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22. Data-driven algorithms
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Ed forum

 Updated proof of spacial branch and bound convergence to clarify last step.

* Although on slide 15 we assume that lower bound L is non-decreasing, what
If after a new refinement and a new relaxation process at step k+1, our new

lower bound LMk+1 <= LAk? Does this happen in applications? If it happens,
do we keep E‘ﬁ"e New one ?EAKH) or do we keep the "better" one(LNk).
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Today'’s lecture

[Machine Learning for Combinatorial Optimization: a Methodological Tour d’Horizon, Bengio, Lodi, Prouvost]
[The Voice of Optimization, Bertsimas and Stellato]

[Online Mixed-Integer Optimization in Milliseconds, Bertsimas and Stellato]
[On learning and branching: a survey, Lodi and Zarpelion]

Data-driven algorithms (research topics)
 Machine learning
* |earning heuristics in branch and bound algorithms

* | earning strategies for parametric optimization
- Strategies definition
- Learning and sampling the strategies
- Examples



Methods for nonconvex optimization

Convex optimization algorithms: global and typically fast

Nonconvex optimization algorithms: must give up one, global or fast

 Local methods: fast but not global
Need not find a global (or even feasible) solution.
They cannot certify global optimality because
KKT conditions are not sufficient.

 Global methods: global but often slow
They find a global solution and certify it.



Data to the rescue!

Nonconvex optimization is hard

Many algorithmic Lots of data available
choices inside solvers from experience

~

Can we use machine learning to
build better algorithms?



Similar problems

* |n practice, we solve many similar
problems with varying data

 Most solvers do not explolt it

e We will consider families of similar
problems




Machine learning




Imitation learning

 Discover patterns

Machine Learning EE——
e Understand structure

Minimize expected loss

S fw: model
minimize lel;)epf(Y, fuw (X)) w: parameters



Imitation learning

 Discover patterns

Machine Learning EE——
e Understand structure

Minimize expected loss

S fw: model
minimize lel;)epf(Y, fuw (X)) w: parameters

(we do not know P)

Training data Empirical ]grobablllty

Dtrain — {(mfwyz) rfil ——  minimize Zg(yzvfw(xz))

1=1 3



Learning algorithmic decisions

Learning from demonstrations

Dtrain — xzv yz

/N

state,
situation, ex_p_ert
conditions... decisions

Goal: mimic expert decisions as closely as possible



earning heuristics In
branch and bound algorithms




Branch and bound for integer optimization
—0.143, oo

minimize ¢!z
subjectto Az <b
r e {0,1}"

11



Branch and bound for integer optimization
—0.143, oo

minimize ¢!z
subjectto Az <b
re{0,1}"

1. Branch: pick node : and index k
form subproblems for z, = 0and z;, =1
2. Bound:
- Compute lower and upper bounds
+ Update global lower bounds on f(x*)
L =min{L;}, U =min{U,;}
3. IfU—LSE, break 11



Branch and bound decisions

Node selection: which node 7

« best-first: node with smallest lower bound
» depth-first: node with greatest depth

12
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» depth-first: node with greatest depth

Variable selection: which fractional variable k?

* “least ambivalent™ z; ~ 0 or 1
* “most ambivalent”: |x; — 1/2| is minimum
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Branch and bound decisions

Node selection: which node 7

« best-first: node with smallest lower bound
» depth-first: node with greatest depth

Variable selection: which fractional variable k?

- “least ambivalent”: x7 ~ 0 or 1 Can we learn better
+ “most ambivalent”: |z% — 1/2| is minimum heuristics
from data?

Heuristic selection: which upper bound algorithm? when?

