ORF522 – Linear and Nonlinear Optimization

2. Linear optimization

Today's agenda

Readings: [Chapter 1, Bertsimas, Tsitsiklis]

- Linear optimization in inner-product and matrix notation
- Optimization terminology
- Standard form
- Piecewise-linear minimization
- Examples

Where does linear optimization appear?

Supply chain management

Assignment problems

Scheduling and routing problems

Finance

Optimal control problems

Network design and network operations

Many other domains...

Vector notations

By default, all vectors are column vectors and denoted by

$$x = (x_1, \dots, x_n)$$

The transpose of a vector is \boldsymbol{x}^T

 a^Tx is the inner product between a and x

$$a^{T}x = a_{1}x_{1} + \dots + a_{n}x_{n} = \sum_{i=1}^{n} a_{i}x_{i}$$

Linear optimization

Linear Programming (LP)

minimize
$$\sum_{i=1}^n c_i x_i$$
 subject to
$$\sum_{j=1}^n a_{ij} x_j \leq b_i, \quad i=1,\ldots,m$$

$$\sum_{j=1}^n d_{ij} x_j = f_i, \quad i=1,\ldots,p$$

Objective function and constraints are linear in the decision variables

Belongs to continuous optimization

Linear optimization

Inner product notation

 $\begin{array}{lll} \text{minimize} & \sum_{i=1}^n c_i x_i & \text{minimize} & c^T x \\ \text{subject to} & \sum_{j=1}^n a_{ij} x_j \leq b_i, & i=1,\dots,m & \longrightarrow & \text{subject to} & a_i^T x \leq b_i, & i=1,\dots,m \\ & \sum_{j=1}^n d_{ij} x_j = f_i, & i=1,\dots,p & d_i^T x = f_i, & i=1,\dots,p \end{array}$

$$c,\ a_i,\ d_i\ ext{are}\ n ext{-vectors}$$
 $c=(c_1,\ldots,c_n)$ $a_i=(a_{i1},\ldots,a_{in})$ $d_i=(d_{i1},\ldots,d_{in})$

Linear optimization

Matrix notation

minimize
$$\sum_{i=1}^n c_i x_i$$
 minimize $c^T x$ subject to $\sum_{j=1}^n a_{ij} x_j \le b_i, \quad i=1,\ldots,m$ \longrightarrow subject to $Ax \le b$ $\sum_{j=1}^n d_{ij} x_j = f_i, \quad i=1,\ldots,p$ $Dx = f$

A is $m \times n$ -matrix with elements a_{ij} and rows a_i^T D is $p \times n$ -matrix with elements d_{ij} and rows d_i^T All (in)equalities are elementwise

Optimization terminology

minimize
$$c^Tx$$
 subject to $Ax \leq b$
$$Dx = f$$

x is **feasible** if it satisfies the constraints $Ax \leq b$ and Dx = f

The feasible set is the set of all feasible points

 x^{\star} is **optimal** if it is feasible and $c^T x^{\star} \leq c^T x$ for all feasible x

The optimal value is $p^{\star} = c^T x^{\star}$

Unbounded problem: $c^T x$ is unbounded below on the feasible set $(p^* = -\infty)$ Infeasible problem: feasible set is empty $(p^* = +\infty)$

Standard form

Definition

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$

- Minimization
- Equality constraints
- Nonnegative variables

- Matrix notation for theory
- Standard form for algorithms

Standard form

Transformation tricks

Change objective

If "maximize", use -c instead of c and change to "minimize".

Eliminate inequality constraints

If $Ax \le b$, define s and write Ax + s = b, $s \ge 0$.

If $Ax \ge b$, define s and write Ax - s = b, $s \ge 0$.

s are the slack variables

Change variable signs

If $x_i \leq 0$, define $y_i = -x_i$.

Eliminate "free" variables

If x_i unconstrained, define $x_i = x_i^+ - x_i^-$, with $x_i^+ \ge 0$ and $x_i^- \ge 0$.

Standard form

Transformation example

minimize
$$2x_1 + 4x_2$$
 subject to $x_1 + x_2 \ge 3$ $3x_1 + 2x_2 = 14$ $x_1 \ge 0$

minimize
$$2x_1 + 4x_2^+ - 4x_2^-$$

subject to $x_1 + x_2^+ - x_2^- - x_3 = 3$
 $3x_1 + 2x_2^+ - 2x_2^- = 14$
 $x_1, x_2^+, x_2^-, x_3 \ge 0$.

Linear, affine and convex functions

Linear function: $f(x) = a^T x$

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y), \quad \forall x, y \in \mathbf{R}^n, \ \alpha, \beta \in \mathbf{R}$$

