ORF522 – Linear and Nonlinear Optimization

22. Data-driven algorithms

Ed forum

- Updated proof of spacial branch and bound convergence to clarify last step.
- Although on slide 15 we assume that lower bound L is non-decreasing, what
 if after a new refinement and a new relaxation process at step k+1, our new
 lower bound L^k+1 <= L^k? Does this happen in applications? If it happens,
 do we keep the new one (L^k+1) or do we keep the "better" one(L^k).

Today's lecture

[Machine Learning for Combinatorial Optimization: a Methodological Tour d'Horizon, Bengio, Lodi, Prouvost] [The Voice of Optimization, Bertsimas and Stellato] [Online Mixed-Integer Optimization in Milliseconds, Bertsimas and Stellato] [On learning and branching: a survey, Lodi and Zarpellon]

Data-driven algorithms (research topics)

- Machine learning
- Learning heuristics in branch and bound algorithms
- Learning strategies for parametric optimization
 - Strategies definition
 - Learning and sampling the strategies
 - Examples

Methods for nonconvex optimization

Convex optimization algorithms: global and typically fast

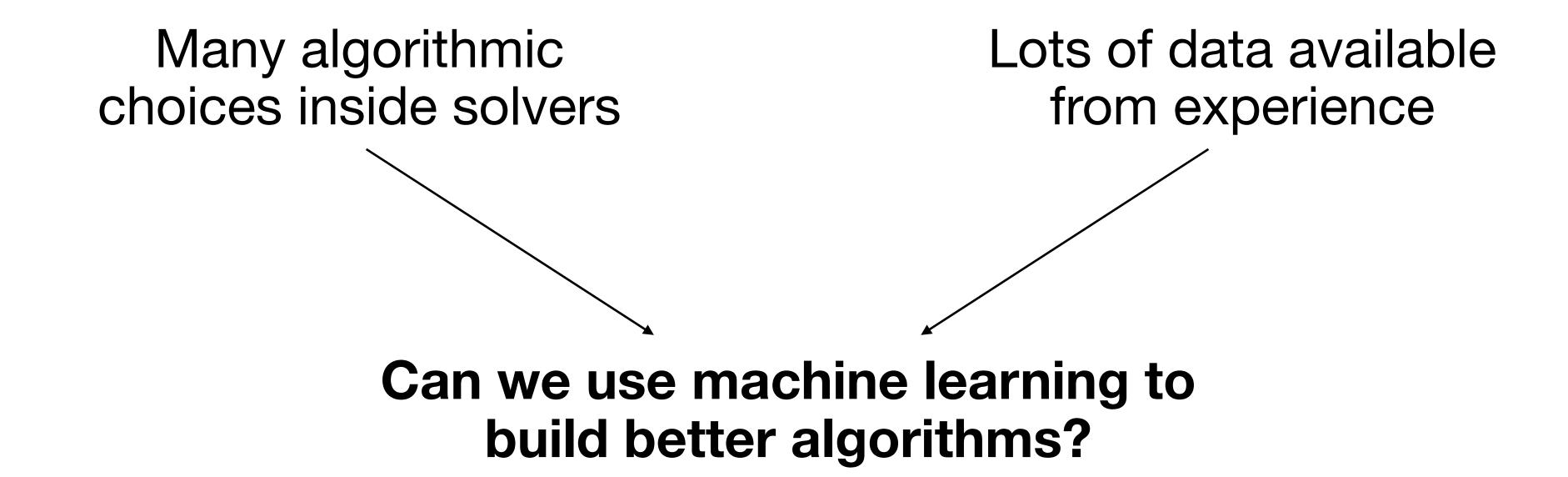
Nonconvex optimization algorithms: must give up one, global or fast

Local methods: fast but not global
 Need not find a global (or even feasible) solution.
 They cannot certify global optimality because
 KKT conditions are not sufficient.

• Global methods: global but often slow They find a global solution and certify it.

Data to the rescue!

Nonconvex optimization is hard



Similar problems

- In practice, we solve many similar problems with varying data
- Most solvers do not exploit it
- We will consider families of similar problems

Machine learning

Imitation learning

Machine Learning

- Discover patterns
- Understand structure

Minimize expected loss

$$\underset{w}{\mathsf{minimize}}$$

$$\min_{w} \mathbf{E}_{X,Y \in \mathcal{P}} \ell(Y, f_w(X))$$

 f_w : model

w: parameters

(we do not know \mathcal{P})

Training data

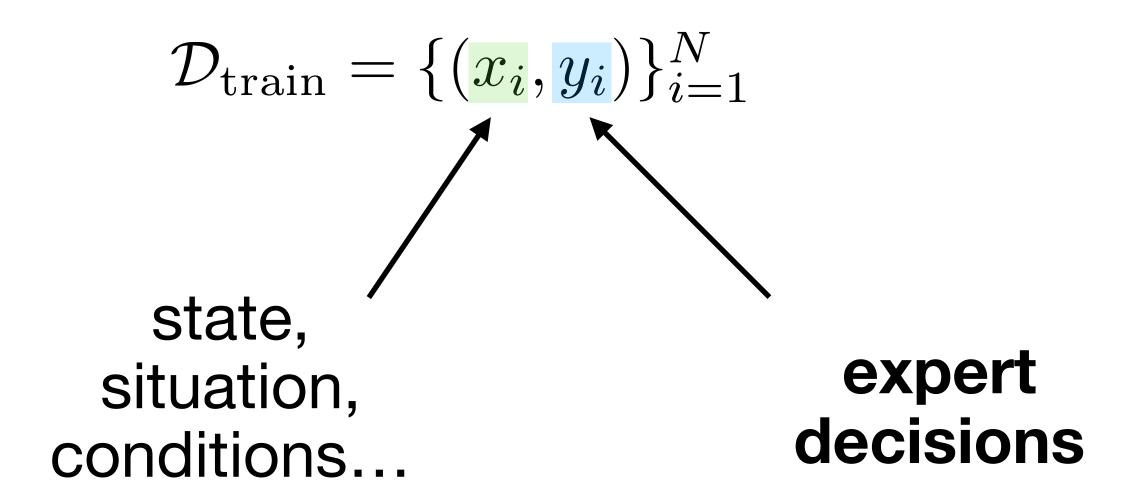
$$\mathcal{D}_{\text{train}} = \{(x_i, y_i)\}_{i=1}^N \longrightarrow$$

Empirical probability

$$\mathcal{D}_{\text{train}} = \{(x_i, y_i)\}_{i=1}^N \longrightarrow \min_{w} \sum_{i=1}^N \ell(y_i, f_w(x_i))$$