» Rounding
 Randomization

* Neighborhood search
12



Variable selection and strong branching

Relaxed problem at node ¢ Node i

minimize ¢!z

subjectto Az <b r7 = ( r? =1
—> 7T =

0< <1

iInteger fixed
components

13



Variable selection and strong branching

Relaxed problem at node ¢ Node i

minimize ¢!z

subjectto Ax <b
—— 7=z

0< <1

iInteger fixed
components

Potential branching variables
Fractional z,, ke F={1,....,.n}\Z
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Variable selection and strong branching f

Relaxed problem at node Node i - R

minimize ¢!z

subjectto Ax <b

—> Iz =X

0< <1

iInteger fixed
components

Potential branching variables
Fractional z,, ke F={1,....,n}\Z Q‘F\Z@

Strong branching

» Split all potential candidates k
» For each one, solve relaxed problems for z,, = 0and =z, = 1
* Pick £ with highest “score”:
the left and right lower bound increase the most 13



Variable selection and strong branching

Relaxed problem at node ¢ Node i

minimize ¢!z

subjectto Ax <b
—— 7=z

0< <1

iInteger fixed
components

Potential branching variables
Fractional z,, ke F={1,....,.n}\Z

Strong branching

» Split all potential candidates k
» For each one, solve relaxed problems for z,, = 0and =z, = 1
* Pick £ with highest “score”:

the left and right lower bound increase the most 13

Too expensive!



Learning strong branching

Node features Strong branching scores Best variable
%
0; - (fw(0i))r = sk, keF — k'= argmax S
k
[Learning to Branch in Mixed Integer Programming, Khalil, Le Bodic, Song, Menhauser, Dilking] 14

[A Machine Learning-Based Approximation of Strong Branching, Marcos Alvarez, Wehenkel, Louveaux]



Learning strong branching

Node features Strong branching scores Best variable
0; - (Jw(0i))k = sk, keF — k = argmax Sy
k

Feature types

- Static (problem instance):

objective function coefficients,

constraint coefficients stats.,

constraint degrees (# of variables), etc.
Dynamlc (incumbent, current LP relaxation, etc.):

7 el distance to rounding,
constraint degrees (# of variables), etc.
[Learning to Branch in Mixed Integer Programming, Khalil, Le Bodic, Song, Menhauser, Dilkina] 14

[A Machine Learning-Based Approximation of Strong Branching, Marcos Alvarez, Wehenkel, Louveaux]



Learning strong branching

Node features Strong branching scores Best variable
0; - (Jw(0i))k = sk, keF — k = argmax Sy
k

Feature types

- Static (problem instance):
objective function coefficients, Multiclass classifier
constraint coefficients stats.,
constraint degrees (# of variables), etc.

- Dynamic (incumbent, current LP relaxation, etc.):
incumbent distance to rounding,
constraint degrees (# of variables), etc.

 Linear function (SVMra“k)
« Decision tree
* Neural network

[Learning to Branch in Mixed Integer Programming, Khalil, Le Bodic, Song, Menhauser, Dilkina] 14
[A Machine Learning-Based Approximation of Strong Branching, Marcos Alvarez, Wehenkel, Louveaux]



Learning strong branching results

MIPLIB Examples with node limit 10, 000

Solved by all methods Not solved by at least one method
S/T Nodes Time (s) S/T Cl. Gap Nodes Time (s)
Most ambivalent 9/44 2,032 6.03 6/44 0.50 9,274 233.19
Strong  9/44 692 14.48 12/44 0.73 7,184 629.87
Learned 9/44 1,194 2.73 10/44 0.62 8,073 162.87

[A Machine Learning-Based Approximation of Strong Branching, Marcos Alvarez, Wehenkel, Louveaux]



Learning strong branching results

MIPLIB Examples with node limit 10, 000

Solved by all methods Not solved by at least one method
S/T Nodes Time (s) S/T Cl. Gap Nodes Time (s)
Most ambivalent 9/44 2,032 6.03 6/44 0.50 9,274 233.19
Strong  9/44 692 14.48 12/44 0.73 7,184 629.87
Learned 9/44 1,194 2.73 10/44 0.62 8,073 162.87
nodes
reduction

