ORF522 - Linear and Nonlinear Optimization

23. The role of optimization

Bartolomeo Stellato — Fall 2020

Ed forum

* |n the lecture you mentioned "sampling" from the parameter space and get
its label of strategy. Does this mean that every time you do this, you have to
solve a strong branching problem? Is this how we get the so-called "expert
labels” or the y's in our classification problem?? This sounds like more work
than solving the problem directly using strong branching?

Today'’s lecture

The role of optimization

 Geometry of optimization problems
e Solving optimization problems

e What’s left out there?

 The role of optimization

Basic use of optimization

Optimal decisions

o

Decisions

Mathematical
language

The algorithm
computes
them for you

Most optimization problems
cannot be solved

Geometry of optimization
problems

Linear optimization

minimize ¢!z
subjectto Az <b

Optimal point properties

» Extreme points are optimal
* Need to search only between extreme points

Nonlinear optimization

minimize f(x)
subjectto xzeC

Optimal point properties

» Any feasible point could be optimal
» Can have many locally optimal points

minimize f(x)
subjectto xzeC

i‘%(xh()
SHABO
Properties
Stationarity Differentiable f o Convex optimization
conditions convex O (necessary and sufficient)
0€df(z) vLc(z) —— —Vi(z)e Na(z) * Nonconvex optimization

(hecessary)
9

KKT optimality conditions

minimize f(x)

subjectto g¢g;(x) <0, 2=1,...,m
Vix™)+ Z Y Vg (x™) = stationarity
1—=1
>0 dual feasibility
gi(x*) <0, ¢=1,...,m primal feasibility
y; gi(x*) =0, i=1,....,m complementary slackness

10

KKT optimality conditions

minimize f(x)

subjectto g¢g;(x) <0, 2=1,...,m
Vix™)+ Z Y Vg (x™) = stationarity
1—=1
>0 dual feasibility
gi(x*) <0, ¢=1,...,m primal feasibility
y; gi(x*) =0, i=1,....,m complementary slackness

Remarks

« Require Slater’s conditions or constraint qualifications (LICQ)
» Can be derived from Fermat’s optimality

» Necessary and sufficient for convex problems

» Only necessary for nonconvex problems

10

KKT optimality conditions ot A h

minimize f(x)
C ko ﬁo} ~ subjectto g;(z) <0, i=1,...,m

f(z™)\+ Z Y- Vgi(r™) = stationarity
1=1
>0 dual feasibility
gi(z¥) <0, ¢=1,...,m primal feasibility
y; gi(x™) =0, i=1,....,m complementary slackness

Remarks CA*~\'5\ - |

- Require Slater’s conditions or constraint qualifications (LICQ) In practice
- Can be derived from Fermat’s optimality l

* Necessary and sufficient for convex problems Search for

» Only necessary for nonconvex problems KKT points
10

Certifying optimality

Dual function Properties
g(y) - Lower bound: ¢g(y) < f(x), Vax,y
» Always convex Nl &rrLtM

—

. P
Strong duality o

9(y") = f (") 2&;*“’ Y o

* Linear optimization (unless primal and dual infeasible)%=v. V¥
» Convex optimization (if Slater’s condition holds) @;:ﬁ;

11

Certifying optimality

Dual function Properties

g(y) - Lower bound: ¢g(y) < f(x), Vax,y

» Always convex

Strong duality
9(y") = f(z7)

* Linear optimization (unless primal and dual infeasible)

* Convex optimization (if Slater’s condition holds)

_ _ It works as a
Optimality gap ——— suboptimality

» Convex optimization without strong duality
 Nonconvex optimization

certificatee¢

11

Solving optimization problems

Classical vs modern view

Classical view

* Linear optimization
(zero curvature) is easy

 Nonlinear optimization
(honzero curvature) is hard

13

Classical vs modern view

Classical view Correct view
* Linear optimization Convex optimization
(zero curvature) is easy (honnegative curvature) is easy
 Nonlinear optimization * Nonconvex optimization

(honzero curvature) is hard (hegative curvature) is hard

13

Classical vs modern view

Classical view Correct view
* Linear optimization Convex optimization
(zero curvature) is easy (honnegative curvature) is easy
 Nonlinear optimization * Nonconvex optimization
(honzero curvature) is hard (hegative curvature) is hard

The classical view Is wrong 1

Numerical linear algebra

The core of optimization algorithms is linear systems solution
Ax =0

Direct method

1. Factor A = A A, ... A, in “simple” matrices (O(n?))
2. Compute z = A,;lL.\. .[Ajﬂ?:‘b)y solving k “easy” linear systems (O(n?))

