ORF522 - Linear and Nonlinear Optimization

4. The simplex method

Bartolomeo Stellato — Fall 2021



Ed Forum

* Notebooks on GitHub: https://github.com/ORF522/companion

» Office hours change:
Prof. Stellato: Thu 3:30pm-5:30pm
Scander Mustapha: Mon: 1:30pm-3:30pm

 10% Participation. The note should summarize what you learned in the last lecture,
and highlight the concepts that were most confusing or that you would like to
review. A note will receive full credit if: it is submitted before the beginning of next
lecture, it is related to the content of the lecture, and it is understandable and
coherent.

* Question: connection between geometry and standard form?
Yes, they are equivalent (more in the next slides)






Equivalence

Theorem

Given a nonempty polyhedron P = {x | Ax < b}

Letz € P

r 1S a vertex <« x Is an extreme point «<— =z is a basic feasible solution



Basic feasible solution

P={zl|a z <,

00000



Basic feasible solution

P={z|ajz<b, i=1,...,m}

Active constraints at = Index of all the constraints
Z(x)={ie{l,...,m} | a; & = b;} satisfied as equality



Basic feasible solution

P={z|ajz<b, i=1,...,m}
Active constraints at 7 Index of all the constraints
Z(x)={ie{l,...,m} | a; & = b;} satisfied as equality

Basic solution 7
* {a; | 1 € Z(x)} has n linearly independent vectors



Basic feasible solution

P={z|ajz<b, i=1,...,m}
Active constraints at 7 Index of all the constraints
Z(x)={ie{l,...,m} | a; & = b;} satisfied as equality

Basic solution 7
* {a; | 1 € Z(x)} has n linearly independent vectors

Basic feasible solution z

S|

cx€EP
* {a; | 2 € Z(x)} has n linearly independent vectors —




Standard form polyhedra

Definition Standard form polyhedron
Standard form LP P={x| Az =b, x > 0}
minimize clo L

subjectto Az =0
X Z 0 \
Assumption

A e R"™*" has full row rank m < n T

Interpretation
P lives in (n — m)-dimensional subspace



Basic solutions
Standard form polyhedra

P={x|Ax=0b, z > 0} with A € R™*"™ has full row rank m < n

x 1S a basic solution if and only if

« Az =0b
» There exist indices B(1),..., B(m) such that
— columns Apy)y,..., Apwm) are linearly independent

- x; =0fori# B(1),...,B(m)

x 1S a basic feasible solution if x is a basic solution and =z > (



From geometry to standard form

minimize ¢!z

subjectto Az <b



From geometry to standard form
minimize ¢! (zt —27)

minimize ¢!z _ et

subjectto Ax <b — subjectto |A —A I| |z~ | =b

S
(xt,27,8) >0



/ (

&< (c _c O\
From geometry to standard form

minimize ¢! (zt —27)

J

minimize ¢l A el minimize ¢

~

r X =
subjectto Az <b —— subjectto |A —A I| |2~ | =b — subjectto A7 =5
xe@hﬁ _ ;Z _ S X > 0
R 5
on N (xF,2,5) > 0

Variables: n =2n +m
(Equality) constraints: m = m — active



From geometry to standard form
minimize ¢! (zt —27)
minimize ¢’z _ B minimize
subjectto Az <b —— subjectto |4 —A | |2~ | =b — subject to

Variables:@ 2n +m
(Equality) constraints: m = m — active

a—

| _ We need n — m :@
_ . . o ~ '
For a basic solution active inequalities = #; = 0 (non basic)

=N
1\/ =L
-



From geometry to standard form

minimize ¢! (zt —27)

minimize Tz e minimize

subjectto Az <b —— subjectto |4 —A | |2~ | =b — subject to

Variables: n =2n +m
(Equality) constraints: m = m — active

We need n — m = 2n

- = —— ] . T ~ '
For a basic solution active inequalities = z; = 0 (non basic)

Which corresponds to m inequalities inactive = z; > 0 (basic)

—
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1\/ =L
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From geometry to standard form
minimize ¢! (zt —27)
minimize ¢’z _ B minimize
subjectto Az <b —— subjectto |4 —A | |2~ | =b — subject to