Learning algorithmic decisions

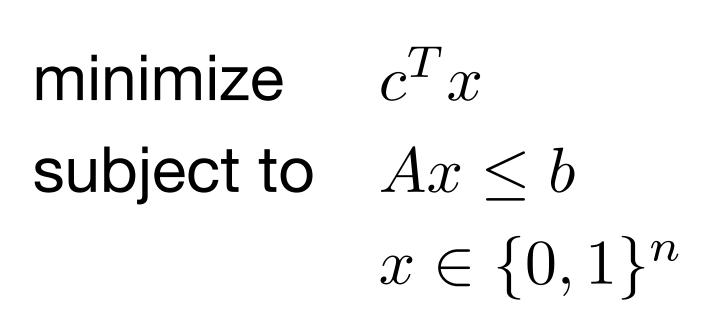
Learning from demonstrations

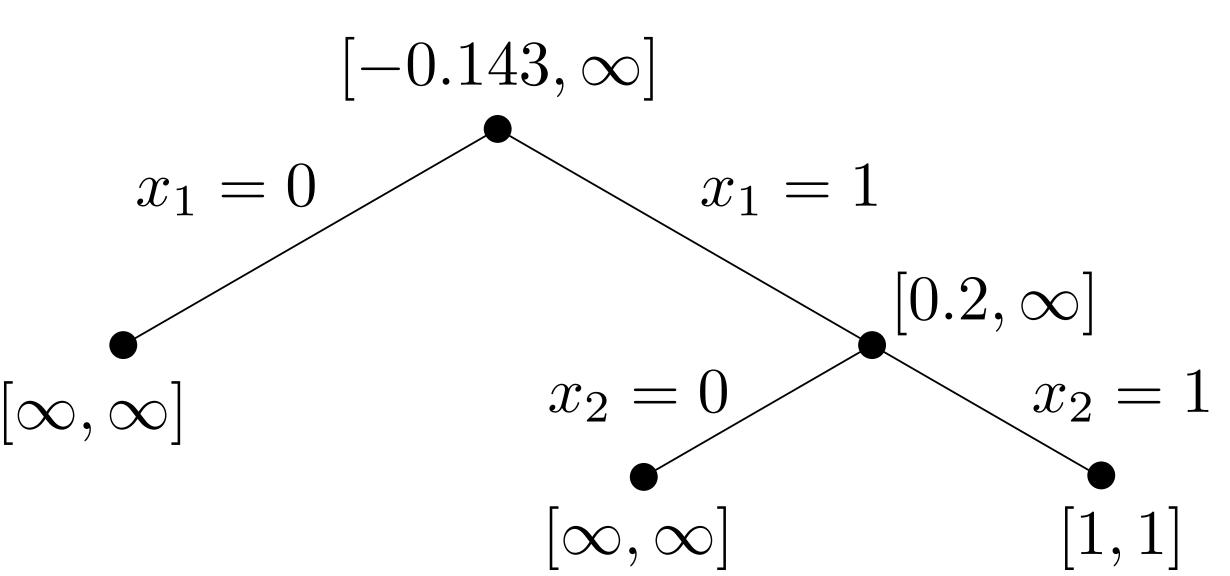


Goal: mimic expert decisions as closely as possible

Learning heuristics in branch and bound algorithms

Branch and bound for integer optimization





- 1. Branch: pick node i and index kform subproblems for $x_k = 0$ and $x_k = 1$
- 2. Bound:
 - Compute lower and upper bounds
 - Update global lower bounds on $f(x^*)$

$$L=\min_i\{L_i\},\quad U=\min_i\{U_i\}$$
 3. If $U-L\leq\epsilon$, break

Branch and bound decisions

Node selection: which node *i*?

- best-first: node with smallest lower bound
- depth-first: node with greatest depth

Variable selection: which fractional variable k?

- "least ambivalent": $x_k^\star \approx 0$ or 1
- "most ambivalent": $|x_k^{\star} 1/2|$ is minimum

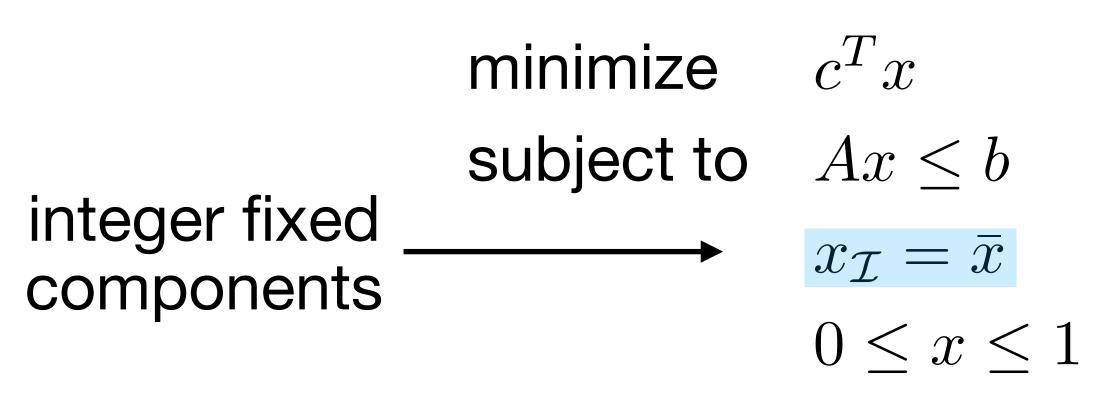
Can we learn better heuristics from data?

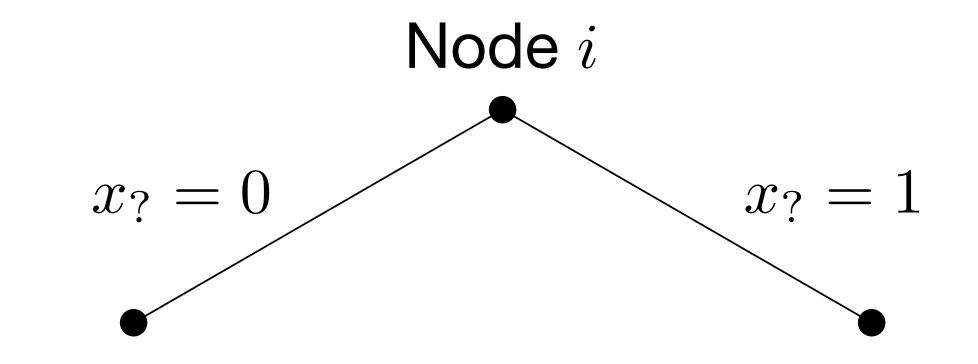
Heuristic selection: which upper bound algorithm? when?