14

Numerical linear algebra

The core of optimization algorithms is linear systems solution
Ax =0

Direct method

1. Factor A = A A, ... A, in “simple” matrices (O(n?))
2. Compute x = A;_" ... A7 'b by solving k “easy” linear systems (O(n?))

Main benefit
factorization can be reused
with different right-hand sides b

14

Numerical linear algebra

The core of optimization algorithms is linear systems solution
Ax =0

Direct method

1. Factor A = A A, ... A, in “simple” matrices (O(n?))
2. Compute x = A;_" ... A7 'b by solving k “easy” linear systems (O(n?))

Main benefit
factorization can be reused
with different right-hand sides b

You never invert A

14

Solving convex problems

Simplex methods

 Tailored to LPs

* Exponential worst-case
performance

 Up to 10,000 variables

Cheap iterations
(rank-1 updates)

o

15

Solving convex problems

Simplex methods Second-order methods
(e.g., interior-point)

* Tailored to LP ~AL 900

AOTe C.) > Up to ~10,000 variables
* Exponential worst-case .

performance . Egzn?e$i|f| worst-case
. Up to 10,000 variables PISALY

Cheap iterations Expensive iterations

(rank-1 updates) (matrix factorizations)

15

Solving convex problems

Simplex methods Second-order methods First-order methods
(e.g., interior-point)

« Up to ~10,000 variables ¢ Up to 1B variables
e Polynomial worst-case e Several convergence rates
complexity - - R

 Tailored to LPs

* Exponential worst-case
performance

 Up to 10,000 variables

Cheap iterations Expensive iterations Cheap iterations
(rank-1 updates) (matrix factorizations) (matrix prefactored)

15

Convex optimization solvers

Remarks

* No babysitting/initialization required
* \ery reliable and efficient

 Can solve problems in milliseconds on embedded
platforms

 Simplex and interior-point solvers are almost a
technology

* First-order methods are more sensitive to data scaling
but work in huge dimensions

16

First-order methods for large-scale convex optimization

» Gradient/subgradient method

 Forward-backward splitting (proximal algorithms)

Per-iteration Number of

cost terations » Accelerated forward-backward splitting

* Douglas-Rachford splitting (ADMM)

* |nterior-point methods (not covered for convex)

17

First-order methods for large-scale convex optimization

» Gradient/subgradient method

 Forward-backward splitting (proximal algorithms)

Per-iteration Number of

cost terations » Accelerated forward-backward splitting

* Douglas-Rachford splitting (ADMM)

* |nterior-point methods (not covered for convex)

Large-scale systems
e start with feasible method with cheapest per-iteration cost
* if too many iterations, transverse down the list 17

Methods for nonconvex optimization

Convex optimization algorithms: global and typically fast

Nonconvex optimization algorithms: must give up one, global or fast

 Local methods: fast but not global
Need not find a global (or even feasible) solution.
They cannot certify global optimality because
KKT conditions are not sufficient.

— Heuristics

* Global methods: global but often slow

They find a global solution and certity it. —+ (Gilobal methods

18

What’s left out there?

What we did not cover in nonlinear optimization

Second-order methods: High accuracy on small/medium-scale data
* Newton’s method

* Quasi-Newton (BFGS, L-BFGS)
* |nterior-point methods for nonlinear optimization (IPOPT)

20

What we did not cover in nonlinear optimization

Second-order methods: High accuracy on small/medium-scale data
* Newton’s method

* Quasi-Newton (BFGS, L-BFGS)
* |nterior-point methods for nonlinear optimization (IPOPT)

Stochastic gradient methods Covered in

» Stochastic gradient descent COS512/ELES39: Optimization for

» Variance reduction methods —— Machine Learning

* Deep learning optimizers ELES22: Large-Scale Optimization for
Data Science

20

What we did not cover in nonlinear optimization

Second-order methods: High accuracy on small/medium-scale data
* Newton’s method

* Quasi-Newton (BFGS, L-BFGS)
* |nterior-point methods for nonlinear optimization (IPOPT)

Stochastic gradient methods Covered in

» Stochastic gradient descent COS512/ELES39: Optimization for

» Variance reduction methods —— Machine Learning

* Deep learning optimizers ELES22: Large-Scale Optimization for
Data Science

Optimization in data science
« Compressed sensing Covered in

* | ow-rank matrix recovery — ELES20: Mathematics of
o Many more. .. Data Science 20

What we did not cover in convex optimization?