I,
=N

VA
=N
1\/ =L
-

|
SE

Variables: n =2n +m
(Equality) constraints: m = m — active Formal proof at

Theorem 2.4 LO book

We need n — m = 2n

- = —_—— . . "y ~ '
For a basic solution active inequalities = z; = 0 (non basic)

Which corresponds to m inequalities inactive = z; > 0 (basic)



Constructing basic solution

1. Choose any m independent columns of A: Ag(1y,..., Apm)
2. Letx;, =0forall i # B(1),..., B(m)
3. Solve Ax = b for the remaining (1), .., TB(m)



Constructing basic solution

1. Choose any m independent columns of A: Ag(1y,..., Apm)
2. Letx;, =0forall i # B(1),..., B(m)
3. Solve Ax = b for the remaining (1), .., TB(m)
Basis Basis columns Basic variables
matrix - i i
| | | TBQ)
AB — AB(l) AB(Q) c e AB(m) ] LB — —— Solve ABCEB =%
. | . ZB(m)_




Constructing basic solution

1. Choose any m independent columns of A: Ag(1y,..., Apm)
2. Letx;, =0forall i # B(1),..., B(m)
3. Solve Ax = b for the remaining (1), .., TB(m)
Basis Basis columns Basic variables
matrix - i i
| | | TBQ)
AB — AB(l) AB(Q) c e AB(m) ] LB — —— Solve ABCEB =%
. | . ZB(m)_

If t5 > 0, then z Is a basic feasible solution



Optimality of extreme points

minimize clx
subjectto Ax <b

i P has at least one extreme point
» There exists an optimal solution =*

Then, there exists an optimal solution which is an extreme point of P

We only need to search between extreme points

10



Conceptual algorithm

e Start at corner

* Visit neighboring corner that
Improves the objective

11



Today’s agenda
Readings: [Chapter 3, LO]

Simplex method

- [terate between neighboring basic solutions
- Optimality conditions

- Simplex iterations

12



The simplex method
Top 10 algorithms of the 20th century

1946: Metropolis algorithm

1947: Simplex method

1950: Krylov subspace method

1951: The decompositional approach to matrix computations
1957: The Fortran optimizing compiler

1959: QR algorithm

1962: Quicksort

1965: Fast Fourier transform

1977 Integer relation detection

1987: Fast multipole method

[SIAM News (2000)]

13



The simplex method

George Dantzig
Top 10 algorithms of the 20th century = .

v B z

1946: Metropolis algorithm
1947: Simplex method
1950: Krylov subspace method

1951: The decompositional approach to matrix computations
1957: The Fortran optimizing compiler

1959: QR algorithm

1962: Quicksort

1965: Fast Fourier transform

1977 Integer relation detection

1987: Fast multipole method

[SIAM News (2000)] 13



Neighboring basic solutions



Neighboring solutions

Two basic solutions are neighboring if their
basic indices differ by exactly one variable

15



Neighboring solutions

Two basic solutions are neighboring if their

basic indices differ by exactly one variable

1 -1
2 0
0 2

Example
3 -2

-1 0

-1 4

15



Neighboring solutions

Two basic solutions are neighboring if their

basic indices differ by exactly one variable

—2

Example
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Neighboring solutions

Two basic solutions are neighboring if their

basic indices differ by exactly one variable

—2

Example

0.1
3.0

—1.7

15



Feasible directions
Conditions Given a basis matrix Ap = _AB(l) .. AB(m)_

P={z|Ax=b, z>0) we have basic feasible solution z:

* Ip solves ABZE‘B =5
» x; =0, Vi # B(1),...,B(m)

16



Feasible directions
Conditions Given a basis matrix Ap = _AB(l) .. AB(m)_

P={z|Ax=b, z>0) we have basic feasible solution z:

* Ip solves ABZE‘B =5
» x; =0, Vi # B(1),...,B(m)

Let x € P, a vector d Is a feasible direction at « 7(
if 460 > 0 for which z + 6d € P