- Rounding
- Randomization
- Neighborhood search

Variable selection and strong branching

Relaxed problem at node i





Potential branching variables

Fractional
$$x_k$$
, $k \in \mathcal{F} = \{1, \dots, n\} \setminus \mathcal{I}$

Strong branching

- Split all potential candidates k
- For each one, solve relaxed problems for $x_k=0$ and $x_k=1$
- Pick k with highest "score": the left and right lower bound increase the most

Too expensive!

Learning strong branching

Node features

Strong branching scores

 $(f_w(\theta_i))_k = s_k, \quad k \in \mathcal{F}$

Best variable

 $k = \underset{k}{\operatorname{argmax}} s_k$

Feature types

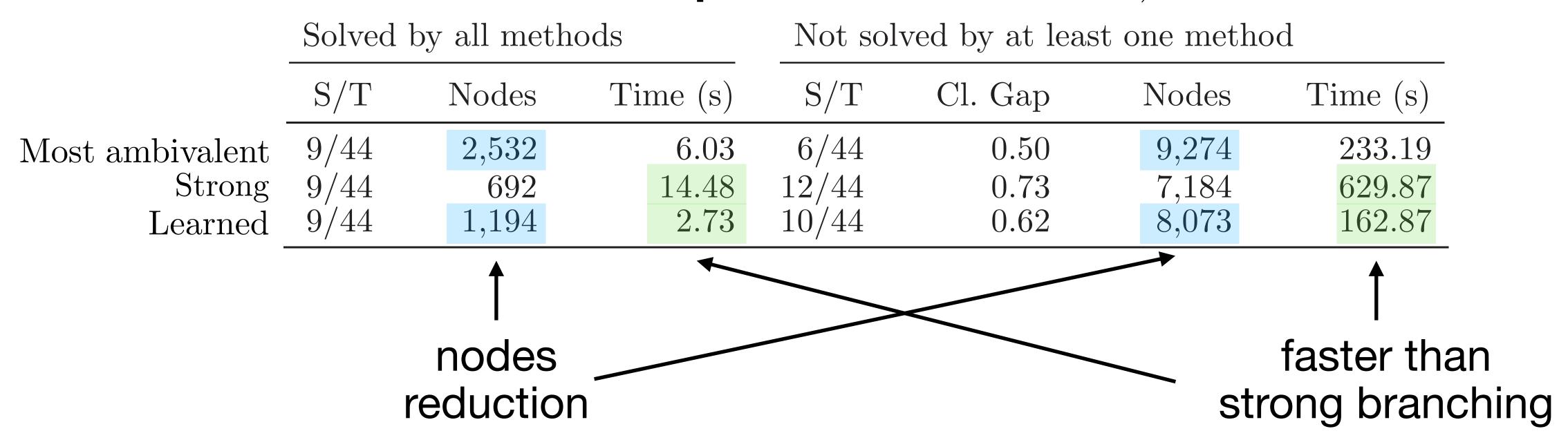
- Static (problem instance):
 - objective function coefficients,
 - constraint coefficients stats.,
 - constraint degrees (# of variables), etc.
- Dynamic (incumbent, current LP relaxation, etc.):
 - relaxed x^* distance to rounding,
 - constraint degrees (# of variables), etc.

Multiclass classifier

- Linear function (SVM^{rank})
- Decision tree
- Neural network

Learning strong branching results

MIPLIB Examples with node limit 10,000



Extensions

- What if we learn the 2-step strong branching (doubly-strong branching)?
- Can we learn while we solve the problem?

Many more directions in branch and bound

Optimal node selection

[Learning to Search in Branch-and-Bound Algorithms, He et al]

Upper bound heuristic selection

[Learning to Run Heuristics in Tree Search, Khalil et al]

What if we do not have expert demonstrations?

[Machine Learning for Combinatorial Optimization: a Methodological Tour d'Horizon, Bengio, Lodi, Prouvost]

Reinforcement learning

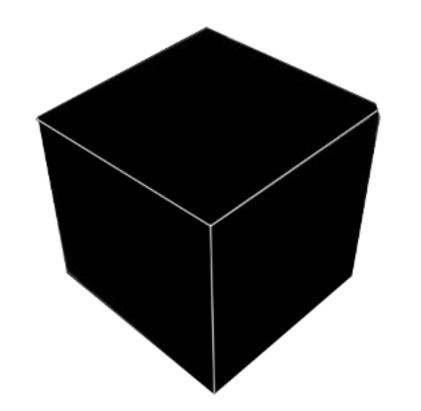
ecole.ai: OpenAl gym-like environment for Reinforcement Learning and Combinatorial Optimization

