in (n-m)-dimensional subspace ### Standard form polyhedron $$P = \{x \mid Ax = b, \ x \ge 0\}$$ ### Standard form polyhedra ### Visualization $$P = \{x \mid Ax = b, \ x \ge 0\}, \quad n - m = 2$$ ### Three dimensions ### **Higher dimensions** ### Constructing basic solution - 1. Choose any m independent columns of A: $A_{B(1)}, \ldots, A_{B(m)}$ - 2. Let $x_i = 0$ for all $i \neq B(1), ..., B(m)$ - 3. Solve Ax = b for the remaining $x_{B(1)}, \ldots, x_{B(m)}$ Basis Basis columns Basic variables matrix $$A_B = \begin{bmatrix} & & & & \\ & A_{B(1)} & A_{B(2)} & \dots & A_{B(m)} \\ & & & & \end{bmatrix}, \quad x_B = \begin{bmatrix} x_{B(1)} \\ \vdots \\ x_{B(m)} \end{bmatrix} \longrightarrow \text{Solve } A_B x_B = b$$ If $x_B \ge 0$, then x is a basic feasible solution ### Neighboring solutions Two basic solutions are **neighboring** if their basic indices differ by exactly one variable ### **Example** $$\begin{bmatrix} 1 & -1 & 0 & 3 & -2 \\ 2 & 0 & -1 & -1 & 0 \\ 0 & 2 & 4 & -1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -5 \\ -1 \\ 14 \end{bmatrix}$$ $$B = \{1, 3, 5\} \qquad x_2 = x_4 = 0 \qquad \qquad \bar{B} = \{1, 3, 4\} \qquad y_2 = y_5 = 0$$ $$A_B x_B = b \longrightarrow x_B = \begin{bmatrix} x_1 \\ x_3 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2.5 \end{bmatrix} \qquad A_{\bar{B}} y_{\bar{B}} = b \longrightarrow y_{\bar{B}} = \begin{bmatrix} y_1 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 0.1 \\ 3.0 \\ -1.7 \end{bmatrix}^{7}$$ $$\bar{B} = \{1, 3, 4\} \qquad y_2 = y_5 = 0$$ $$A_{\bar{B}}y_{\bar{B}} = b \longrightarrow y_{\bar{B}} = \begin{bmatrix} y_1 \\ y_3 \end{bmatrix} = \begin{bmatrix} 0.1 \\ 3.0 \end{bmatrix}$$ ### Feasible directions ### **Conditions** $$P = \{x \mid Ax = b, \ x \ge 0\}$$ Given a basis matrix $$A_B = \begin{bmatrix} A_{B(1)} & \dots & A_{B(m)} \end{bmatrix}$$ we have basic feasible solution x: - x_B solves $A_B x_B = b$ - $x_i = 0, \ \forall i \neq B(1), \dots, B(m)$ Let $x \in P$, a vector d is a **feasible direction** at x if $\exists \theta > 0$ for which $x + \theta d \in P$ #### Feasible direction d - $A(x + \theta d) = b \Longrightarrow Ad = 0$ - $x + \theta d \ge 0$ ### Feasible directions ### Computation #### Feasible direction d - $A(x + \theta d) = b \Longrightarrow Ad = 0$ - $x + \theta d \ge 0$ #### **Nonbasic indices** - $d_j = 1$ Basic direction - $d_k = 0, \ \forall k \notin \{j, B(1), \dots, B(m)\}$ #### **Basic indices** $$Ad = 0 = \sum_{i=1}^{n} A_i d_i = A_B d_B + A_j = 0 \Longrightarrow d_B = -A_B^{-1} A_j$$ ### Non-negativity (non-degenerate assumption) - Non-basic variables: $x_i = 0$. Nonnegative direction $d_i \ge 0$ - Basic variables: $x_B > 0$. Therefore $\exists \theta > 0$ such that $x_B + \theta d_B \ge 0$ ### Stepsize What happens if some $\bar{c}_i < 0$? We can decrease the cost by bringing x_i into the basis ### How far can we go? $$\theta^* = \max\{\theta \mid \theta \ge 0 \text{ and } x + \theta d \ge 0\}$$ d is the j-th basic direction #### Unbounded If d > 0, then $\theta^* = \infty$. The LP is unbounded. #### Bounded If $$d_i < 0$$ for some i , then If $$d_i < 0$$ for some i , then $$\theta^\star = \min_{\{i \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right) = \min_{\{i \in B \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$$ (Since $$d_i \geq 0, i \notin B$$) ### Moving to a new basis #### **Next feasible solution** $$x + \theta^* d$$ Let $$B(\ell)\in\{B(1),\dots,B(m)\}$$ be the index such that $\theta^\star=-\frac{x_{B(\ell)}}{d_{B(\ell)}}.