Feasible direction d
* Alx +0d) =b=—= Ad =0 Ax
e v+ 60d >0

[f

S

16



Feasible direction d

Feamb!e directions Ao+ 0d) — b Ad =
Computation « x+60d >0

Nonbasic indices (XI:O\
* d; = 1 — Basic direction

17



Feasible direction d

Feasible directions Ao+ 0d) — b Ad =
Computation « x+60d >0

Nonbasic indices
* d; = 1 — Basic direction

Basic indices

Ad:O—éZAZdZ:%B—FAJ:O:>dB:—Ag1AJ
1=1

17



Feasible direction d

Feasible directions Ao+ 0d) — b Ad =
Computation « x+60d >0

|| Nonbasic indices

* d; = 1 — Basic direction

/J\ + d, =0, Vk ¢ {7,B(1),...,B(m)}

Basic indices

Ad:O:ZAzdzzlééiB—l—A] —0—dp :—AxglA]’
1=1

Non-negativity (hon-degenerate assumption)

Non-basic variables: x; = 0. Nonnegative direction d; > 0
« Basic variables: x5 > 0. Therefore 460 > 0 such that x5 + 6dg > 0

17



Feasible directions

Example

P=Ax|xz1+204+23=2, x>0}

r = (2,0,0) B ={1}

18



As (4 44|
Feasible directions

Example

P=Ax|xz1+204+23=2, x>0}

r = (2,0,0) B ={1}

Mo
Basicindex j =3 —— d=(-1,0,1)

d; =1
ABdB — —Aj —> dB = —1

18



How does the cost change?

Cost improvement
cl(x+0d) — ¢tz = 0c'd

19



How does the cost change?

Cost improvement
cl(x+0d) — c'z = 0c'd

/

New cost
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How does the cost change?

Cost improvement
cl(x+0d) —c'z = 0c'd

N

New cost Old cost
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How does the cost change?

Cost improvement
cl(x+0d) —c'z = 0c'd

N

New cost Old cost

We call ¢; the reduced cost of
(introducing) variable z; in the basis

n
_ T T T 4—1
;i =c d= E cAdg = cj +cpdp = ¢j —cgAg A,
i=1

19



Reduced costs
Interpretation

Change in objective/marginal cost of adding z; to the basis

_ -_— . — T —1 .
C;i =cj —CpAp Aj;

» ¢; > 0: adding z; will increase the objective (bad)
- ¢; < 0: adding z,; will decrease the objective (good)

20



Reduced costs
Interpretation

Change in objective/marginal cost of adding z; to the basis

_ -_— . — T —1 .
C;i =cCj —CcpAg A;

/

Cost per-unit increase
of variable z ;

» ¢; > 0: adding z; will increase the objective (bad)
- ¢; < 0: adding z,; will decrease the objective (good)

20



Reduced costs
Interpretation

Change in objective/marginal cost of adding z; to the basis

p T A—1
Cost per-unit increase Cost to change other variables

- compensating for x
of variable z; to enF:‘orce Axg = b :

» ¢; > 0: adding z; will increase the objective (bad)
- ¢; < 0: adding z,; will decrease the objective (good)
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Reduced costs
Interpretation

Change in objective/marginal cost of adding z; to the basis

= 1

/ \

Cost per-unit increase Cost to change other variables

- compensating for x;
ot vanaole z; to enF:‘orce Axg = b j

» ¢; > 0: adding z; will increase the objective (bad) (
* ¢; < 0: adding z; will decrease the objective (good) /i
o . C=(Qo.40.)

Reduced costs for basic variables is 0 ‘[’ 1T
CB(z) — CB(3) _-C%BA 1143(@) — CB(i) — CB(A 1AB)

= CB(i) — CRei = CB(i) — ¢B(i) = U 20



Vector of reduced costs

Reduced costs

~ — . —_— T —1 .
C; =cj —cgAg A

Full vector in one shot?

c=(C1y...,Cn)

21



Vector of reduced costs

Reduced costs

~ — . —_— T —1 .
C; =cj —cgAg A

|Isolate basis B-related components p
(they are the same across )

Full vector in one shot?

c=(C1y...,Cn)

21



Vector of reduced costs

Reduced costs Full vector in one shot?