Affine function: $f(x) = a^T x + b$

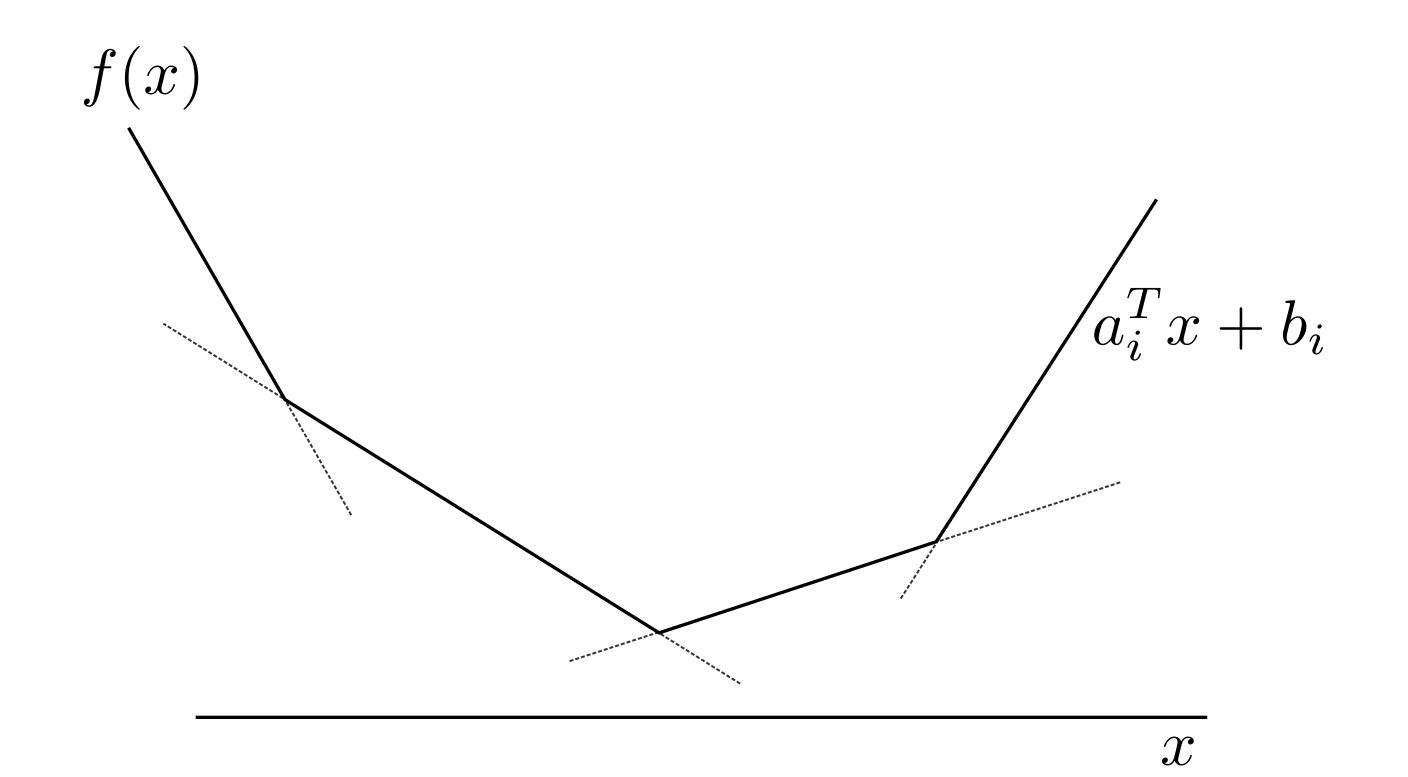
$$f(\alpha x + (1 - \alpha)y) = \alpha f(x) + (1 - \alpha)f(y), \quad \forall x, y \in \mathbf{R}^n, \ \alpha \in \mathbf{R}$$

Convex function:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y), \quad \forall x, y \in \mathbf{R}^n, \ \alpha \in [0, 1]$$

Convex piecewise-linear functions

$$f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$$



Convex piecewise-linear minimization

minimize
$$f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$$

Equivalent linear optimization

minimize
$$t$$
 subject to $a_i^T x + b_i \leq t, \quad i = 1, \dots, m$

Matrix notation

$$\begin{array}{ll} \text{minimize} & \tilde{c}^T \tilde{x} \\ \text{subject to} & \tilde{A} \tilde{x} \leq \tilde{b} \end{array}$$

$$\tilde{x} = \begin{bmatrix} x \\ t \end{bmatrix}, \quad \tilde{c} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \tilde{A} = \begin{bmatrix} a_1^T & -1 \\ \vdots & \vdots \\ a_m^T & -1 \end{bmatrix}, \quad \tilde{b} = \begin{bmatrix} -b_1 \\ \vdots \\ -b_m \end{bmatrix}$$

Sum of piecewise-linear functions

minimize
$$f(x) + g(x) = \max_{i=1,...,m} (a_i^T x + b_i) + \max_{i=1,...,p} (c_i^T x + d_i)$$

Cost function is piecewise-linear

$$f(x) + g(x) = \max_{\substack{i=1,\dots,m\\j=1,\dots,p}} ((a_i + c_j)^T x + (b_i + d_j))$$

Equivalent linear optimization

minimize
$$t_1+t_2$$
 Matrix subject to $a_i^Tx+b_i\leq t_1,\quad i=1,\ldots,m$ $c_i^Tx+d_i\leq t_2,\quad i=1,\ldots,p$

Examples

Cheapest cat food problem

- Choose quantities x_1, \ldots, x_n of n ingredients each with unit cost c_j .
- Each ingredient j has nutritional content a_{ij} for nutrient i.
- Require a minimum level b_i for each nutrient i.

