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Today’s agenda
Readings: [Chapter 1, Bertsimas, Tsitsiklis]

* |inear optimization in inner-product and matrix notation
e Optimization terminology

« Standard form

* Piecewise-linear minimization

« Examples



Where does linear optimization appear?

Supply chain management
Assignment problems
Scheduling and routing problems
Finance

Optimal control problems

Network design and network operations
Many other domains...



Vector notations

By default, all vectors are column vectors and denoted by

r=(T1,...,Tn)

The transpose of a vector is z*

a’ z is the inner product between a and z

n

alr = 11+ "+ aQnT,y, = E a;T;
i=1



Linear optimization

Linear Programming (LP)

minimize > " . ¢y
. n, .
SUbjeCt {0 ijl AL <b;, 1=1,....m

Z?:ldij$j:fi7 iZl,...,p

Objective function and constraints are linear in the decision variables

Belongs to continuous optimization



Linear optimization

Inner product notation

minimize > " ¢, minimize

CTCE

subjectto 7 a;z; <b;, i=1,...,m — subjectto alz <b,

Z?:ldij$j:fi7 iZl,...,p

c, a;, d; are n-vectors
c=(C1,...,Cn)

a; = (%1,---,@7;77,)

di = (di1,...,din)

d?:c — fi,



Linear optimization

Matrix notation

minimize Y ", c;x; minimize ¢’z
SUbjeCt {0 2?21 AL <b;, 1=1,....m —> SubjeCt to Ax <b
> dijri=fi, i=1,...,p Dz = f

A'is m x n-matrix with elements a;; and rows a;
D is p x n-matrix with elements d;; and rows d;

All (in)equalities are elementwise



Optimization terminology
minimize ¢’z
subjectto Az <b
Dx=f
z IS feasible if it satisfies the constraints Ax < band Dz = f

The feasible set is the set of all feasible points
r* is optimal if it is feasible and ¢! z* < ¢! x for all feasible x

The optimal value is p* = ¢! z*

Unbounded problem: ¢! z is unbounded below on the feasible set (p* = —0)

Infeasible problem: feasible set is empty (p* = +o0)



Standard form
Definition

minimize L ¢ e Minimization
subjectto Az =b * Equality constraints

r >0  Nonnegative variables

 Matrix notation for theory

o Standard form for algorithms



Standard form

Transformation tricks

Change objective
If “maximize”, use —c instead of c and change to “minimize”.

Eliminate inequality constraints
If Ax < b, define s and write Ax +s =050, s > 0.
If Ax > b, define s and write Ax — s =050, s > 0.

s are the slack variables

Change variable signs
If z; <0, define y;, = —x;.

Eliminate “free” variables_ |
If ; unconstrained, define z; = =" — x;, with z;” > 0 and z; > 0.

1
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Standard form

Transformation example
minimize
subject to

2$1
L1

3331

minimize  2x; + 4a

subjectto x; + a3
3r1 + QQE;_
L1, 33;7

+  4dxo

+ 12 2>3

+ 2x9 =14
> ()

— 4z,

_ 372_ _

— 225

373—3
= 14
$3ZO
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Linear, affine and convex functions

Linear function: f(z) =a'
flar +By) = af(x)+8f(y), VYr,yeR" o, feR

Affine function: f(z) =alxz + b
flaz+ (1 -a)y) =af(z) + (1 -a)f(y), Vz,ycR" acR

Convex function:
f(()é.il? T (1 - Oé)y) < &f(x) T (1 - &)f(y)a Vx,y S Rna Qo [07 1]
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Convex piecewise-linear functions

f(r) = max (aiTx + b;)

1=1,....m

13



=N

Matrix notation

minimize f(x)

R

Equivalent linear optimization

max (a; x + b;)

1=1

minimize

minimize
subjectto A7 < b

I

00000

t

~T~

C

X

~

S

subjectto a x + b; <t,

Convex piecewise-linear minimization

i=1,...

o 1T
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Sum of piecewise-linear functions

minimize f(z) 4+ g(x) = max (aj x + b;) + max (ci x + d;)
1=1,..., m 1=1,..., D

)" @+ (b + dj))

f(x) +g(x) = max ((a; + ¢,

Equivalent linear optimization

minimize  t1 + t-
SUbjeCttO a?$+bi§f1, r=1,...,m
C;F,CE—FCZZ S?fg, , = 1,...,]? notation?

15
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Examples



Cheapest cat food problem

- Choose quantities z1, .. ., z,, of n ingredients each with unit cost c;.
- Each ingredient j has nutritional content a;; for nutrient .

» Require a minimum level b; for each nutrient s.

minimize Z CiT;
j=1

[Photo Phoebe, my Cat]

j=1 | Would you give her
rzj >0, g=1l...n the optimal food ?

subjectto  » aja; >b;, i=1...m
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f(z)

Data-fitting example

Fit a linear function f(z) = a + bz to m data points (z;, f;):

Approximation problem Ax ~ b where

) - 0
151
10 1

o Ot

—101 *°
—15-

—201

—10 _5 0 5 10

¢

fi
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Data-fitting example

Fit a linear function f(z) = a + bz to m data points (z;, f;):

Approximation problem Ax ~ b where

20_ 0

—10

I z1 | ¢ - J1

¢

Least squares way:

minimize ) (Az —b); = || Az — b||3

1=1

Good news: solution is in closed form z* = (AT A)~1 A%}
Bad news: solution is very sensitive to outliers!
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Data-fitting example

Fit a linear function f(z) = a + bz to m data points (z;, f;):

<1 _
Approximation problem Ax ~ b where '
Zm | =~
N——
201* A
15-
10- A different way:

1=1

¢

fi

minimize Z Az — b|; = || Az — b||;

—10- Good news: solution is much more robust to outliers.