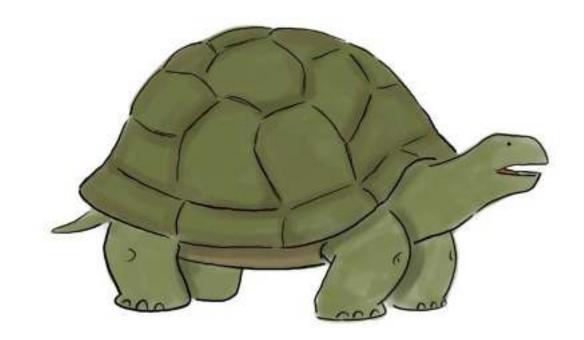
Learning for parametric optimization

Parametric optimization

Limitations

minimize $f(x,\theta)$ subject to $g(x,\theta) \leq 0$

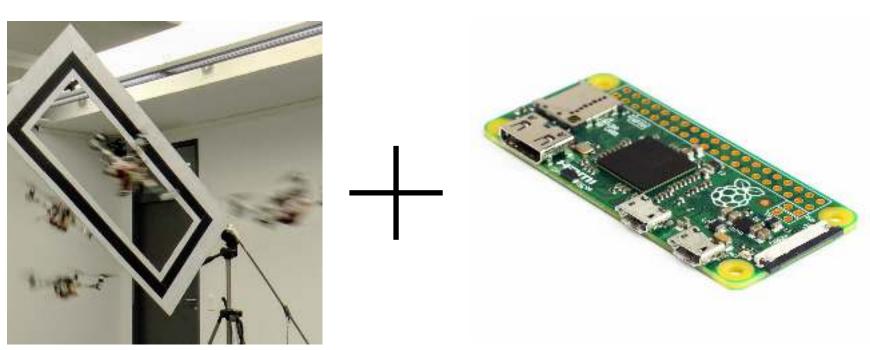




Real-time optimization

Fast real-time requirements

Low-cost computing platforms



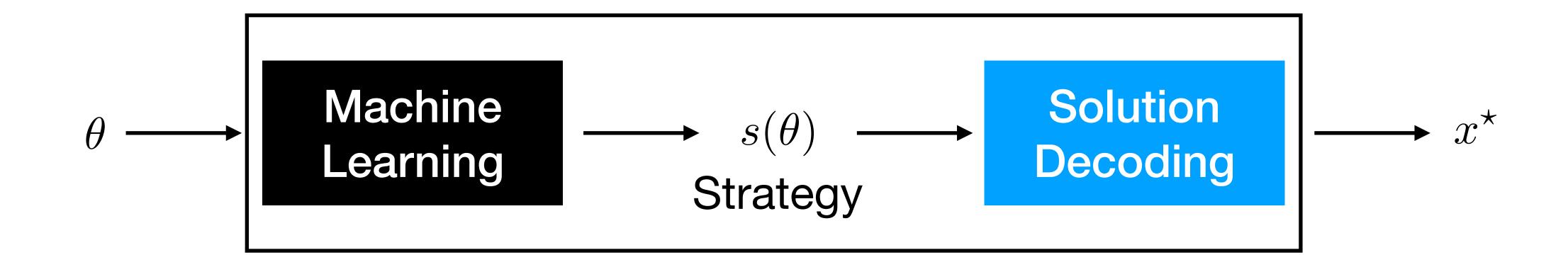
End to end learning

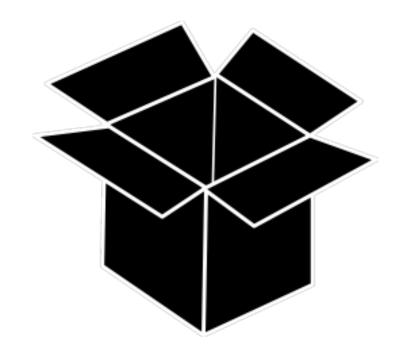
Very small problems

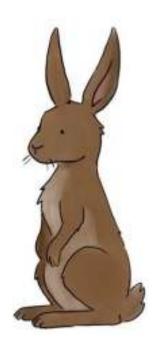
Imprecise

Needs lots of "babysitting"

Machine learning optimizer

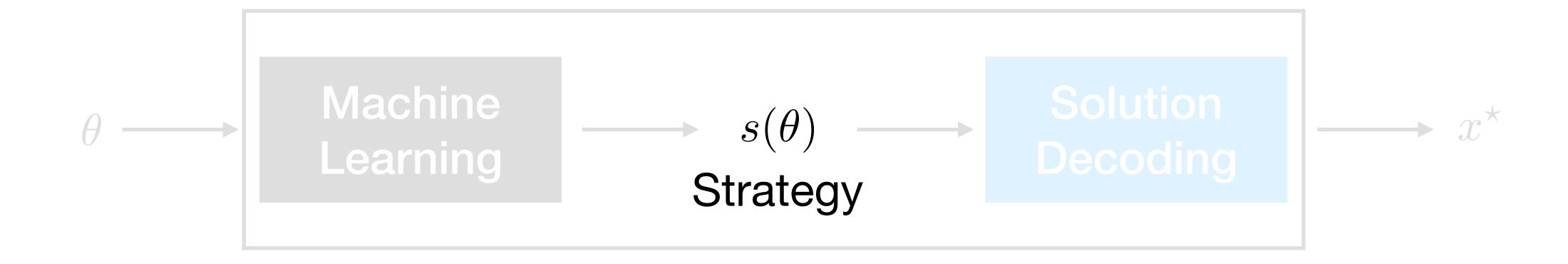






Strategies in optimization

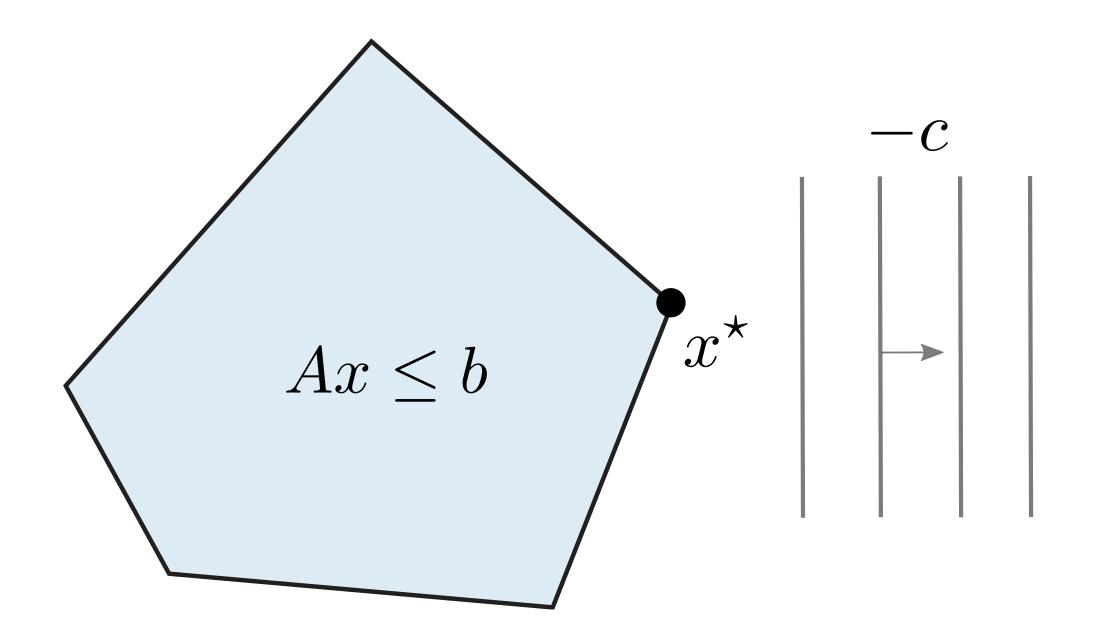
What is a strategy?



