ORF522 – Linear and Nonlinear Optimization 4. The simplex method ### Ed Forum - Notebooks on GitHub: https://github.com/ORF522/companion - Office hours change: Prof. Stellato: Thu 3:30pm-5:30pm Scander Mustapha: Mon: 1:30pm-3:30pm - 10% Participation. The note should **summarize what you learned** in the last lecture, and **highlight the concepts that were most confusing** or that you would like to review. A note will receive full credit if: it is **submitted before the beginning of next lecture**, it is **related to the content** of the lecture, and it is **understandable** and coherent. - Question: connection between geometry and standard form? Yes, they are equivalent (more in the next slides) # Recap # Equivalence #### **Theorem** Given a nonempty polyhedron $P = \{x \mid Ax \leq b\}$ Let $x \in P$ x is a vertex $\iff x$ is an extreme point $\iff x$ is a basic feasible solution $$P = \{x \mid a_i^T x \le b_i, \quad i = 1, \dots, m\}$$ $$P = \{x \mid a_i^T x \le b_i, i = 1, \dots, m\}$$ #### Active constraints at \bar{x} $$\mathcal{I}(\bar{x}) = \{i \in \{1, \dots, m\} \mid a_i^T \bar{x} = b_i\}$$ Index of all the constraints satisfied as equality $$P = \{x \mid a_i^T x \le b_i, i = 1, \dots, m\}$$ #### Active constraints at \bar{x} $$\mathcal{I}(\bar{x}) = \{i \in \{1, \dots, m\} \mid a_i^T \bar{x} = b_i\}$$ Index of all the constraints satisfied as equality #### Basic solution \bar{x} • $\{a_i \mid i \in \mathcal{I}(\bar{x})\}$ has n linearly independent vectors $$P = \{x \mid a_i^T x \le b_i, \quad i = 1, \dots, m\}$$ #### Active constraints at \bar{x} $$\mathcal{I}(\bar{x}) = \{i \in \{1, \dots, m\} \mid a_i^T \bar{x} = b_i\}$$ Index of all the constraints satisfied as equality #### Basic solution \bar{x} • $\{a_i \mid i \in \mathcal{I}(\bar{x})\}$ has n linearly independent vectors #### Basic feasible solution \bar{x} - $\bar{x} \in P$ - $\{a_i \mid i \in \mathcal{I}(\bar{x})\}$ has n linearly independent vectors # Standard form polyhedra ### **Definition** #### Standard form LP $$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$ ### **Assumption** $A \in \mathbf{R}^{m \times n}$ has full row rank $m \leq n$ ### Interpretation P lives in (n-m)-dimensional subspace ### Standard form polyhedron $$P = \{x \mid Ax = b, \ x \ge 0\}$$ ### **Basic solutions** ### Standard form polyhedra $$P = \{x \mid Ax = b, \ x \ge 0\}$$ with $A \in \mathbf{R}^{m \times n}$ has full row rank $m \leq n$ \boldsymbol{x} is a **basic solution** if and only if - Ax = b - There exist indices $B(1), \ldots, B(m)$ such that - columns $A_{B(1)}, \ldots, A_{B(m)}$ are linearly independent - $x_i = 0$ for $i \neq B(1), \dots, B(m)$ x is a basic feasible solution if x is a basic solution and $x \ge 0$ $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$ minimize $c^T x$ subject to $Ax \leq b \longrightarrow \text{subject to}$ $\begin{bmatrix} A & -A & I \end{bmatrix} \begin{bmatrix} x^+ \\ x^- \\ s \end{bmatrix} = b$ $(x^+, x^-, s) \geq 0$ $$\tilde{C} = (C_1 - C_1 Q)$$ Variables: $\tilde{n} = 2n + m$ (Equality) constraints: $\tilde{m} = m \Longrightarrow$ active $$c^T(x^+ - x^-)$$ $(x^+, x^-, s) \ge 0$ $$c^Tx$$ $$Ax \leq b \longrightarrow \text{subject to}$$ minimize $$c^T(x^+ - x^-)$$ minimize c^Tx subject to $Ax \le b \longrightarrow \text{subject to} \quad \begin{bmatrix} A & -A & I \end{bmatrix} \begin{bmatrix} x^+ \\ x^- \\ s \end{bmatrix} = b \longrightarrow \text{subject to} \quad \tilde{A}\tilde{x} = b$ $\tilde{x} \ge 0$ $$\tilde{c}^T \tilde{x}$$ $$\tilde{A}\tilde{x} = t$$ $$\tilde{x} \ge 0$$ Variables: $$(\tilde{n}) = 2n + m$$ (Equality) constraints: $\tilde{m} = m \Longrightarrow$ active For a basic solution We need $$\tilde{n}-\tilde{m}=2n$$ active inequalities $\Rightarrow \tilde{x}_i=0$ (non basic) $$(x^+, x^-, s) \ge 0$$ Variables: $\tilde{n} = 2n + m$ (Equality) constraints: $\tilde{m} = m \Longrightarrow \text{active}$ We need $\tilde{n} - \tilde{m} = 2n$ active inequalities $\Rightarrow \tilde{x}_i = 0$ (non basic) Which corresponds to m inequalities inactive $\Rightarrow \tilde{x}_i > 0$ (basic) $$c^T(x^+ - x^-)$$ $(x^+, x^-, s) \ge 0$ $$Ax < b \longrightarrow \text{subject to}$$ Variables: $\tilde{n} = 2n + m$ $$\tilde{n} = 2n + m$$ (Equality) constraints: $$\tilde{m} = m \Longrightarrow \text{active}$$ $$\tilde{m}=m\Longrightarrow$$ active Formal proof at Theorem 2.4 LO book For a basic solution We need $$\tilde{n} - \tilde{m} = 2n$$ active inequalities $\Rightarrow \tilde{x}_i = 0$ (non basic) Which corresponds to m inequalities inactive $\Rightarrow \tilde{x}_i > 0$ (basic) ### Constructing basic solution - 1. Choose any m independent columns of A: $A_{B(1)}, \ldots, A_{B(m)}$ - 2. Let $x_i = 0$ for all $i \neq B(1), ..., B(m)$ - 3. Solve Ax = b for the remaining $x_{B(1)}, \ldots, x_{B(m)}$ # Constructing basic solution - 1. Choose any m independent columns of A: $A_{B(1)}, \ldots, A_{B(m)}$ - 2. Let $x_i = 0$ for all $i \neq B(1), ..., B(m)$ - 3. Solve Ax = b for the remaining $x_{B(1)}, \ldots, x_{B(m)}$ Basis Basis columns Basic variables matrix $$A_B = \begin{bmatrix} & & & & \\ & A_{B(1)} & A_{B(2)} & \dots & A_{B(m)} \\ & & & & \end{bmatrix}, \quad x_B = \begin{bmatrix} x_{B(1)} \\ \vdots \\ x_{B(m)} \end{bmatrix} \longrightarrow \text{Solve } A_B x_B = b$$ # Constructing basic solution - 1. Choose any m independent columns of A: $A_{B(1)}, \ldots, A_{B(m)}$ - 2. Let $x_i = 0$ for all $i \neq B(1), ..., B(m)$ - 3. Solve Ax = b for the remaining $x_{B(1)}, \ldots, x_{B(m)}$ Basis Basis columns Basic variables matrix $$A_B = \begin{bmatrix} & & & & \\ & A_{B(1)} & A_{B(2)} & \dots & A_{B(m)} \\ & & & & \end{bmatrix}, \quad x_B = \begin{bmatrix} x_{B(1)} \\ \vdots \\ x_{B(m)} \end{bmatrix} \longrightarrow \text{Solve } A_B x_B = b$$ If $x_B \ge 0$, then x is a basic feasible solution # Optimality of extreme points minimize $c^T x$ subject to $Ax \leq b$ Then, there exists an optimal solution which is an **extreme point** of P We only need to search between extreme points ### Conceptual algorithm - Start at corner - Visit neighboring corner that improves