—15- Bad news: there is no closed form solution.

—10 _5 0 5 10

20



1-norm approximation
|Az —b];

minimize

The 1-norm of m-vector y IS

lylli = ) _ vl = ) max{yi, —yi}
i=1 i=1

Equivalent problem

m
minimize E U
1=1

subject to

—u < Az —b<u

Matrix notation

minimize

subject to

A

VA
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Comparison with least-squares

Histogram of residuals Ax — b with randomly generated A € R?Y9*80

T1s = argmin ||Ax — b||, ry, = argmin ||Ax — bl

1

-

~3 —9 1 0 1 9 3
(Aili‘gl — b)k

¢1-norm distribution is wider with a high peak at zero
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! ~=-norm (Chebyshev) approximation

minimize |[Az — b/~

The oco-norm of m-vector y Is

|Ylloc = max [y = max max{yi, —yi}
1=1,..., m 1=1,..., m

Matrix notation

— - T — -
minimize t minimize L
subjectto —t1 < Az —b < t1 L |t

Equivalent problem

subject to

VA




Sparse signal recovery via /;-norm minimization

r € R" Is unknown signal, known to be sparse

We make linear measurements y = Az with A € R™”*"

,m < n

Estimate signal with smallest /;-norm, consistent with measurements

minimize  ||x|
subjectto Ax =y

Equivalent linear optimization
minimize 11w
subjectto —u<z<uwu

AT =Y 24



Sparse signal recovery via /;-norm minimization

Example )

Exact signal z ¢ R'%Y

10 nonzero components 0

Random A € R1V0x1000

The least squares estimate
cannot recover the sparse signal

/N

4
=
~—

minimize  ||z||3 0.0

subjectto Az =y

The ¢1-norm estimate I1s exact

minimize  |[|x|; =)

subjectto Ax =y

0.2

_— T
200 400 600 300 1000
;
200 400 600 300 1000
;
_— e
200 400 600 300 1000
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Sparse signal recovery via /;-norm minimization

Exact recovery
When are these two problems equivalent?

minimize  card(x) minimize  ||z|;
subjectto Ax =y subjectto Ax =y

card(z) is cardinality (humber of nonzero components) of x

We say A allows exact recovery of k-sparse vectors if

T = argmin ||z||; wheny = Az and card(z) < k
Ax=y

It depends on the nullspace! of the “measurement matrix” A

1. Feuer & Nemirovski (IEEE Trans. On Information Technology, 2003) and several other papers on compressed sensing. 20



Linear classification

Support vector machine (linear separation)

Given a set of points {vq,...,vy} with binary labels s; € {—1,1}
Find hyperplane that strictly separates the tho classes

atv,+b>0 if s, =1
atv,+b<0 if s =—1

Homogeneous in (a, b), hence equivalent to the linear inequalities (in a, b)

s;(a’ v; + b) > 1
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Linear classification

Separable case
Feasibility problem

find a,b
subjectto s;(a’v; +b)>1, ¢=1,...,N

Which can be seen as a special case of LP with
minimize 0
subjectto  s;(a’v; +b)>1, i=1,...,N

p* = 0 Iif problem feasible (points separable)
p* = oo If problem infeasible (points not separable) —— What then?

28



Linear classification

Approximate linear separation of nhon-separable points

minimize Zé\il(l —si(a’tv; + b)) = S:,f\il max{0,1 — s;(a’ v; +0)}

If v; misclassified, 1 — s;(a’ v; + b) is the penalty

Piecewise-linear minimization problem with variables a, b

29



Linear classification

Approximate linear separation of nhon-separable points

minimize Zfil max{0,1 — s;(a’ v; + b)}

Equivalent problem

minimize 3., u;

subjectto 1 —s;(via+0b) <w;,, i=1,...,N
Ogui, ZIl,,N

Matrix notation?
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Modelling software for linear programs

Modelling tools simplify the formulation of LPs (and other problems)
* Accept optimization problem in common notation (max, || - ||1,.. ")
 Recognize problems that can be converted to LPs

* EXxpress the problem in input format required by a specific LP solver

Examples

 AMPL, GAMS

o CVX, YALMIP (Matlab)
» CVXPY, Pyomo (Python)
* JuMP,jl, Convex.jl (Julia)



CVXPY example

minimize  ||Ax — b||;
subjectto 0< <1

= cp.Variable(n)
objective = cp.Minimize(cp.norm(A*x - b, 1))
constraints = [0 <= x, X <= 1]
problem = cp.Problem(objective, constraints)

result = problem.solve()

print (x.value)
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Why linear optimization?

“Easy” to solve
* |t is solvable in polynomial time, and it is tractable in practice

o State-of-the-art software can solve LPs with tens of thousands of variables.
We can solve LPs with millions of variables with specific structure.

Extremely versatile
It can model many real-world problems, either exactly or approximately.

Fundamental
The theory of linear optimization lays the foundation for most optimization theories

33



Next lecture

Geometry of linear optimization

 Polyhedra
 Extreme points

e Basic feasible solutions
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