The complete information we need to efficiently compute the optimal solution

Parametric linear optimization

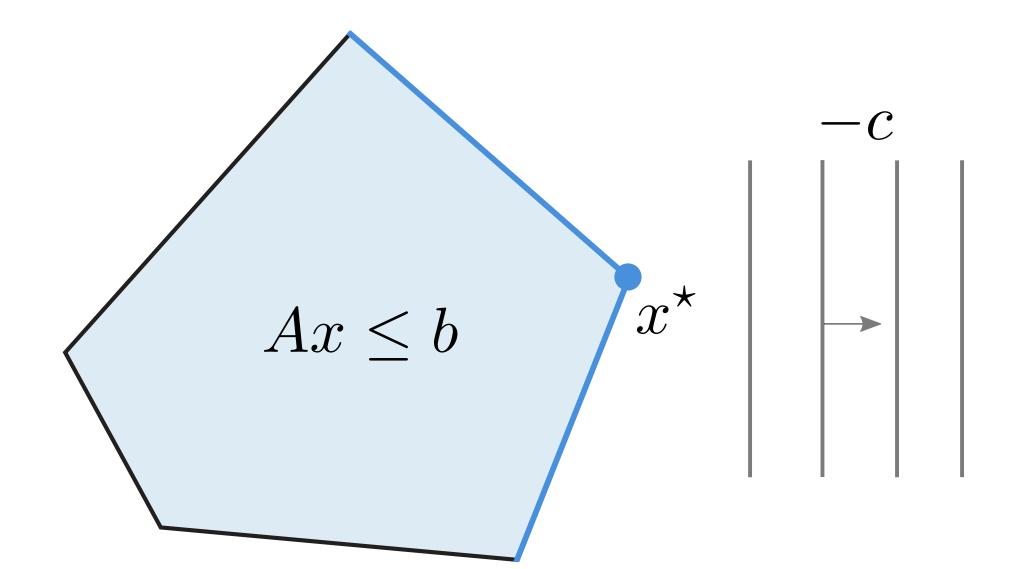
$$\begin{array}{ll} \text{minimize} & c(\theta)^T x \\ \text{subject to} & A(\theta) x \leq b(\theta) \end{array}$$



How can we define a strategy?

Tight constraints in linear optimization

$$\mathcal{T}(\theta) = \{i \mid A_i(\theta)x^* = b_i(\theta)\}\$$



Strategies for linear optimization

$$s(\theta) = \mathcal{T}(\theta)$$

$$|\mathcal{T}(\theta)| = \text{\# variables}$$
 $|\mathcal{T}(\theta)| \ll \text{\# constraints}$