_ T 1—1 _ = _
Cj—Cj—CBAB Aj C—(Cl,...,Cn)

|Isolate basis B-related components p

(they are the same across ;) Obtain p by solving linear system

o A—INT T

Note: (M—1)1 = (M*)~1!
for any square invertible M

21



Vector of reduced costs

Reduced costs Full vector in one shot?

_ T 1—1 _ = _
Cj—Cj—CBAB Aj C—(Cl,...,Cn)

|Isolate basis B-related components p

(they are the same across ;) Obtain p by solving linear system

o A—INT T

Note: (M—1)1 = (M*)~1!
for any square invertible M

Computing reduced cost vector

1. Solve Agp = CRB
2. c=c— A'p o1



Optimality conditions




Optimality conditions

Theorem

Let 2 be a basic feasible solution associated with basis matrix Ag,
Let ¢ be the vector of reduced costs.

If ¢ > 0, then z Is optimal

23



Optimality conditions

Theorem

Let £ be a basic feasible solution associated with basis matrix B
Let ¢ be the vector of reduced costs.

If ¢ > 0, then z Is optimal

Remark

This is a stopping criterion for the simplex algorithm.

If the neighboring solutions do not improve the cost, we are done (because of

convexity).
23



Optimality conditions
Proof
For a basic feasible solution x with basis B the reduced costs are ¢ > 0.

24



Optimality conditions
Proof

For a basic feasible solution x with basis B the reduced costs are ¢ > 0.
Consider any feasible solution y and defined =y — «
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Optimality conditions
Proof

For a basic feasible solution x with basis B the reduced costs are ¢ > 0.
Consider any feasible solution y and defined =y — «

Since = and y are feasible, then Ax = Ay = b and Ad = 0

Ad:ABdB+ZAzdz =0 = dp= —ZA;A@GZ@ N are the |
Pt N nonbasic indices
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Optimality conditions
Proof

For a basic feasible solution x with basis B the reduced costs are ¢ > 0.
Consider any feasible solution y and defined =y — «

Since x and y are feasible, then Ax = Ay = band Ad =0
Ad = ABdB+ZAd—O = dj__ZAZ?lAidi N are the

i€N ic N nonbasic indices
The change |Lr;blectlve |s/
Td=chdg+ > adi = (e, —cBA ANd; = ad;

1EN 1€EN 1N
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Optimality conditions

Proof

For a basic feasible solution x with basis B the reduced costs are ¢ > 0.

Consider any feasible solution y and defined =y — «

Since = and y are feasible, then Ax = Ay = b and Ad = 0
Ad=Apdp+ Y Aid;=0 = dp=-Y Ag'Aid,
i€N ieN

The change in objective is

CTd — ngB -+ Z Cidi — Z(CZ — C%AglAz)dz — Z Eidi

i€N ieN ieN
Sincey>0andx; =0, 1€ N,thend;, =y, —x; > 0,1 € N

crd=c'(y—2)>0 = cly>c

N are the
nonbasic indices

24



Simplex iterations



Stepsize

What happens if some ¢; < 0?7
We can decrease the cost by bringing z; into the basis

20



Mex &

Stepsize S e OdinD Ve
What happens if some ¢; < 0? \ﬁ&;\ <O
We can decrease the cost by bringing z; into the basis - &

> _ K
ER
How far can we go?

f* = max{f |6 > 0and x + 6d > 0} d is the j-th basic direction
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Stepsize

What happens if some ¢; < 0?7

We can decrease the cost by bringing z; into the basis

How far can we go?

0" =max{f |0 >0and x + 0d > 0}

Unbounded
If d > 0, then 6 = oco. The LP I1s unbounded.

d 1s the 7-th basic direction
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Stepsize

What happens if some ¢; < 0?7

We can decrease the cost by bringing z; into the basis

How far can we go?