the objective # Today's agenda Readings: [Chapter 3, LO] ### Simplex method - Iterate between neighboring basic solutions - Optimality conditions - Simplex iterations ### The simplex method ### Top 10 algorithms of the 20th century 1946: Metropolis algorithm 1947: Simplex method 1950: Krylov subspace method 1951: The decompositional approach to matrix computations 1957: The Fortran optimizing compiler 1959: QR algorithm 1962: Quicksort 1965: Fast Fourier transform 1977: Integer relation detection 1987: Fast multipole method 13 # The simplex method ### Top 10 algorithms of the 20th century 1946: Metropolis algorithm 1947: Simplex method 1950: Krylov subspace method 1951: The decompositional approach to matrix computations 1957: The Fortran optimizing compiler 1959: QR algorithm 1962: Quicksort 1965: Fast Fourier transform 1977: Integer relation detection 1987: Fast multipole method ### **George Dantzig** # Neighboring basic solutions Two basic solutions are **neighboring** if their basic indices differ by exactly one variable Two basic solutions are **neighboring** if their basic indices differ by exactly one variable $$\begin{bmatrix} 1 & -1 & 0 & 3 & -2 \\ 2 & 0 & -1 & -1 & 0 \\ 0 & 2 & 4 & -1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -5 \\ -1 \\ 14 \end{bmatrix}$$ Two basic solutions are **neighboring** if their basic indices differ by exactly one variable $$\begin{bmatrix} 1 & -1 & 0 & 3 & -2 \\ 2 & 0 & -1 & -1 & 0 \\ 0 & 2 & 4 & -1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -5 \\ -1 \\ 14 \end{bmatrix}$$ $$B = \{1, 3, 5\} \qquad x_2 = x_4 = 0$$ $$A_B x_B = b \longrightarrow x_B = \begin{bmatrix} x_1 \\ x_3 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2.5 \end{bmatrix}$$ Two basic solutions are **neighboring** if their basic indices differ by exactly one variable $$\begin{bmatrix} 1 & -1 & 0 & 3 & -2 \\ 2 & 0 & -1 & -1 & 0 \\ 0 & 2 & 4 & -1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -5 \\ -1 \\ 14 \end{bmatrix}$$ $$B = \{1, 3, 5\} \qquad x_2 = x_4 = 0 \qquad \qquad \bar{B} = \{1, 3, 4\} \qquad y_2 = y_5 = 0$$ $$A_{\bar{B}} y_{\bar{B}} = b \longrightarrow y_{\bar{B}} = \begin{bmatrix} y_4 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 0.1 \\ 3.0 \\ -1.7 \end{bmatrix}$$ 15 $$\bar{B} = \{1, 3, 4\}$$ $y_2 = y_5 = 0$ $$A_{\bar{B}}y_{\bar{B}} = b \longrightarrow y_{\bar{B}} = \begin{vmatrix} y_{4} \\ y_{3} \end{vmatrix} = \begin{vmatrix} 0.1 \\ 3.0 \\ y_{4} \end{vmatrix}$$ 15 #### **Conditions** $$P = \{x \mid Ax = b, x \ge 0\}$$ Given a basis matrix $$A_B = \begin{bmatrix} A_{B(1)} & \dots & A_{B(m)} \end{bmatrix}$$ we have basic feasible solution x: - x_B solves $A_B x_B = b$ - $x_i = 0, \ \forall i \neq B(1), \dots, B(m)$ ### **Conditions** $$P = \{x \mid Ax = b, \ x \ge 0\}$$ Given a basis matrix $$A_B = \begin{bmatrix} A_{B(1)} & \dots & A_{B(m)} \end{bmatrix}$$ we have basic feasible solution x: - x_B solves $A_B x_B = b$ - $x_i = 0, \ \forall i \neq B(1), \dots, B(m)$ Let $x \in P$, a vector d is a **feasible direction** at x if $\exists \theta > 0$ for which $x + \theta d \in P$ #### Feasible direction d • $$A(x + \theta d) = b \Longrightarrow Ad = 0$$ • $$x + \theta d \ge 0$$ ### Computation Nonbasic indices (x>=0) - $d_j = 1$ Basic direction - $d_k = 0, \ \forall k \notin \{j, B(1), \dots, B(m)\}$ #### Feasible direction d • $$A(x + \theta d) = b \Longrightarrow Ad = 0$$ • $$x + \theta d \ge 0$$ ### Computation #### Feasible direction d - $A(x + \theta d) = b \Longrightarrow Ad = 0$ - $x + \theta d \ge 0$ #### Nonbasic indices - $d_j = 1$ Basic direction - $d_k = 0, \ \forall k \notin \{j, B(1), \dots, B(m)\}$ #### **Basic indices** $$Ad = 0 \Rightarrow \sum_{i=1}^{n} A_i d_i = \mathbf{A}_B d_B + A_j = 0 \Longrightarrow d_B = -\mathbf{A}_B^{-1} A_j$$ ### Computation #### Feasible direction d - $A(x + \theta d) = b \Longrightarrow Ad = 0$ - $x + \theta d > 0$ #### Nonbasic indices - $d_j = 1$ \longrightarrow Basic direction $d_k = 0, \ \forall k \notin \{j, B(1), \dots, B(m)\}$ #### **Basic indices** $$Ad = 0 = \sum_{i=1}^{n} A_i d_i = B_B d_B + A_j = 0 \Longrightarrow d_B = -B_B^{-1} A_j$$ ### Non-negativity (non-degenerate assumption) - Non-basic variables: $x_i = 0$. Nonnegative direction $d_i \ge 0$ - Basic variables: $x_B > 0$. Therefore $\exists \theta > 0$ such that $x_B + \theta d_B \geq 0$ $$P = \{x \mid x_1 + x_2 + x_3 = 2, \quad x \ge 0\}$$ $$x = (2, 0, 0)$$ $B = \{1\}$ ### Example $$P = \{x \mid x_1 + x_2 + x_3 = 2, \quad x \ge 0\}$$ $$x = (2, 0, 0)$$ $B = \{1\}$ Man Basic index $$j = 3 \longrightarrow d = (-1, 0, 1)$$ $$d_j = 1$$ $$A_B d_B = -A_j \quad \Rightarrow \quad d_B = -1$$ ### **Cost improvement** $$c^T(x + \theta d) - c^T x = \theta c^T d$$ ### **Cost improvement** $$c^T(x+\theta d)-c^Tx=\theta c^Td$$ New cost ### **Cost improvement** ### **Cost improvement** We call \bar{c}_j the **reduced cost** of (introducing) variable x_j in the basis $$\bar{c}_j = c^T d = \sum_{i=1}^n c_i d_i = c_j + c_B^T d_B = c_j - c_B^T A_B^{-1} A_j$$ ### Interpretation Change in objective/marginal cost of adding x_j to the basis $$\bar{c}_j = c_j - c_B^T A_B^{-1} A_j$$ - $\bar{c}_j > 0$: adding x_j will increase the objective (bad) - $\bar{c}_j < 0$: adding x_j will decrease the objective (good) ### Interpretation Change in objective/marginal cost of adding x_j to the basis Cost per-unit increase of variable x_j - $\bar{c}_j > 0$: adding x_j will increase the objective (bad) - $\bar{c}_j < 0$: adding x_j will decrease the objective (good) ### Interpretation Change in objective/marginal cost of adding x_j to the basis Cost per-unit increase of variable \boldsymbol{x}_j Cost to change other variables compensating for x_j to enforce Ax = b - $\bar{c}_j > 0$: adding x_j will increase the objective (bad) - $\bar{c}_j < 0$: adding x_j will decrease the objective (good) ### Interpretation Change in objective/marginal cost of adding x_j to the basis Cost per-unit increase of variable \boldsymbol{x}_j Cost to change other variables compensating for x_j to enforce Ax = b - $\bar{c}_j > 0$: adding x_j will increase the