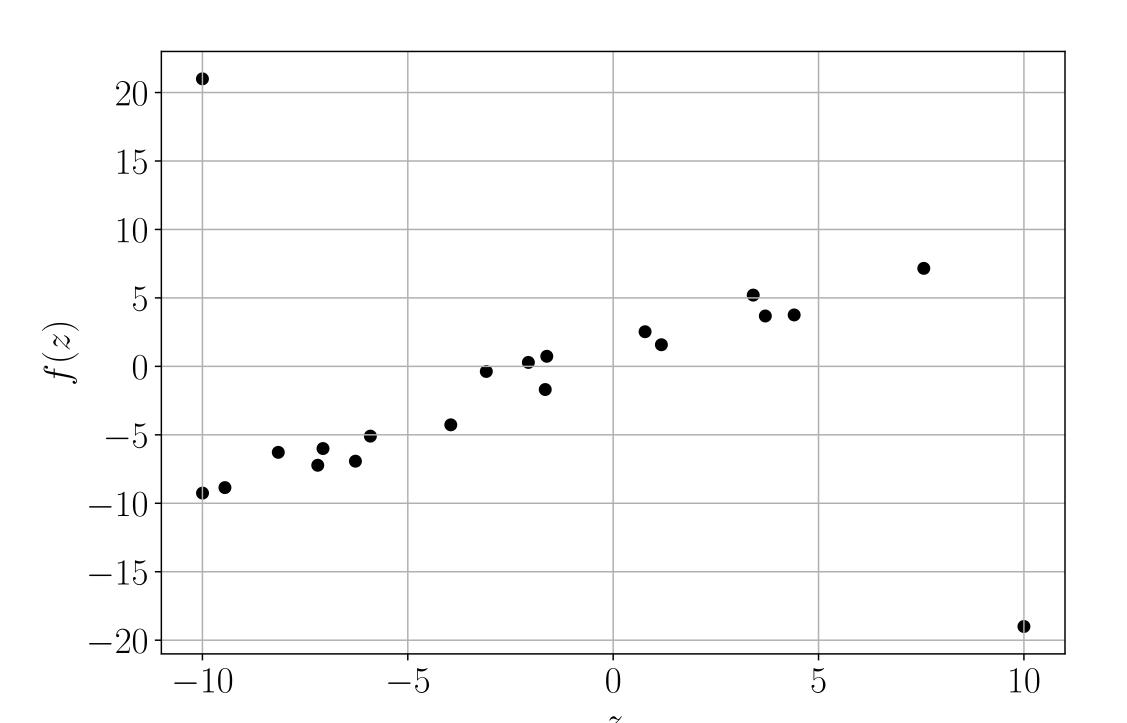
minimize
$$\sum_{j=1}^n c_j x_j$$
 subject to $\sum_{j=1}^n a_{ij} x_j \geq b_i, \qquad i=1\dots m$ $x_j \geq 0, \qquad j=1\dots n$

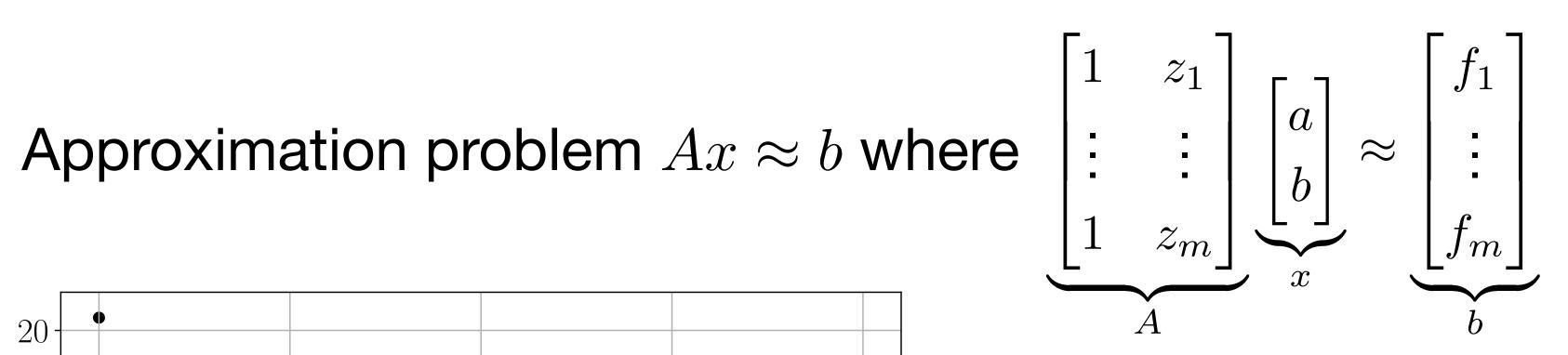
[Photo Phoebe, my cat]

Would you give her the optimal food?