[A Machine Learning-Based Approximation of Strong Branching, Marcos Alvarez, Wehenkel, Louveaux]



Learning strong branching results

MIPLIB Examples with node limit 10, 000
Solved by all methods Not solved by at least one method

S/T Nodes Time (s) S/T Cl. Gap

Nodes Time (s)

Most ambivalent 9/44 2,532 6.03  6/44 0.50 9,274 233.19
Strong  9/44 692 14.48  12/44 0.73 7,184 629.87
Learned 9/44 1,194 2.73  10/44 0.62 8,073 162.87
nodes faster than
reduction strong branching

[A Machine Learning-Based Approximation of Strong Branching, Marcos Alvarez, Wehenkel, Louveaux]
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Learning strong branching results

MIPLIB Examples with node limit 10, 000

Solved by all methods Not solved by at least one method
S/T Nodes Time (s) S/T Cl. Gap Nodes Time (s)
Most ambivalent 9/44 2,532 6.03 6/44 0.50 9,274 233.19
Strong  9/44 692 14.48 12/44 0.73 7,184 629.87
Learned 9/44 1,194 2.73 10/44 0.62 8,073 162.87
nodes faster than
reduction strong branching

Extensions
 What if we learn the 2-step strong branching (doubly-strong branching)?

 Can we learn while we solve the problem?

[A Machine Learning-Based Approximation of Strong Branching, Marcos Alvarez, Wehenkel, Louveaux]

15



Many more directions in branch and bound

Optimal node selection

[Learning to Search in Branch-and-Bound Algorithms, He et al]

Upper bound heuristic selection

[Learning to Run Heuiristics in Tree Search, Khalil et al]

16



Many more directions in branch and bound

Optimal node selection

[Learning to Search in Branch-and-Bound Algorithms, He et al]

Upper bound heuristic selection

[Learning to Run Heuiristics in Tree Search, Khalil et al]

What if we do not have expert demonstrations?

[Machine Learning for Combinatorial Optimization: a Methodological Tour d’Horizon, Bengio, Lodi, Prouvost]

Reinforcement learning

ecole.ati: OpenAl gym-like environment for Reinforcement
Learning and Combinatorial Optimization

16



Learning for parametric
optimization



Parametric optimization

Limitations

minimize  f(z,0)
subjectto g(x, 0)

A

0

0 — KO INIFLNlo  —— =~

Real-time optimization

Fast real-time
requirements

Low-cost computing
platforms

18



Parametric optimization

Limitations

minimize  f(z,0)
subjectto g(x, 0)

A

0

0 — KO INIFLNlo  —— =~

Real-time optimization

Fast real-time
requirements

Low-cost computing
platforms

18



End to end learning

H ——

Machine

Learning

Smith (1999)]
Bello et al (2017]
Vinyals et al (2017)]

19



End to end learning

Machine
Learning

H ——

Smith (1999)]
Bello et al (2017]
Vinyals et al (2017)]

Very small problems
Imprecise

Needs lots of “babysitting”

19



Machine learning optimizer

Machine
Learning

—  5(0)

Strategy

[The Voice of Optimization, Bertsimas and Stellato]
[Online Mixed-Integer Optimization in Milliseconds, Bertsimas and Stellato]

Solution
Decoding

20



Machine learning optimizer

Solution

— s5(0) —— —

Decoding

Machine

Learning Strategy

[The Voice of Optimization, Bertsimas and Stellato]
[Online Mixed-Integer Optimization in Milliseconds, Bertsimas and Stellato]



Machine learning optimizer

Solution

— s5(0) —— —

Decoding

Machine

Learning Strategy

[The Voice of Optimization, Bertsimas and Stellato]
[Online Mixed-Integer Optimization in Milliseconds, Bertsimas and Stellato]



Strategies in optimization



What is a strategy?

s(0)
Strategy

The complete information we need to
efficiently compute the optimal solution

22



Parametric linear optimization

minimize  c(0)! x
subjectto A(0)x < b(0)

—C

Axr < b L s

23



Parametric linear optimization

minimize  c(0)! x
subjectto A(0)x < b(0)

—C

Axr < b L s

How can we define a strategy?