objective (bad) - $\bar{c}_i < 0$: adding x_i will decrease the objective (good) #### Reduced costs for basic variables is 0 $$\bar{c}_{B(i)} = c_{B(i)} - c_B^T A_B^{-1} A_{B(i)} = c_{B(i)} - c_B^T (A_B^{-1} A_B) e_i^T$$ $$= c_{B(i)} - c_B^T e_i = c_{B(i)} - c_{B(i)} = 0$$ 20 #### Reduced costs $$\bar{c}_j = c_j - c_B^T A_B^{-1} A_j$$ ### Full vector in one shot? $$\bar{c} = (\bar{c}_1, \dots, \bar{c}_n)$$ #### **Reduced costs** $$\bar{c}_j = c_j - c_B^T A_B^{-1} A_j$$ Isolate basis B-related components p (they are the same across j) $$\bar{c}_j = c_j - A_j^T (A_B^{-1})^T c_B = c_j - A_j^T p$$ #### Full vector in one shot? $$\bar{c} = (\bar{c}_1, \dots, \bar{c}_n)$$ #### **Reduced costs** $$\bar{c}_j = c_j - c_B^T A_B^{-1} A_j$$ Isolate basis B-related components p (they are the same across j) $$\bar{c}_j = c_j - A_j^T (A_B^{-1})^T c_B = c_j - A_j^T p$$ #### Full vector in one shot? $$\bar{c} = (\bar{c}_1, \dots, \bar{c}_n)$$ Obtain p by solving linear system $$p = (A_B^{-1})^T c_B \quad \Rightarrow \quad A_B^T p = c_B$$ Note: $$(M^{-1})^T = (M^T)^{-1}$$ for any square invertible M #### **Reduced costs** $$\bar{c}_j = c_j - c_B^T A_B^{-1} A_j$$ Isolate basis B-related components p (they are the same across j) $$\bar{c}_j = c_j - A_j^T (A_B^{-1})^T c_B = c_j - A_j^T p$$ #### Full vector in one shot? $$\bar{c} = (\bar{c}_1, \dots, \bar{c}_n)$$ Obtain p by solving linear system $$p = (A_B^{-1})^T c_B \quad \Rightarrow \quad A_B^T p = c_B$$ Note: $(M^{-1})^T = (M^T)^{-1}$ for any square invertible M ### Computing reduced cost vector 1. Solve $$A_B^T p = c_B$$ 2. $$\bar{c} = c - A^T p$$ #### **Theorem** Let x be a basic feasible solution associated with basis matrix $\mathbf{B}_{\mathbf{B}}$ Let \bar{c} be the vector of reduced costs. If $\bar{c} \geq 0$, then x is optimal #### **Theorem** Let x be a basic feasible solution associated with basis matrix B Let \bar{c} be the vector of reduced costs. If $\bar{c} \geq 0$, then x is optimal #### Remark This is a **stopping criterion** for the simplex algorithm. If the **neighboring solutions** do not improve the cost, we are done (because of convexity). ### **Proof** For a basic feasible solution x with basis B the reduced costs are $\bar{c} \geq 0$. ### **Proof** For a basic feasible solution x with basis B the reduced costs are $\bar{c} \geq 0$. Consider any feasible solution y and define d = y - x ### **Proof** For a basic feasible solution x with basis B the reduced costs are $\bar{c} \geq 0$. Consider any feasible solution y and define d = y - x Since x and y are feasible, then Ax = Ay = b and Ad = 0 $$Ad = A_B d_B + \sum_{i \in N} A_i d_i = 0 \quad \Rightarrow \quad d_B = -\sum_{i \in N} A_B^{-1} A_i d_i$$ N are the nonbasic indices ### **Proof** For a basic feasible solution x with basis B the reduced costs are $\bar{c} \geq 0$. Consider any feasible solution y and define d = y - x Since x and y are feasible, then Ax = Ay = b and Ad = 0 $$Ad = A_B d_B + \sum_{i \in N} A_i d_i = 0 \quad \Rightarrow \int d_B = -\sum_{i \in N} A_B^{-1} A_i