Data-fitting example

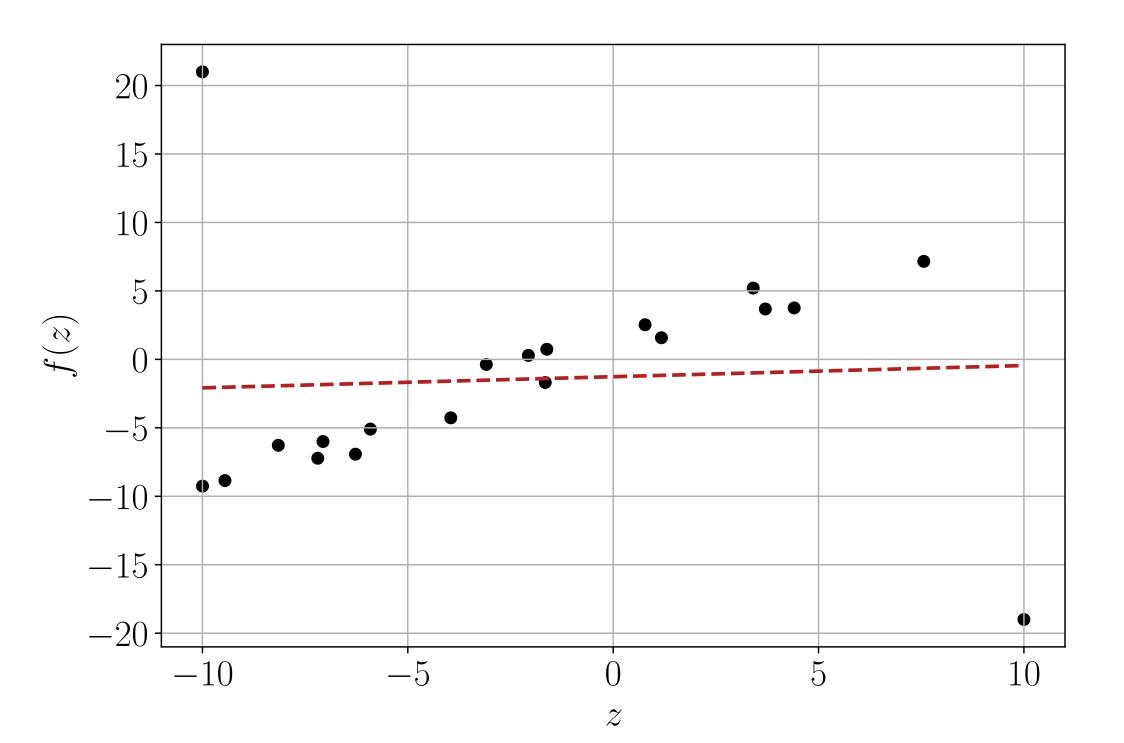
Fit a linear function f(z) = a + bz to m data points (z_i, f_i) :

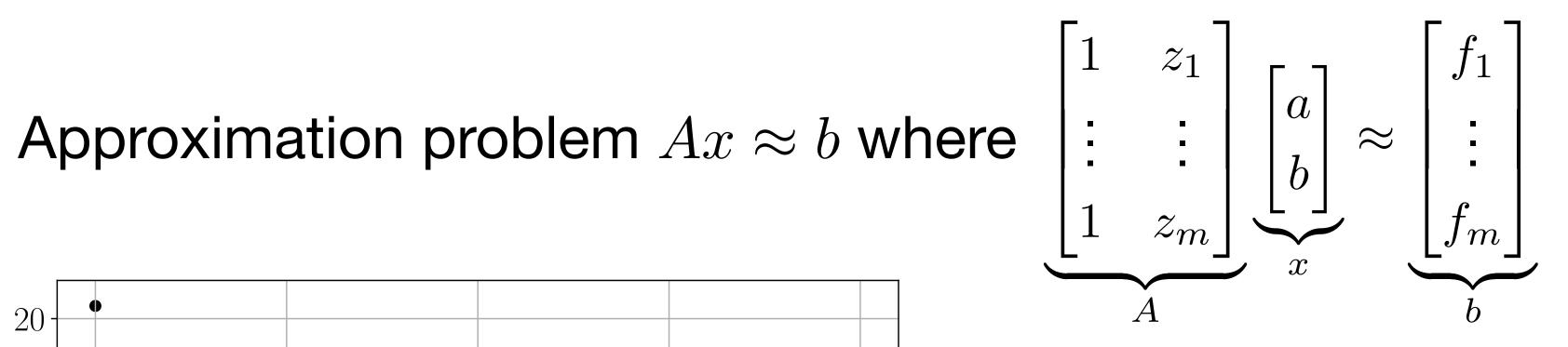




Data-fitting example

Fit a linear function f(z) = a + bz to m data points (z_i, f_i) :