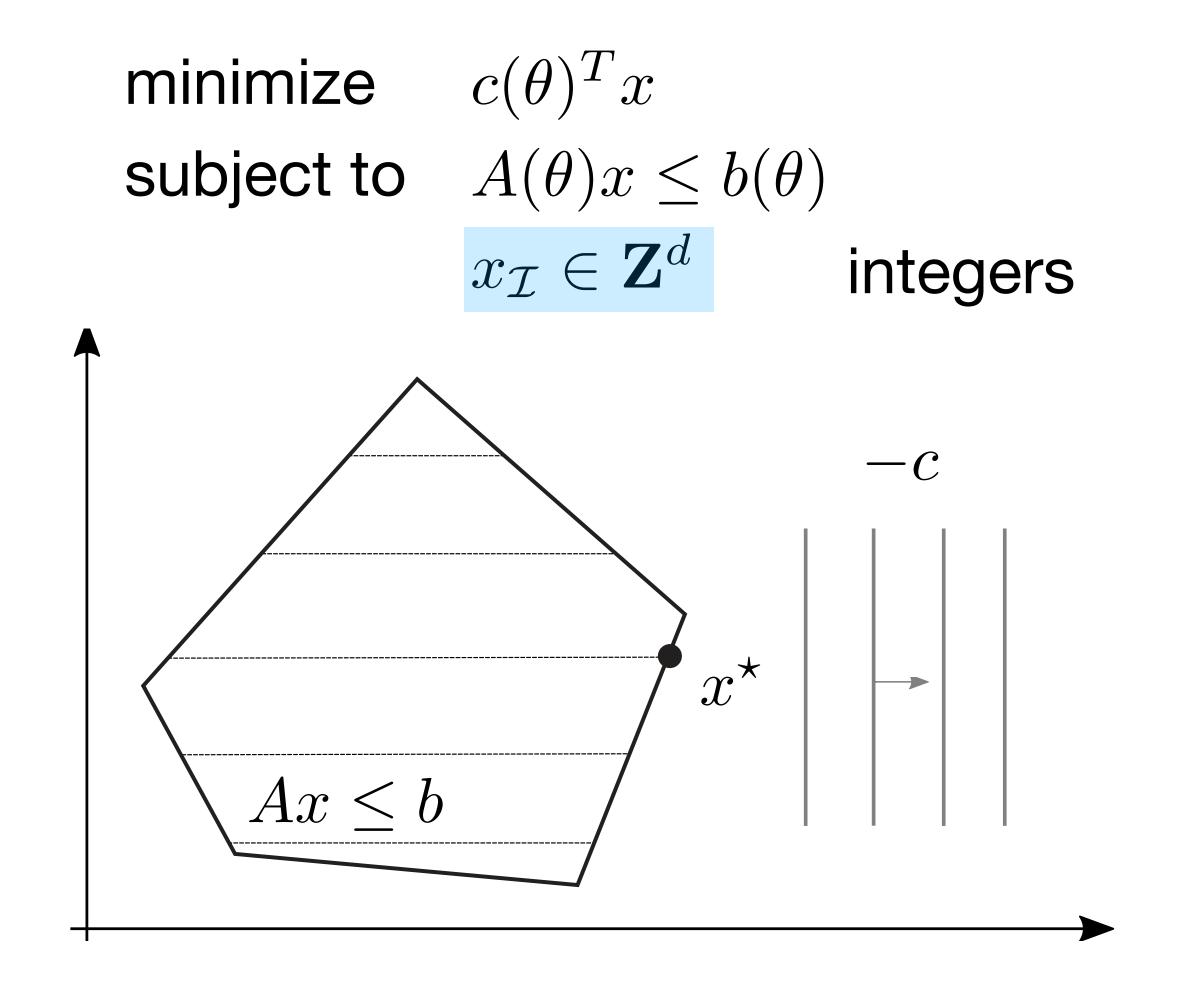
if non-degenerate in general

Computing the solution from the strategy

Convex optimization

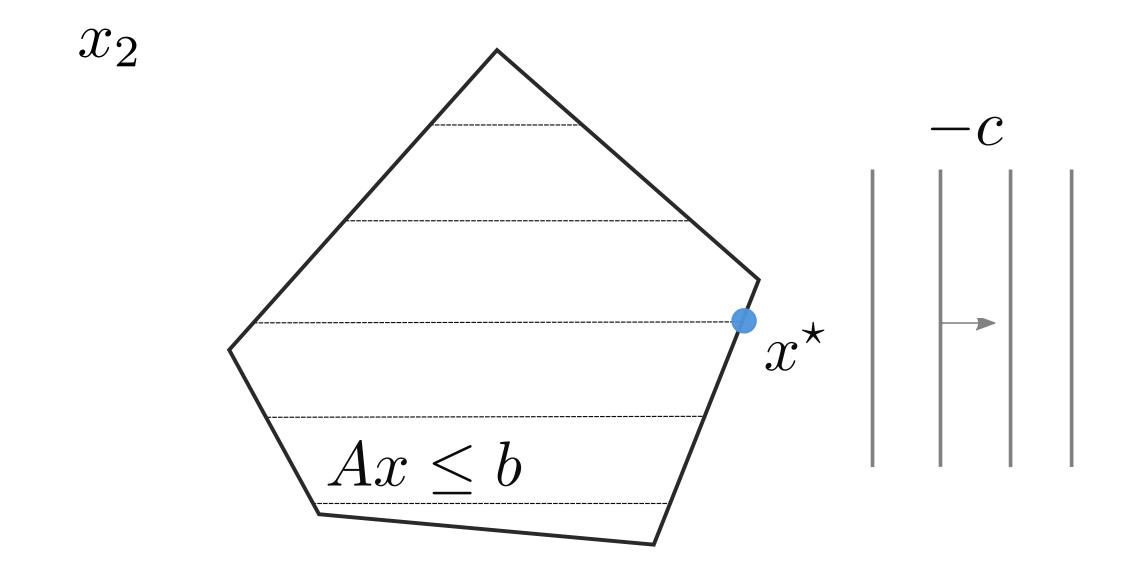
$$\begin{array}{lll} \text{minimize} & c(\theta)^T x & \xrightarrow{s(\theta)} & \text{minimize} & c(\theta)^T x \\ \text{subject to} & A(\theta)x \leq b(\theta) & \text{subject to} & A_i(\theta)x = b_i(\theta), & \forall i \in \mathcal{T}(\theta) \end{array}$$

Parametric mixed-integer linear optimization



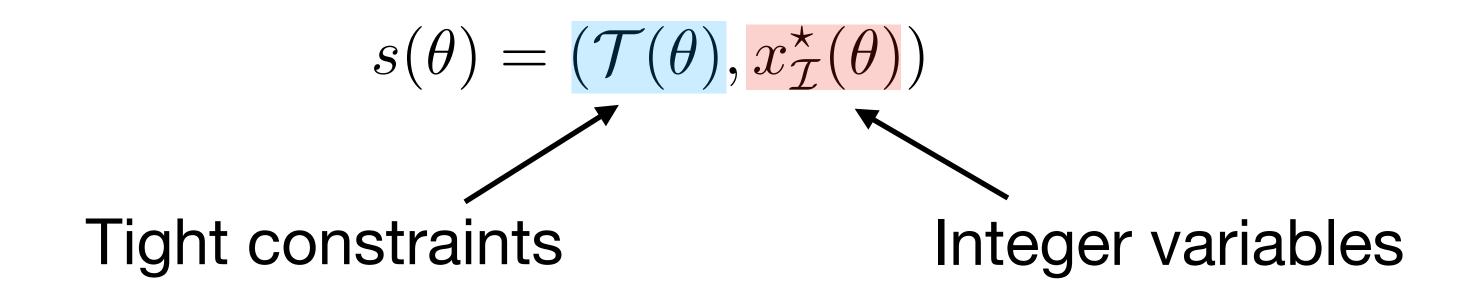
How can we define a strategy?