d_i$$ N are the nonbasic indices The change in objective is $$c^{T}d = c_{B}^{T}d_{B}^{T} + \sum_{i \in N} c_{i}d_{i} = \sum_{i \in N} (c_{i} - c_{B}^{T}A_{B}^{-1}A_{i})d_{i} = \sum_{i \in N} \bar{c}_{i}d_{i}$$ ### **Proof** For a basic feasible solution x with basis B the reduced costs are $\bar{c} \geq 0$. Consider any feasible solution y and define d = y - x Since x and y are feasible, then Ax = Ay = b and Ad = 0 $$Ad = A_B d_B + \sum_{i \in N} A_i d_i = 0 \quad \Rightarrow \quad d_B = -\sum_{i \in N} A_B^{-1} A_i d_i$$ N are the nonbasic indices The change in objective is $$c^{T}d = c_{B}^{T}d_{B} + \sum_{i \in N} c_{i}d_{i} = \sum_{i \in N} (c_{i} - c_{B}^{T}A_{B}^{-1}A_{i})d_{i} = \sum_{i \in N} \bar{c}_{i}d_{i}$$ Since $y \ge 0$ and $x_i = 0$, $i \in N$, then $d_i = y_i - x_i \ge 0$, $i \in N$ $$c^T d = c^T (y - x) \ge 0 \implies c^T y \ge c^T x.$$ # Simplex iterations What happens if some $\bar{c}_j <$ 0? We can decrease the cost by bringing x_j into the basis 8t. x:+0d:>0 Y: ### How far can we go? $$\theta^* = \max\{\theta \mid \theta \ge 0 \text{ and } x + \theta d \ge 0\}$$ d is the j-th basic direction What happens if some $\bar{c}_j < 0$? We can decrease the cost by bringing x_j into the basis ### How far can we go? $$\theta^* = \max\{\theta \mid \theta \ge 0 \text{ and } x + \theta d \ge 0\}$$ d is the j-th basic direction #### Unbounded If $d \geq 0$, then $\theta^* = \infty$. The LP is unbounded. What happens if some $\bar{c}_i < 0$? We can decrease the cost by bringing x_i into the basis ### How far can we go? $$\theta^* = \max\{\theta \mid \theta \ge 0 \text{ and } x + \theta d \ge 0\}$$ d is the j-th basic direction #### Unbounded If d > 0, then $\theta^* = \infty$. The LP is unbounded. #### Bounded If $$d_i < 0$$ for some i , then If $$d_i < 0$$ for some i , then $$\theta^\star = \min_{\{i \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right) = \min_{\{i \in B \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$$ (Since $$d_i \geq 0, i \notin B$$) #### Next feasible solution $$x + \theta^{\star} d$$ #### **Next feasible solution** $$x + \theta^* d$$ Let $$B(\ell)\in\{B(1),\dots,B(m)\}$$ be the index such that $\theta^\star=-\frac{x_{B(\ell)}}{d_{B(\ell)}}.$ Then, $x_{B(\ell)}+\theta^\star d_{B(\ell)}=0$ #### Next feasible solution $$x + \theta^{\star} d$$ Let $$B(\ell)\in\{B(1),\dots,B(m)\}$$ be the index such that $\theta^\star=-\frac{x_{B(\ell)}}{d_{B(\ell)}}.$ Then, $x_{B(\ell)}+\theta^\star d_{B(\ell)}=0$ #### **New solution** - $x_{B(\ell)}$ becomes 0 (exits) x_j becomes θ^\star (enters) #### **Next feasible solution** $$x + \theta^{\star} d$$ Let $$B(\ell)\in\{B(1),\dots,B(m)\}$$ be the index such that $\theta^\star=-\frac{x_{B(\ell)}}{d_{B(\ell)}}.