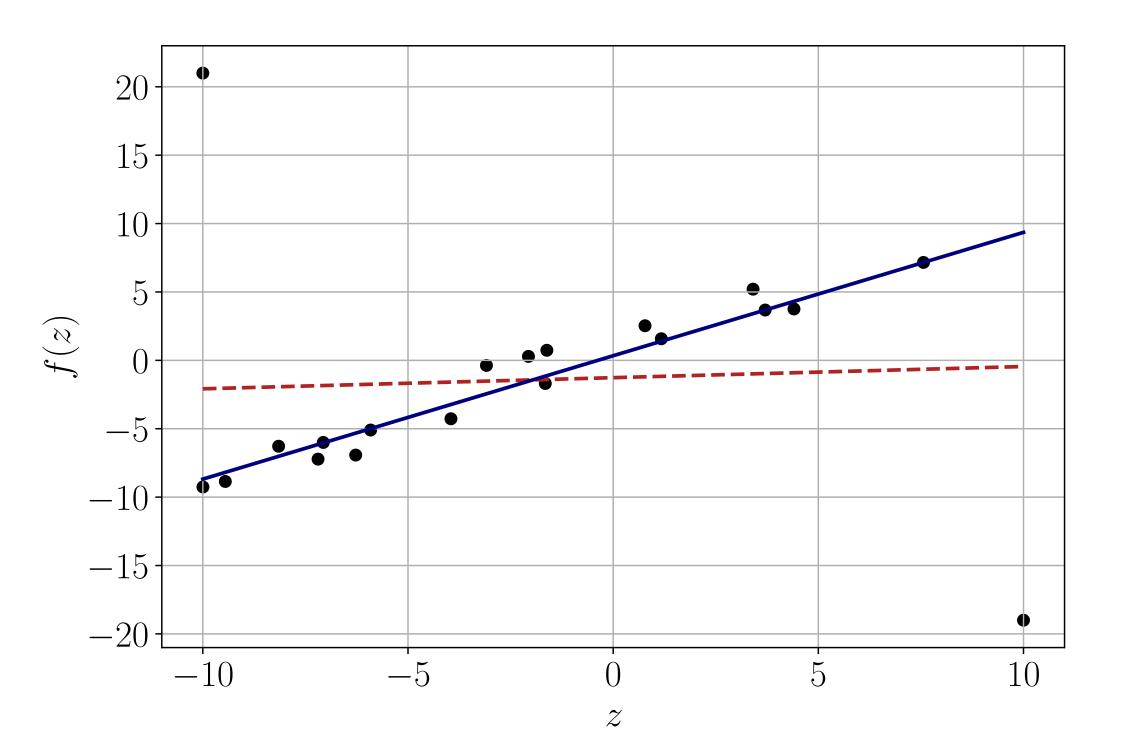
Least squares way:

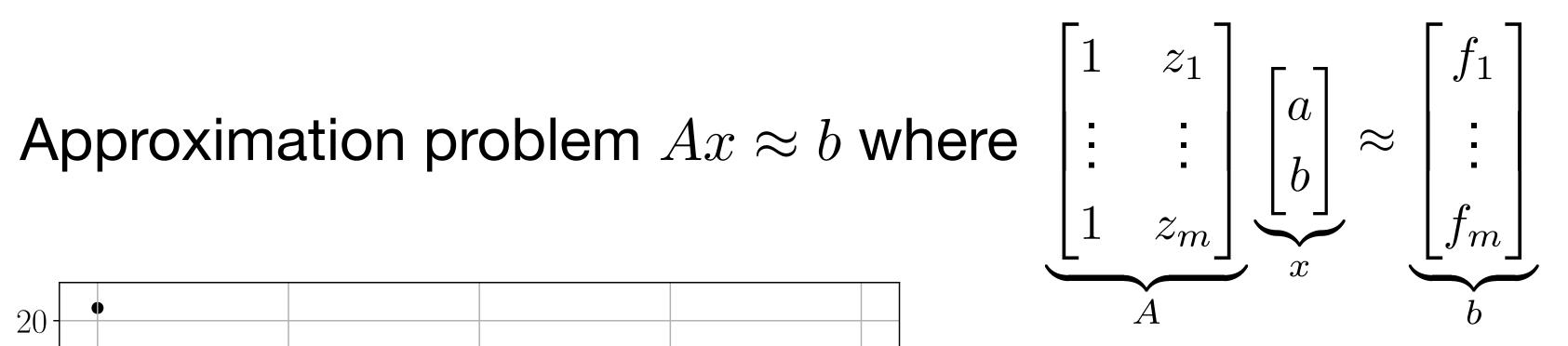
minimize
$$\sum_{i=1}^{m} (Ax - b)_i^2 = ||Ax - b||_2^2$$

Good news: solution is in closed form $x^* = (A^T A)^{-1} A^T b$ Bad news: solution is very sensitive to outliers!

Data-fitting example

Fit a linear function f(z) = a + bz to m data points (z_i, f_i) :





A different way:

minimize $\sum_{i=1}^{i} |Ax - b|_i = ||Ax - b||_1$

Good news: solution is much more robust to outliers.

Bad news: there is no closed form solution.