$ Then, $x_{B(\ell)}+\theta^\star d_{B(\ell)}=0$ #### **New solution** - $x_{B(\ell)}$ becomes 0 (exits) - x_j becomes θ^* (enters) #### **New basis** $$A_{\bar{B}} = \begin{bmatrix} A_{B(1)} & \dots & A_{B(\ell-1)} & A_j & A_{B(\ell+1)} & \dots & A_{B(m)} \end{bmatrix}$$ ### An iteration of the simplex method #### Initialization - a basic feasible solution \boldsymbol{x} - a basis matrix $A_B = \begin{vmatrix} A_{B(1)} & \dots, A_{B(m)} \end{vmatrix}$ ### **Iteration steps** - 1. Compute the reduced costs \bar{c} - Solve $A_B^T p = c_B$ - $\bar{c} = c A^T p$ - 2. If $\bar{c} \geq 0$, x optimal. break - 3. Choose j such that $\bar{c}_j < 0$ - 4. Compute search direction d with $d_j = 1$ and $A_B d_B = -A_j$ - 5. If $d_B \ge 0$, the problem is **unbounded** and the optimal value is $-\infty$. **break** - 6. Compute step length $\theta^\star = \min_{\{i \in B \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$ - 7. Define y such that $y = x + \theta^* d$ - 8. Get new basis \bar{B} (i exits and j enters) # Today's agenda [Chapter 3, LO] - Find initial feasible solution - Degeneracy - Complexity # Find an initial point in simplex method ### Initial basic feasible solution minimize $$c^Tx$$ subject to $Ax = b$ $$x \ge 0$$ How do we get an initial basic feasible solution x and a basis B? Does it exist? ### Finding an initial basic feasible solution # minimize c^Tx minimize 1^Ty violations subject to Ax = b subject to Ax + y = b $x \ge 0, y \ge 0$ **Assumption** $b \ge 0$ w.l.o.g. (if not multiply constraint by -1) **Trivial** basic feasible solution: x = 0, y = b #### Possible outcomes - Feasible problem (cost = 0): $y^* = 0$ and x^* is a basic feasible solution - Infeasible problem (cost > 0): $y^* > 0$ are the violations ### Two-phase simplex method #### Phase I - 1. Construct auxiliary problem such that $b \ge 0$ - 2. Solve auxiliary problem using simplex method starting from (x, y) = (0, b) - 3. If the optimal value is greater than 0, problem infeasible. break. #### Phase II - 1. Recover original problem (drop variables y and restore original cost) - 2. Solve original problem starting from the solution \boldsymbol{x} and its basis \boldsymbol{B} . ### Big-M method ### Incorporate penalty in the cost - We can still use $y=b\geq 0$ as initial basic feasible solution - If the problem is **feasible**, y will not be in the basis. #### Remarks - Pro: need to solve only one LP - ullet Con: it is not easy to pick M and it makes the problem badly scaled # Degeneracy ### Degenerate basic feasible solutions ### Inequality form polyhedron A solution $$y$$ is degenerate if $|\mathcal{I}(\bar{x})| > n$ $$P = \{x \mid Ax \le b\}$$ ### Degenerate basic feasible solutions ### Standard form polyhedron Given a basis matrix $A_B = \begin{bmatrix} A_{B(1)} & \dots & A_{B(m)} \end{bmatrix}$ we have basic feasible solution x: - $A_B x_B = b$ - $x_i = 0, \ \forall i \neq B(1), \dots, B(m)$ $$P = \{x \mid Ax = b, \ x \ge 0\}$$ If some of the $x_B=0$, then it is a degenerate solution # Degenerate basic feasible solutions Example $$x_1 + x_2 + x_3 = 1$$ $$-x_1 + x_2 - x_3 = 1$$ $$x_1, x_2, x_3 \ge 0$$ ### **Degenerate solutions** Basis $$B=\{1,2\}$$ \longrightarrow $x=(0,1,0)$ Basis $B=\{2,3\}$ \longrightarrow $y=(0,1,0)$ ## Cycling ### Stepsize 6. Compute step length $\theta^\star = \min_{\{i \in B \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$ If $$i \in B$$, $d_i < 0$ and $x_i = 0$ (degenerate) $$\theta^{\star} = 0$$ Therefore $$y=x+\theta^{\star}x=x$$ and $B=\bar{B}$ **Same** solution and cost **Different** basis Finite termination no longer guaranteed! How can we fix it? **Pivoting rules** ### Pivoting rules ### Choose the index