23



Tight constraints in linear optimization

T(0) ={i| Ai(0)z™ = b;(0)}

T (0)| = # variables if non-degenerate
T (0)| < # constraints in general

24



Tight constraints in linear optimization

T(0) = {i | Ai(6)2* = bi(6)}

Strategies for
Az < b T” L, linear optimization
s(0) = T(0)
T(0)| = # variables if non-degenerate

T(0)| < # constraints in general

24



Computing the solution from the strategy

5(0)—> Solution R
Decoding

minimize  c(0)! x
subjectto A(0)x < b(0)

25



Computing the solution from the strategy

5(0)—> Solution R
Decoding

Convex optimization

minimize  ¢(0)Tx s(0) minimize  ¢(0)T
subjectto  A(0)x < b(0) subjectto A;(0)x =b;(0), Vie T(0)

25



Computing the solution from the strategy

5(0)—> Solution R
Decoding

Convex optimization

minimize  ¢(0)Tx s(0) minimize  ¢(0)T
subjectto  A(0)x < b(0) subjectto A;(0)x =b;(0), Vie T(0)
o al (i
Av _\y T \| X W)W

)

>4

J

(

A
!
V4

2

X

QO

L

V“S :(C KKT Linear
RN system

25



Parametric mixed-integer linear optimization

o A

minimize  c(0)! x
subjectto A(0)x < b(0)
r7 € Z° integers

/N ~
VAN

)
\ Az < b //

>

&
How can we define a strategy?

20



Tight constraints are not enough

\kAx <50 /

L1

Finding x5 Is as hard as solving the original problem

27



Strategies for mixed-integer optimization
5(0) = (T(6), 25(0))

Tight constraints Integer variables
A
L2
//\\ »

28



Computing the solution from the strategy

5(0)—> Solution R
Decoding
minimize  ¢(0)!x

subjectto A(0)x < b(0)
r1 & 7

29



Computing the solution from the strategy

5(0)—> Solution R
Decoding

Convex optimization

minimize  ¢(0)! x 5(0) minimize  ¢(0)!' x
subjectto A(f)x < b(0) — subjectto A;(0)xr =b;(0), Vie T(0)
T © 7 71T = £E§((9)

29



Computing the solution from the strategy

5(0)—> Solution R
Decoding

Convex optimization

minimize  ¢(0)! x 5(0) minimize  ¢(0)!' x
subjectto A(f)x < b(0) — subjectto A;(0)xr =b;(0), Vie T(0)
r1T & 7 71T = £E§((9)

KKT Linear
system

29



Mixed-integer convex optimization

minimize  f(x,0) Same strategy

subjectto g(x,0) <0
wu € Z° s(0)

definition
= (T7(0),27(0))

30



Mixed-integer convex optimization

minimize  f(z,0)
subjectto g(x,0) <0
2 € Z°

o)
_ TN

2l
Same strategy
definition

s(0) = (T(0),27(0))

|

How can we recover
the solution?



Learning the strategies



Predicting the strategies

Solution "

— s5(0) —— —

Decoding

Machine

Learning Strategy



Predicting the strategies

Machine

Learning Strategy

N data ((9@, S@Z))
M labels (strategies) S

Solution

— s5(0) —— —

Decoding

32



Predicting the strategies

Machine

—  5(0)

Learning Strategy

N data (92, 8(92))
M labels (strategies) S

Multiclass classification

H —>

Learning

Solution
Decoding

Machine R 3(0)

32



Interpretable classifier

=

True WG
(92 < 1.75

Features
0 < 4 on  Easy to understand
/ \ * |t works for small problems

[Optimal Classification Trees, Bertsimas and Dunn]

Decision Trees \

33



Neural network classifiers

Y )@ Y1 )@ y2

Single layer
yi = fy—1) = Wiyi—1 + b))+ ZCLU

Output layer
(softmax)

‘.

s=f(yL) =o(yr), with (o(z)); =

Yr,—1 2
@ S T

Features

e Hard to understand

* |t works for large problems

34



Sampling the strategies



Have we seen enough data?