1-norm approximation

minimize $||Ax - b||_1$

The 1-norm of m-vector y is

$$||y||_1 = \sum_{i=1}^{m} |y_i| = \sum_{i=1}^{m} \max\{y_i, -y_i\}$$

Equivalent problem

minimize $\sum u_i$ subject to $-u \le Ax - b \le u$

Matrix notation

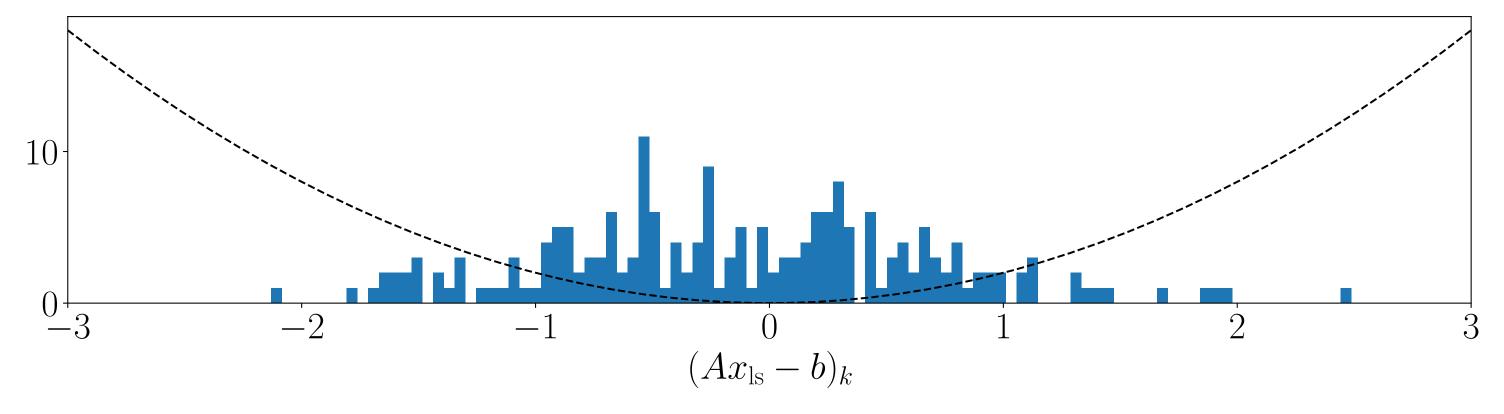
$$\begin{array}{c} \mathsf{minimize} & \begin{bmatrix} 0 \\ \mathbf{1} \end{bmatrix}^T \begin{bmatrix} x \\ u \end{bmatrix} \end{array}$$

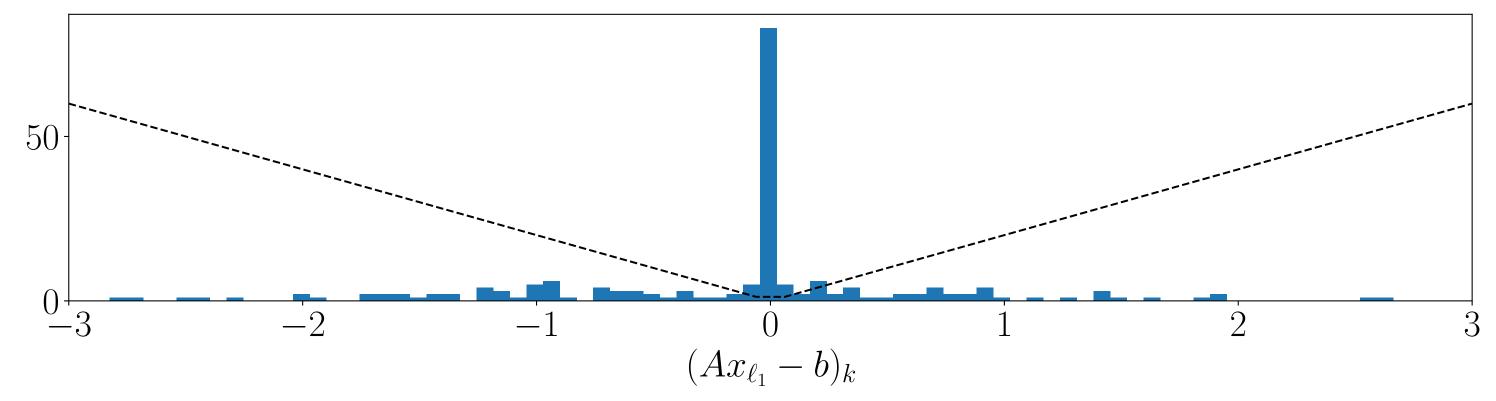
subject to
$$\begin{bmatrix} A & -I \\ -A & -I \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} \leq \begin{bmatrix} b \\ -b \end{bmatrix}$$
 21

Comparison with least-squares

Histogram of residuals Ax-b with randomly generated $A \in \mathbf{R}^{200 \times 80}$

$$x_{ls} = \operatorname{argmin} ||Ax - b||, \qquad x_{\ell_1} = \operatorname{argmin} ||Ax - b||_1$$





 ℓ_1 -norm distribution is wider with a high peak at zero

ℓ_{∞} -norm (Chebyshev) approximation

minimize
$$||Ax - b||_{\infty}$$

The ∞ -norm of m-vector y is

$$||y||_{\infty} = \max_{i=1,...,m} |y_i| = \max_{i=1,...,m} \max\{y_i, -y_i\}$$

Equivalent problem

 $\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & -t\mathbf{1} \leq Ax - b \leq t\mathbf{1} \end{array}$

Matrix notation

minimize
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}^T \begin{bmatrix} x \\ t \end{bmatrix}$$

subject to
$$\begin{bmatrix} A & -\mathbf{1} \\ -A & -\mathbf{1} \end{bmatrix} \begin{bmatrix} x \\ t \end{bmatrix} \le \begin{bmatrix} b \\ -b \end{bmatrix}_{23}$$

Sparse signal recovery via ℓ_1 -norm minimization

 $\hat{x} \in \mathbf{R}^n$ is unknown signal, known to be sparse We make linear measurements $y = A\hat{x}$ with $A \in \mathbf{R}^{m \times n}, m < n$