More in details on convex analysis

Conic optimization
» Second-order cone programming

Sk _ Covered In
o Semidefinite programming —> ORF523: Convex and Conic
e Sum-of-squares optimization Optimization

Convex relaxations of NP-hard problems

21

The role of optimization

Optimization as a surrogate for real goal

Very often, optimization is not the actual goal

The goal usually comes from practical
implementation (hew data, real dynamics, etc.)

Real goal is usually encoded (approximated) in cost/constraints

23

Optimization problems are just models

“All models are wrong, some are useful.”

— George Box

24

Optimization problems are just models

“All models are wrong, some are useful.”

— George Box

Implications

* Problem formulation does not need to be "accurate”
* Objective function and constraints “guide” the optimizer
 The model includes parameters to tune

We often do not need to solve most problems to extreme accuracy

24

Portfolio

Optimization problem
maximize plz —~yzlYx
subjectto 11z =1

xr > 0

Goal
Optimize backtesting performance

25

Portfolio

Optimization problem
maximize plz —~yzlYx
subjectto 11z =1

xr > 0

Goal
Optimize backtesting performance

Backtesting performance
(sum over all past realizations)

— » -« Total returns
« Cumulative risk (quadratic term)

Uncertain returns

p; random variable:
mean u, covariance .

25

Control

Optimization problem subjectto z41 = f(xy, ur)

(control policy) -

Goal:
Optimize closed-loop performance

Closed-loop
Real dynamics Control input performance

w; uncertainty

Tit1 = f(mt,ut,@Ut) Uy = ¢(xt) s J = Zé(ﬂ?t,ut)
t=0

20

Quadcopter control

Low accuracy works well

Quadcopter example Input and state constraints
Linearized dynamics x;11 = Ax; + Buy + wy Ty € |x,T], up € |u,ul
Ty © RlQ, Uy & R4

27

Quadcopter control

Low accuracy works well

Quadcopter example

Linearized dynamics x;11 = Axy + Buy + wy
Ty © RlQ, Uy & R4

Input and state constraints

Tt € |2, T], ut € |u,ul

Goal: track trajectory minimize) ||z — 2|3 + | Jue |3

t

27

Quadcopter control

Low accuracy works well

Quadcopter example Input and state constraints
Linearized dynamics x;11 = Ax; + Buy + wy Ty € |x,T], up € |u,ul
Ty © RlQ, Uy & R4

Goal: track trajectory minimize Z lze — 295 + ||we||3
t

Closed loop simulation
. random variable
QQ Simulated dynamics z;4; = Axy + Buy +w; (nonlinearities,

CHO
- disturbances, etc.)

27

Control effort

e o
——

High accuracy
Low accuracy
\/

e
e e e e
o

—
—
——

—
"
e e
—

20

10

|
_ e
-
— -
-
| -
1 ~——
v~
1 .,
~.,
! >
~~
P Lol
|.4.|...|.:_..:l\...l.\..
T
ey L
e,
llllllllll
llllllllllll —
S
.-"
-l.l"’
..... ~_—
e - |
03t -
=
N
=~ae
. "’
B LT F S
....4;41!\"'
I ———— L Loy
L Lk
.............
e
.....
........
o ' T T T T T
L] L] . ° . . o
<<
o
aal
-’
A\
l'l’
e
llllll
lllllllllllllllll
llllll " i
||||||||||
<-
~
I’
-
~—
-
=, -
\
“\“\
-
-=T_
-~
==
e
e
-

-
e s o
e e s s s o
e s o

[
)
P
.
.

30

20

10

e = 0.1

Closed-loop behavior
with OSQP solver

Quadcopter control

» Low accuracy
» High accuracy

0.0004

Altitude reference tracking

€

N,
.
-
———
—
P
<
..
I.I-
~t——
e ———,
-
—
oy
e ————————
-
—_—————
——————
~
~~
-
““
-
| Sy
————
T
—
||Il|||l|||l||
!
-
P
-
<
~—
~—
"'
”"
—
\-\-uv
— ‘I‘-
’i —
—~—
B
-—
||||\\||||\
——
-
=
- ——
———————
———