Multiclass classification

Machine R 5(0) N data (0;, s(0;))
M labels (strategies) S

Hf —>

Learning

0 | ——m—m > | 51

92  S92

What happens with 65,17



Alan Turing

Already worked on this...



Good-Turing estimator

aT — % ~P(s(0x11) ¢ S(On))

Probabillity of
unseen strategies

38



Good-Turing estimator

_ % ~P(s(0n41) € S(On))

# samples

GT

Probabillity of
unseen strategies

38



Good-Turing estimator

# strategies
appeared once

aT — % ~P(s(0x11) ¢ S(On))

# samples

Probabillity of
unseen strategies

38



Good-Turing estimator

# strategies
appeared once

- N Probability of
G = N Pls(On+1) ¢ 5(On)) unseen strategies
# samples

Concentration bound (confidence f)
P(s(On+1) € S(On)) < GT + C/(1/N)In(3/5)

[On the Convergence Rate of Good-Turing Estimators, McAllester and Schapire]

38



Good-Turing estimator

# strategies
appeared once

- N Probability of
G = N Pls(On+1) ¢ 5(On)) unseen strategies

# samples

Concentration bound (confidence f)
P(s(On+1) € S(On)) < GT + C/(1/N)In(3/5)

Example s1 6 times
B so 3 times
N=1___ | o itme —s GT=1/15
M =5 .
s4 3 times
S5 2 times

[On the Convergence Rate of Good-Turing Estimators, McAllester and Schapire]



Good-Turing estimator

# strategies
appeared once

Ny Probability of
GT = 7 ®POni) £5(ON)) | nceen strategies
# samples
Concentration bound (confidence () Sample until
P(s(On+1) & S(On)) < GT + C+/(1/N)1In(3/B) <
Example S1 0 times
B So 3 times
N=1 __ | s3 1 time — GT =1/15
M =5 .
sS4 3 times
S5 2 times

38

[On the Convergence Rate of Good-Turing Estimators, McAllester and Schapire]



MLOPT: Machine Learning Optimizer

github.com/bstellato/mlopt

Offline learning
CVXPY Strategy ML predictor
modelling sampling training

Fast online predictions

Top-k
Solution

Decoding

Machine
Learning

— s(0)
Strategies

39



Examples



Inventory management

minimize f:_()l h(zxy) + o(uy)
SUbjeCt to T4l = Tp + Up — dy
L0 — Linit

OSUtSM




Inventory management

minimize f:_ol h(zxy) + o(uy)

SUbjeCt to T4l = Tp + Up — dy

L0 = Linit T
. demand
Inventory

order




Inventory management

minimize f:_ol h(zxy) + o(uy)

SUbjeCt to T4l = Tp + Up — dy

L0 = Linit T
/Oéu < M

. demand
Inventory

order

parameters




Inventory management strategies

T S 9.97

_ly w@
C T_1
Tinit < 7.91 d5 < 1. 91 minimize ., h(x) + o(uy)