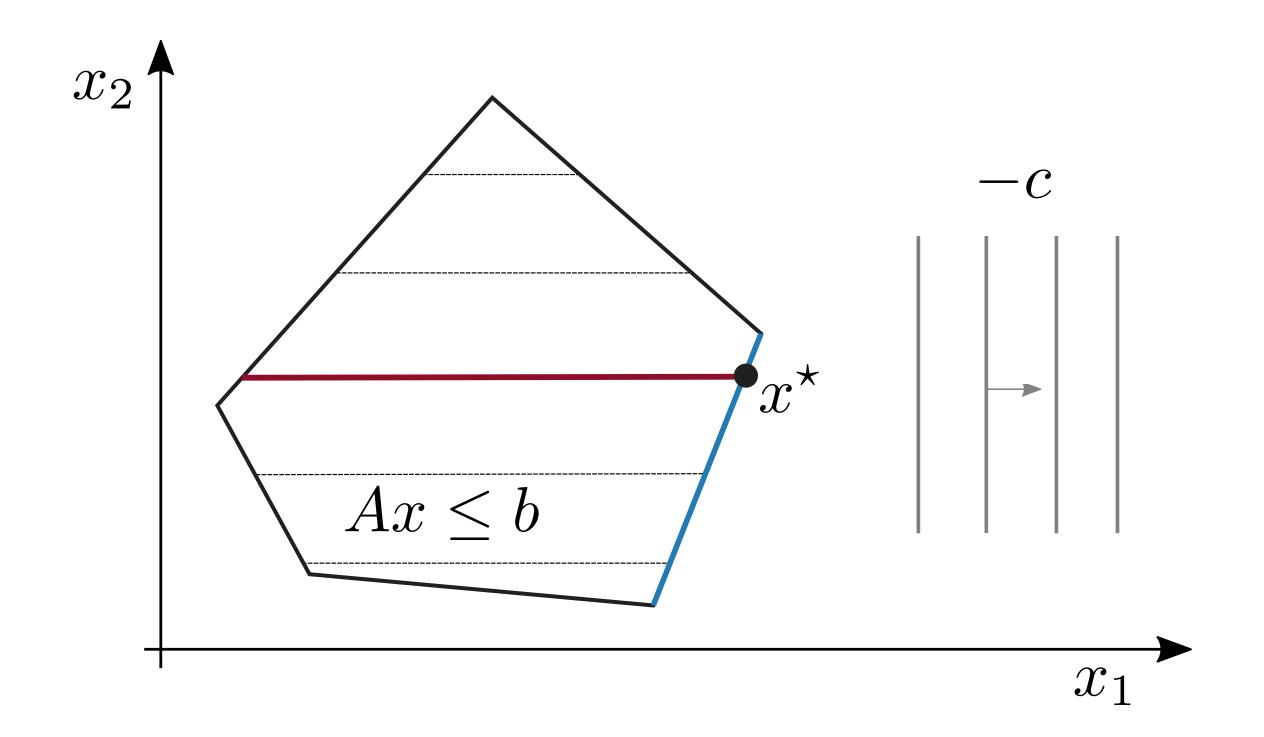
Tight constraints are not enough



 x_1

Strategies for mixed-integer optimization



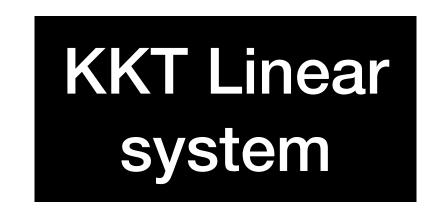


Computing the solution from the strategy

Convex optimization

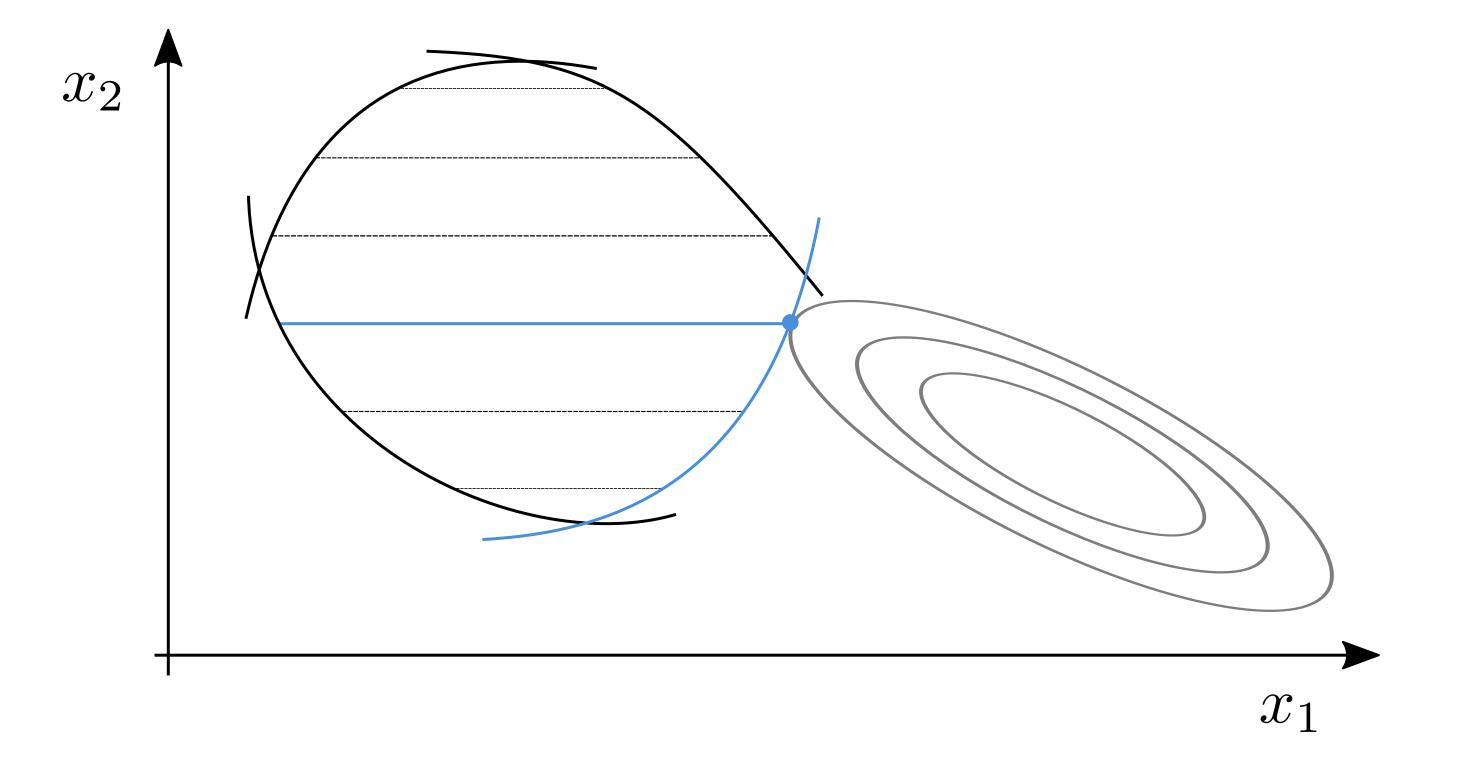
$$\begin{array}{ll} \text{minimize} & c(\theta)^T x & s(\theta) \\ \text{subject to} & A(\theta) x \leq b(\theta) & \longrightarrow \\ & x_{\mathcal{I}} \in \mathbf{Z}^d \end{array}$$

$$\begin{array}{ll} \text{minimize} & c(\theta)^T x \\ \text{subject to} & A_i(\theta) x = b_i(\theta), \quad \forall i \in \mathcal{T}(\theta) \\ & x_{\mathcal{I}} = x_{\mathcal{I}}^{\star}(\theta) \end{array}$$



Mixed-integer convex optimization

 $\begin{array}{ll} \text{minimize} & f(x,\theta) \\ \text{subject to} & g(x,\theta) \leq 0 \\ & z_{\mathcal{I}} \in \mathbf{Z}^d \end{array}$



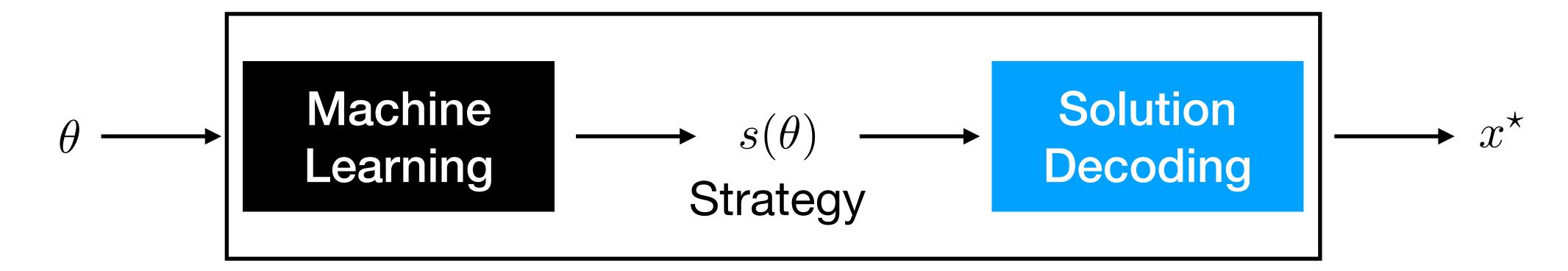
Same strategy definition

$$s(\theta) = (\mathcal{T}(\theta), x_{\mathcal{I}}^{\star}(\theta))$$

How can we recover the solution?