Estimate signal with smallest ℓ_1 -norm, consistent with measurements

minimize
$$||x||_1$$
 subject to $Ax = y$

Equivalent linear optimization

$$\begin{array}{ll} \text{minimize} & \mathbf{1}^T u \\ \text{subject to} & -u \leq x \leq u \\ & Ax = y \end{array}$$

Sparse signal recovery via ℓ_1 -norm minimization

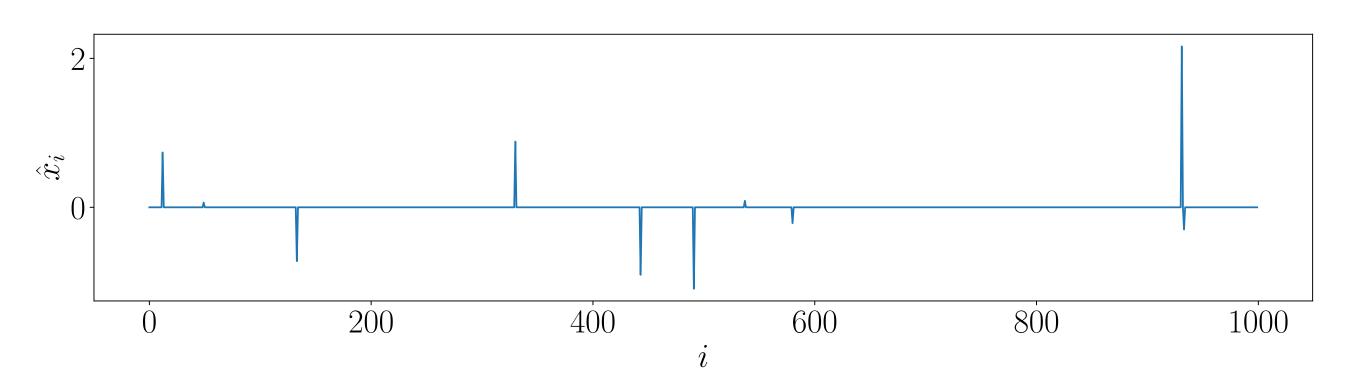
Example

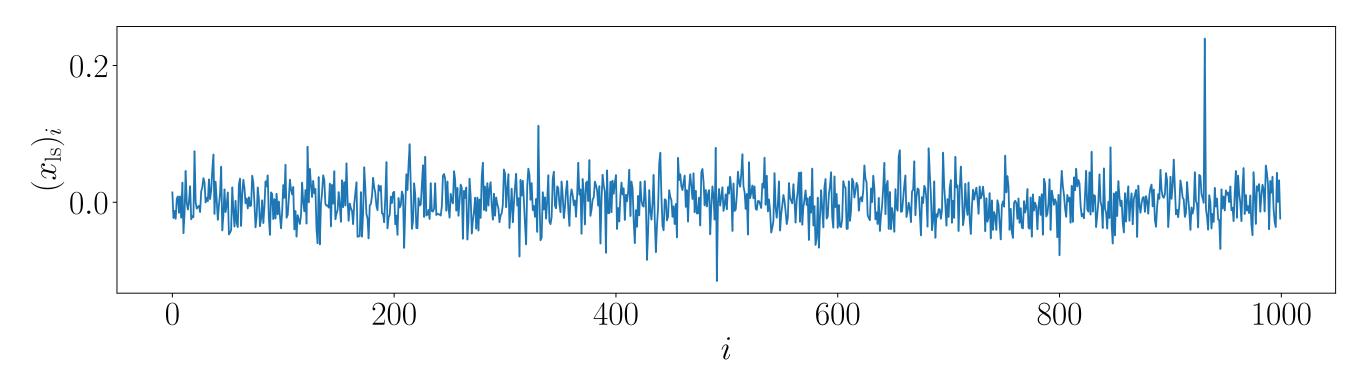
Exact signal $\hat{x} \in \mathbf{R}^{1000}$ 10 nonzero components Random $A \in \mathbf{R}^{100 \times 1000}$

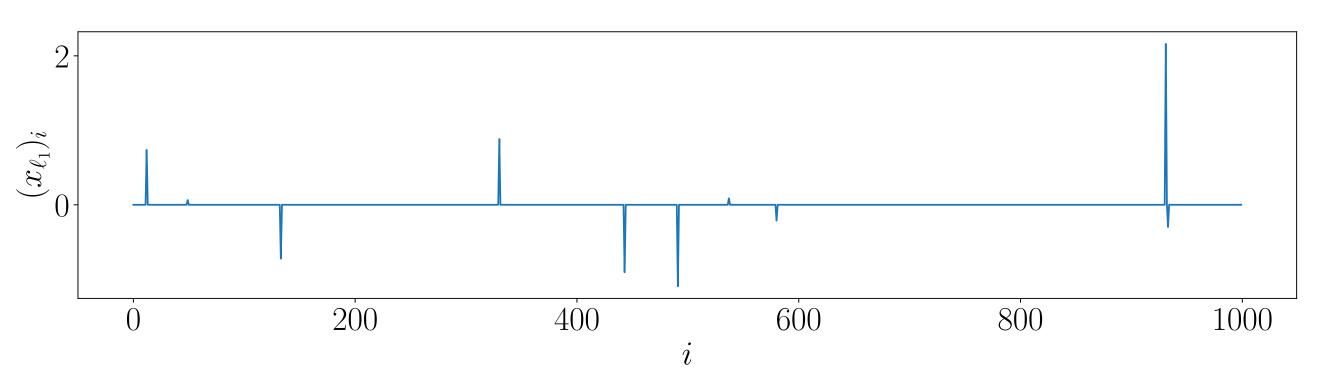
The least squares estimate cannot recover the sparse signal

minimize $||x||_2^2$ subject to Ax = y

The ℓ_1 -norm estimate is **exact** minimize $\|x\|_1$ subject to Ax = y







Sparse signal recovery via ℓ_1 -norm minimization

Exact recovery

When are these two problems equivalent?