$ Then, $x_{B(\ell)}+\theta^\star d_{B(\ell)}=0$ #### **New solution** - $x_{B(\ell)}$ becomes 0 (exits) x_j becomes θ^{\star} (enters) #### **New basis** $$A_{\bar{B}} = \begin{bmatrix} A_{B(1)} & \dots & A_{B(\ell-1)} & A_j & A_{B(\ell+1)} & \dots & A_{B(m)} \end{bmatrix}$$ # An iteration of the simplex method First part We start with - a basic feasible solution x - a basis matrix $A_B = \begin{bmatrix} A_{B(1)} & \dots, A_{B(m)} \end{bmatrix}$ - 1. Compute the reduced costs \bar{c} - Solve $A_B^T p = c_B$ - $\bar{c} = c A^T p$ - 2. If $\bar{c} \geq 0$, x optimal. break - 3. Choose j such that $\bar{c}_j < 0$ # An iteration of the simplex method Second part - 4. Compute search direction d with $d_j = 1$ and $A_B d_B = -A_j$ - 5. If $d_B \ge 0$, the problem is **unbounded** and the optimal value is $-\infty$. **break** 6. Compute step length $$\theta^\star = \min_{\{i \in B | d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$$ - 7. Define y such that $y = x + \theta^* d$ - 8. Get new basis \bar{B} (i exits and j enters) ### Example $$P = \{x \mid x_1 + x_2 + x_3 = 2, \quad x \ge 0\}$$ $$x = (2, 0, 0)$$ $B = \{1\}$ Basic index $$j=3$$ \longrightarrow $d=(-1,0,1)$ $d_j=1$ $A_Bd_B=-A_j$ \Rightarrow $d_B=-1$ ### Example $$P = \{x \mid x_1 + x_2 + x_3 = 2, \quad x \ge 0\}$$ $$x = (2, 0, 0)$$ $B = \{1\}$ Basic index $$j=3 \longrightarrow d=(-1,0,1)$$ $d_j=1$ $$A_B d_B = -A_j \quad \Rightarrow \quad d_B = -1$$ Stepsize $$\theta^{\star} = -\frac{x_1}{d_1} = 2$$ ### Example $$P = \{x \mid x_1 + x_2 + x_3 = 2, \quad x \ge 0\}$$ $$x = (2, 0, 0)$$ $B = \{1\}$ Basic index $$j=3$$ \longrightarrow $d=(-1,0,1)$ $d_j=1$ $$A_B d_B = -A_j \quad \Rightarrow \quad d_B = -1$$ Stepsize $$\theta^{\star} = -\frac{x_1}{d_1} = 2$$ New solution $$y=x+\theta^{\star}d=(0,0,2)$$ $\bar{B}=\{3\}$ #### **Assume** that - $P = \{x \mid Ax = b, x \ge 0\}$ not empty - Every basic feasible solution non degenerate #### **Assume** that - $P = \{x \mid Ax = b, x \ge 0\}$ not empty - Every basic feasible solution non degenerate #### Then - The simplex method terminates after a finite number of iterations - At termination we either have one of the following - an optimal basis \boldsymbol{B} - a direction d such that $Ad=0,\ d\geq 0,\ c^Td<0$ and the optimal cost is $-\infty$ #### **Proof sketch** At each iteration the algorithm improves - by a **positive** amount θ^* - along the direction d such that $c^T d < 0$ ### **Proof sketch** At each iteration the algorithm improves - by a **positive** amount θ^* - along the direction d such that $c^T d < 0$ #### Therefore - The cost strictly decreases - No basic feasible solution can be visited twice #### **Proof sketch** At each iteration the algorithm improves - by a **positive** amount θ^* - along the direction d such that $c^T d < 0$ #### Therefore - The cost strictly decreases - No basic feasible solution can be visited twice Since there is a **finite number of basic feasible solutions**The algorithm **must eventually terminate** # The simplex method ### Today, we learned to: - Iterate between basic feasible solutions - Verify optimality and unboundedness conditions - Apply a single iteration of the simplex method - Prove finite convergence of the simplex method in the non-degenerate case ### Next lecture - Finding initial basic feasible solution - Degeneracy - Complexity