-~

30

20

10

40

30

30

20

20

15

10

................l..l..l.lllllll
.............. ~
P
ey
\\\\\\JHHHHHHHHH
.ﬂ\llll.v .)
.31..\..\..\..\
\4131::
--------- --\‘-
FPTTLLL _\ | | | | _
— - -)] N
L] L] . g q H. . :
_— -
"””'l’l
~
/Il"
————
“‘\‘v
4‘
||||.Ih.l..v
e
A\\\.v
~.
- -
\'\'\l
ll.lllll.'
A..ﬂ””ll.\\\\ ”)e
—_—
<Z_
III\T
||-II|\|||I|
AI
‘\\\
”llllll | O
\/\ 2
\\-“\
"
N
A
. ..f.dl..’..’-’ -
e
LT
\\.\..141-.1._\!\\.“
il\\\..ﬂ.ﬂ
I\I\ILl“"". |
e T T
Tt
'\..\..\..-..
o O
IIIJJIJJJJ;I..I..I..I. llll
NN ———— o
c —-——
- e, ————— -l.lr-r-r-r-r-r-rn.l.
4 ”."”
T T T T . . _.
- - — 3 Ne)
L] o) . . .
= -
7
/
a\
\
| >
/ O
) gV O
“ > O
I = ®
| O
/
O
’ O O
\ qV) .
\\ O
/ -
/ o0 =
\ = O
_‘ T
| .
/ 1
i 1
) _ |
| 1
| 1
| 1
| 1
|
\
\
\
\
|
\
\
\
| L
)
/
\\
/|
\
\
\
\
[
| L
/
/
/
AY
N
N\
N
)
3\
b
3
1
i
| L
\
\
Y
¢
o
A
£
7d
70
7.0
\...
;S
/.
/7 |
\ G
/...
B
.../I
o
..“...I.II
.....III
......III
.::HHI/I
.......IIII
..... II
R
.........I.III’
....... ””WII
..... .I..III
..... S~o
..... .I..I.II
ARG
IS
.../.V.I
N

Model fitting

Training data Optimization problem

Dirain = {(@s,y) L, —— minimize foam(w) = > Lyi ho(2i)
(xiayi)EDtrain

29

Model fitting

Training data Optimization problem

Dirain = {(@s,y) L, —— minimize foam(w) = > Lyi ho(2i)
(xiayi)EDtrain

Goal
Optimize test performance

(-:-Jenitngsvtr?) Test performance
Dtest — {(mz,yz) ,gil E— ftest(w) — Z g(yw hw(xz))

(aji yY1q) Efl)test
29

Model fitting

Support vector machine (linear classification)

Given a set of points {v,..., vy} with binary labels s; € {—1,1}
Find hyperplane that strictly separates the tho classes

alvi+b>0 if s =1 (homogeneous) Equivalent to v, = (v;,1)
a'v;+b<0 if s =—1 SZ'VZTQ321 r = (a,b)

- N quadratic term
minimize > . max{0,1 — s;v} x} +v/2||x|3 (interpretation:
maximum margin) 30

Consensus SVM

Operator splitting minimize

f g
SN max{0,1 — s;plx} + /2| 2|3

form subjectto x ==z

31

Consensus SVM

f g
Operator splitting minimize S:ﬁl max{0,1 — s;v} =} + v/2]z||5
form subjectto x ==z
™ " | Worker loss
split across workers ; -
with samples D; — [i@)= Z maxq0, 1 —s;vj 2}

31

Consensus SVM

/ g

Operator splitting minimize S:ﬁv_l max{0, 1 — siViTaz} + /2|25
form subjectto x ==z

split across workers j
with samples D,

Worker loss
— fi(z) = Z max{0, 1 — sjuij}

J1€D;
Distributed model fitting ADMM
x?“ = Prox, ¢ (2" — uf) Local SVM QP
k1l A/ k41, k41 .
R o N/)\(x +u""") Averaging
Uf“ = Uf T fl?f“ — z" T Local update

31

onsensus SVM

Linear classification

Dashed lines are local
workers’ hyperplanes

Optimal consensus hyperplane
on test set
after ~10 1terations

Conclusions

In ORF522, we learned to:

 Model decision-making problems across different disciplines as
mathematical optimization problems.

 Apply the most appropriate optimization tools when faced with a concrete
problem.

 Implement optimization algorithms and prove their convergence.

 Understand the limitations of optimization

33

Optimization cannot solve all our problems

It is Just a mathematical model

But it can help us making better decisions

Thank you!

Bartolomeo Stellato

34