minimize card(x)

minimize $||x||_1$

subject to Ax = y

subject to Ax = y

card(x) is cardinality (number of nonzero components) of x

We say A allows **exact recovery** of k-sparse vectors if

$$\hat{x} = \underset{Ax=y}{\operatorname{argmin}} \|x\|_1$$
 when $y = A\hat{x}$ and $\operatorname{card}(\hat{x}) \leq k$

It depends on the nullspace 1 of the "measurement matrix" A

Support vector machine (linear separation)

Given a set of points $\{v_1,\ldots,v_N\}$ with binary labels $s_i\in\{-1,1\}$

Find hyperplane that strictly separates the tho classes

Homogeneous in (a,b), hence equivalent to the linear inequalities (in a,b)

$$s_i(a^T v_i + b) \ge 1$$

Separable case

Feasibility problem

find
$$a,b$$
 subject to $s_i(a^Tv_i+b)\geq 1, \quad i=1,\ldots,N$

Which can be seen as a special case of LP with

minimize 0

subject to $s_i(a^Tv_i+b) \geq 1, \quad i=1,\ldots,N$

 $p^{\star} = 0$ if problem feasible (points separable)

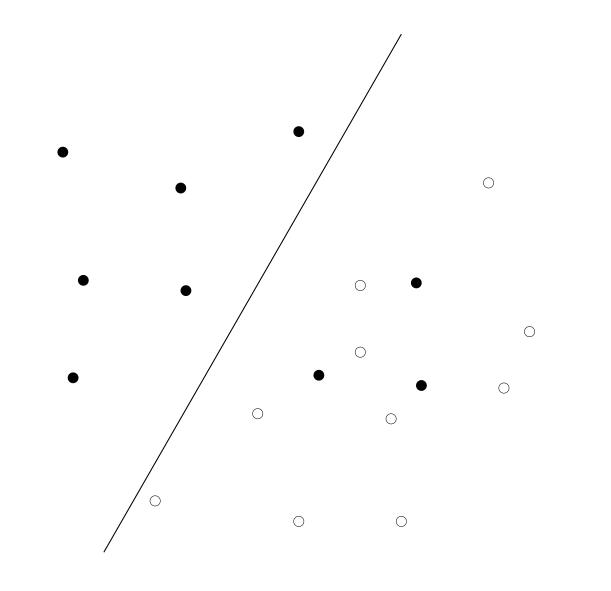
 $p^{\star} = \infty$ if problem infeasible (points not separable) — What then?

Approximate linear separation of non-separable points

minimize
$$\sum_{i=1}^{N} (1 - s_i(a^T v_i + b))_+ = \sum_{i=1}^{N} \max\{0, 1 - s_i(a^T v_i + b)\}$$

If v_i misclassified, $1 - s_i(a_i^T v_i + b)$ is the penalty

Piecewise-linear minimization problem with variables a, b



Approximate linear separation of non-separable points

minimize
$$\sum_{i=1}^{N} \max\{0, 1 - s_i(a^T v_i + b)\}$$

Equivalent problem

minimize
$$\sum_{i=1}^N u_i$$
 subject to
$$1-s_i(v_i^Ta+b) \leq u_i, \quad i=1,\dots,N$$

$$0 \leq u_i, \quad i=1,\dots,N$$

Matrix notation?

Modelling software for linear programs

Modelling tools simplify the formulation of LPs (and other problems)

- Accept optimization problem in common notation ($\max, \|\cdot\|_1, \ldots$)
- Recognize problems that can be converted to LPs
- Express the problem in input format required by a specific LP solver

Examples

- AMPL, GAMS
- CVX, YALMIP (Matlab)
- CVXPY, Pyomo (Python)
- JuMP.jl, Convex.jl (Julia)

CVXPY example

```
minimize ||Ax - b||_1 subject to 0 \le x \le 1
```

```
x = cp.Variable(n)
objective = cp.Minimize(cp.norm(A*x - b, 1))
constraints = [0 <= x, x <= 1]
problem = cp.Problem(objective, constraints)

# The optimal objective value is returned by `problem.solve()`.
result = problem.solve()

# The optimal value for x is stored in `x.value`.
print(x.value)</pre>
```

Why linear optimization?

"Easy" to solve

- It is solvable in polynomial time, and it is tractable in practice
- State-of-the-art software can solve LPs with tens of thousands of variables.
 We can solve LPs with millions of variables with specific structure.

Extremely versatile

It can model many real-world problems, either exactly or approximately.

Fundamental

The theory of linear optimization lays the foundation for most optimization theories

Next lectureGeometry of linear optimization

- Polyhedra
- Extreme points
- Basic feasible solutions