SUbjeCt to x4y 1 =2+ +up — ds

L0 = Linit

azt<1161 xt<122

do oo

42



Inventory management strategies

i < 9.97

V we

Tinit < 7.91 ds < 1.91

o Do mxia

ﬂ/ \9

Tinit < 12.2

ﬂ/ \9

Strategy 2

Ut:O

t <4

minimize
subject to

T—lh

t=0 (w¢) + o(uyg)
Tir1 = Ty + Up — dy

Lo = Linit
0 S U+ S M

42



Inventory management strategies

V we

i < 9.97

Wi, < 7.91

/ \g Tinye < 11.61

Strategy 4

ds < 1.91

DN

Tinit < 12.2

ﬂ/ \9

ﬂ/ \6

Strategy 2

Ut:O

t <4

minimize
subject to

T—lh

t=0 (w¢) + o(uyg)
Tir1 = Ty + Up — dy

Lo = Linit
0 S U+ S M

42



Inventory management trajectory

Strategy 2
t <4

ut:()

6 8 10 12 14 16 18 20

22 24 96

0 2 4
2 - = L
U 1
O | | . | | | | | | | | | | |
o 2 4 6 & 10 12 14 16 18 20 22 24 26 28
2i
d 1p
Ok | | | | | | | | | | | | |
o 2 4 o6 & 10 12 14 16 18 20 22 24 26 28

t

43



Example

Motion planning with obstacles

1nit

P o

e

P

des

p; position € R*
v, velocity € R

p'™* initial position
v™ initial velocity

pdes desired position

44



Example

Motion planning with obstacles

1nit

P o

p, position € R?

v, velocity € R

p'™* initial position

\ vt jnitial velocity

des
P

pdes desired position

Obstacles

Obstacle i is a box [0*, 0']

44



Motion planning formulation

T —1
minimize  [[pr — p*I3 + > lpe — p2N13 + Al
t=0

45



Motion planning formulation

T —1
minimize  [[pr — p*I3 + > lpe — p2N13 + Al
t=0

subject to (pt+1> ”Ut+1) — A(pta @t) + Buy

1nit 1nit

Po =D 9 Vg = U

Dynamics

45



Motion planning formulation

minimize  ||pr — p**||3 + Z |lpe — 2|5 + Yl Jue )3

subject to (pt+1> ”Ut+1) — A(pta @t) + Buy

1n1t 1nit

Po—P Vg = VU

0" M(S < py SQ’HLMQ@, 1 =1,...,n0bs  QObstacle O/X
avoldance

175! + 175, < 2d — 1

Dynamics

gzaé; - {07 1}d7 1 = 17 .+« 3 Nobs

45



Motion planning with obstacles

Worst-case timings

U-¢L

tmax tmax tmax °
Nobstacles  Mvar Neonstr  MLOPT [s|  Gurobi [s|  Gurobi heuristic |s] 40/0
2 1135 3773 0.4145 2.3776 2.2902
4 1615 10133 0.1878 11.8172 8.1443
0 2095 20333 0.3173 33.7869 11.5292
8 2575 34373 0.2235 392.3073 128.4948
10 3055 H225H3 0.2890 773.1476 206.4520

2600x speedups

[Online Mixed-Integer Optimization in Milliseconds, Bertsimas and Stellato] 40



Motion planning with obstacles

Circles
optimal

Squares
MLOPT




Learning strategies In parametric optimization

Benefits Downsides
* Extremely fast » No optimality guarantees
« Simple online method for  Relies on many offline
nonconvex optimization solutions (expert
e |t learns from your pool of demonstrations)

problems

48



Learning strategies In parametric optimization

Benefits Downsides
* Extremely fast » No optimality guarantees
« Simple online method for  Relies on many offline
nonconvex optimization solutions (expert
e |t learns from your pool of demonstrations)
problems

Future directions
» Better NN architectures
* Optimality guarantees
* Reinforcement learning when we do not have offline solutions
48



Data-driven algorithms

Today, we learned recent research on data-driven algorithms:
* Learning heuristics in branch and bound search (global algorithm)

* Learning strategies in parametric optimization (heuristic algorithm)

Many more exciting directions

Differentiable optimization layers, reinforcement learning in
optimization, learning-augmented first order methods, ...

[CS159 Caltech, https://sites.google.com/view/cs-159-spring-2020/] 49




Next lecture

 Course recap and conclusions

50