entering the basis ### Simplex iterations 3. Choose j such that $\bar{c}_i < 0$ ——— Which j? #### Possible rules - Smallest subscript: smallest j such that $\bar{c}_j < 0$ - Most negative: choose j with the most negative \bar{c}_j - Largest cost decrement: choose j with the largest $\theta^{\star}|\bar{c}_j|$ ### Pivoting rules ### Choose index exiting the basis ### **Simplex iterations** We can have more than one i for which $x_i = 0$ (next solution is degenerate) Which i? #### **Smallest index rule** Smallest $$i$$ such that $\theta^{\star} = -\frac{x_i}{d_i}$ ### Bland's rule to avoid cycles #### **Theorem** If we use the **smallest index rule** for choosing both the j entering the basis and the i leaving the basis, then **no cycling will occur**. ### Proof idea [Ch 3, Sec 4, LP][Sec 3.4, LO] - Assume Bland's rule is applied and there exists a cycle with different bases. - Obtain contradiction. ### Perturbation approach to avoid cycles # Complexity ### Complexity Basic operation: one simplex iteration ### Estimate complexity of an algorithm - Write number of basic operations as a function of problem dimensions - Simplify and keep only leading terms ### Complexity ### Notation We write $g(x) \sim O(f(x))$ if and only if there exist c > 0 and an x_0 such that $$|g(x)| \le cf(x), \quad \forall x \ge x_0$$ Polynomial Practical **Exponential** Impractical! ### \mathcal{P} and \mathcal{NP} ### Complexity class \mathcal{P} There exists a polynomial time algorithms to solve it ### Complexity class \mathcal{NP} Given a candidate solution, there exists a polynomial time algorithm to verify it. #### Complexity class \mathcal{NP} -hard At least as hard as the hardest problem in \mathcal{NP} We don't know any polynomial time algorithm ### Million dollar problem: $P = \mathcal{NP}$? - We know that $\mathcal{P} \subset \mathcal{NP}$ - Does it exist a polynomial time algorithm for \mathcal{NP} -hard problems? ### Complexity of the simplex method Example of worst-case behavior ### Innocent-looking problem minimize $-x_n$ subject to $0 \le x \le 1$ ### 2^n vertices $2^n/2$ vertices: $\cos t = 1$ $2^n/2$ vertices: $\cos t = 0$ #### Perturb unit cube minimize $$-x_n$$ subject to $$\epsilon \leq x_1 \leq 1$$ $$\epsilon x_{i-1} \le x_i \le 1 - \epsilon x_{i-1}, \quad i = 2, \dots, n$$ ### Complexity of the simplex method ### Example of worst-case behavior minimize $$-x_n$$ subject to $\epsilon \le x_1 \le 1$ $$\epsilon x_{i-1} \le x_i \le 1 - \epsilon x_{i-1}, \quad i=2,\dots,n$$ #### **Theorem** - The vertices can be ordered so that each one is adjacent to and has a lower cost than the previous one - There exists a pivoting rule under which the simplex method terminates after $2^n 1$ iterations #### Remark - A different pivot rule would have converged in one iteration. - We have a bad example for every pivot rule. ### Complexity of the simplex method We do not know any polynomial version of the simplex method, no matter which pivoting rule we pick. Still open research question! #### **Worst-case** There are problem instances where the simplex method will run an **exponential number of iterations** in terms of the dimensions n and m: $O(2^n)$ Good news: average-case **Practical performance** is very good. On average, it stops in O(n) iterations. ### The simplex method Today, we learned to: - Formulate auxiliary problem to find starting simplex solutions - Apply pivoting rules to avoid cycling in degenerate linear programs - Analyze complexity of the simplex method ### Next lecture - Numerical linear algebra - "Realistic" simplex implementation - Examples