0" =max{f |0 >0and x + 0d > 0}

Unbounded

If d > 0, then 6 = oco. The LP I1s unbounded.
Bounded

If d; < 0 for some 7, then 0* = min

{2|d; <0}

(

d 1s the 7-th basic direction

— 11111
di {t€B|d; <0} d@

(SinCe d; >0, 2 §é B)

20



Moving to a new basis

Next feasible solution
x + 0°d

27



Moving to a new basis

Next feasible solution
x + 0°d

Let B(¢) € {B(1), ..., B(m)} be the index such that 6* — le“). Then,
B(£)

CEB(g) + H*dB(g) = (

27



Moving to a new basis

Next feasible solution
x + 0°d

Let B(¢) € {B(1),..., B(m)} be the index such that 6* = ——2._ Then,

U:10y
CEB(g) -+ H*dB(g) — ()
New solution
* Tp(r) becomes 0 (exits) Jo 4
- x,; becomes 6* (enters) J=

27



Moving to a new basis

Next feasible solution
x + 0°d

L B (£)
dp(e)

Let c {B(1),...,B(m)} be the index such that §* = - Then,

CEB(g) + H*dB(g) = (

New solution
* xp(r) becomes 0 (exits)

* z; becomes 6* (enters)

_ New basis _
AB — _AB(l) .« .. AB(g_D ! A] ' AB(€—|—1) « .. AB(m)_




An iteration of the simplex method

First part
We start with
 a basic feasible solution x _
» abasis matrix Agp = |Ap@ny ..., Apm)

1. Compute the reduced costs ¢

» Solve Agp = CRB
cc=c—A'p

2. If ¢ > 0, x optimal. break

3. Choose j such that ¢; < 0



An iteration of the simplex method

Second part

4. Gompute search direction d with d; =1 and Agdp = —A;

5. If dg > 0, the problem is unbounded and the optimal value is —oc. break

6. Compute step length 6* =  min ( %)

{1€B|d; <0} dz
/. Define y such that y = x + 6*d

8. Get new basis B (i exits and j enters)

29



Example

P={x|x14+x2+2x3=2, x>0}

r = (2,0,0) B ={1}

Basicindex j =3 —— d=(-1,0,1)
d; =1
ABdB — —Aj —> dB = —1

30



Example

P={x|x14+x2+2x3=2, x>0}

r = (2,0,0) B ={1}

Basicindex j =3 —— d=(-1,0,1)
d; =1
ABdB — —Aj — dp = —1
L1

Stepsize 0~ = = 2
dq
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Example

P={x|x14+x2+2x3=2, x>0}

r = (2,0,0) B ={1}

Basicindex j =3 —— d=(-1,0,1)
d; =1
ABdB — —Aj —> dB = —1

Stepsize 0~ = "1 _ 9
dq

New solution y =z +6"d = (0,0,2) B = {3}

30



Finite convergence

Assume that

» P={x| Az =b,x > 0} not empty
» Every basic feasible solution non degenerate

31



Finite convergence

Assume that

» P={x| Az =b,x > 0} not empty
» Every basic feasible solution non degenerate

Then

' The simplex method terminates after a finite number of iterations
At termination we either have one of the following

- an optimal basis B
- adirection d such that Ad =0, d > 0, ¢’ d < 0 and the optimal cost is —cc

31



Finite convergence
Proof sketch

At each Iteration the algorithm improves

by a positive amount 6*
- along the direction d such that ¢! d < 0
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Finite convergence
Proof sketch

At each Iteration the algorithm improves

by a positive amount 6*
- along the direction d such that ¢! d < 0

Therefore
» The cost strictly decreases

 No basic feasible solution can be visited twice

32



Finite convergence
Proof sketch

At each Iteration the algorithm improves

by a positive amount 6*
- along the direction d such that ¢! d < 0

Therefore
» The cost strictly decreases

 No basic feasible solution can be visited twice

Since there is a finite number of basic feasible solutions
The algorithm must eventually terminate

32



The simplex method

Today, we learned to:

» |terate between basic feasible solutions

e Verify optimality and unboundedness conditions
* Apply a single iteration of the simplex method

* Prove finite convergence of the simplex method in the non-degenerate case

33



Next lecture

* Finding initial basic feasible solution
 Degeneracy

o Complexity

34