Learning the strategies

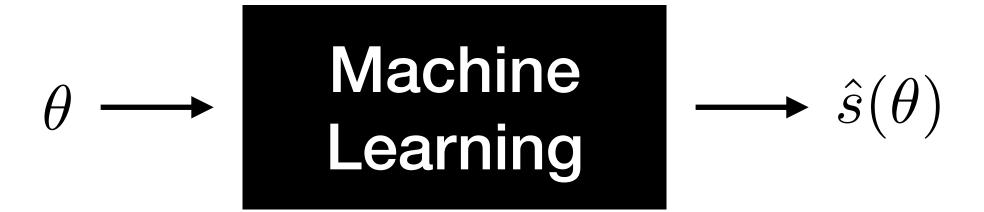
Predicting the strategies



N data $(\theta_i, s(\theta_i))$

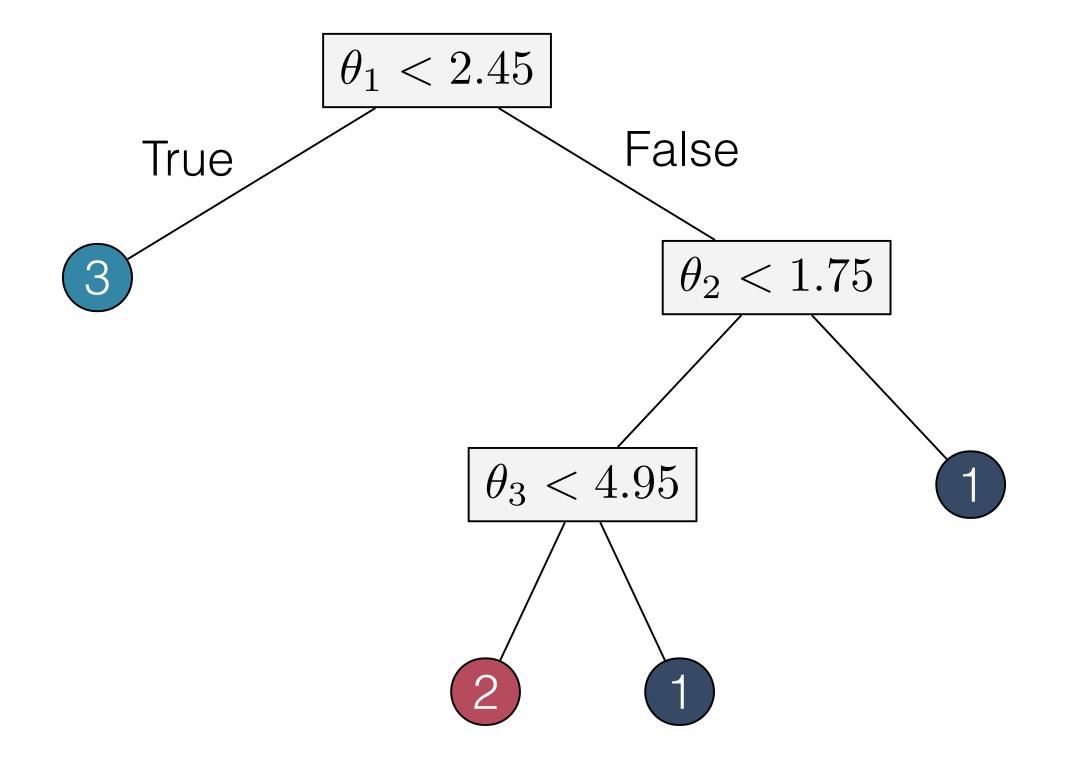
M labels (strategies) $\mathcal S$

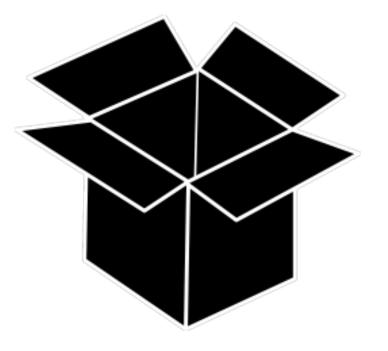
Multiclass classification



Interpretable classifier

Decision Trees

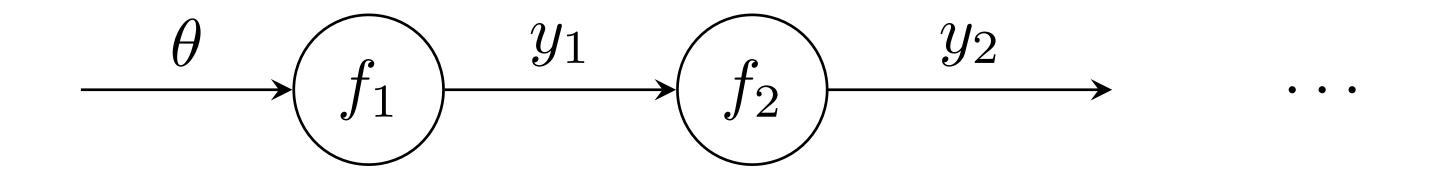




Features

- Easy to understand
- It works for small problems

Neural network classifiers



$\xrightarrow{y_{L-1}} \widehat{f_L} \xrightarrow{\hat{s}}$

Single layer

$$y_l = f(y_{l-1}) = (W_l y_{l-1} + b_l)_+$$

Output layer

(softmax)

$$\hat{s} = f(y_L) = \sigma(y_L), \quad \text{with} \quad (\sigma(x))_i = \frac{e^{x_i}}{\sum_{j=1}^M e^{x_j}}$$

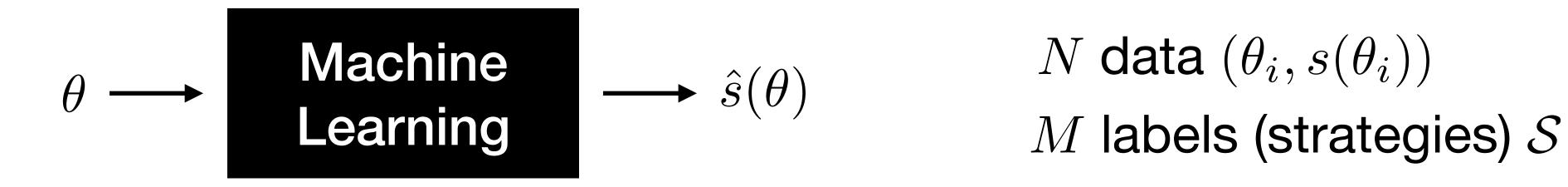
Features

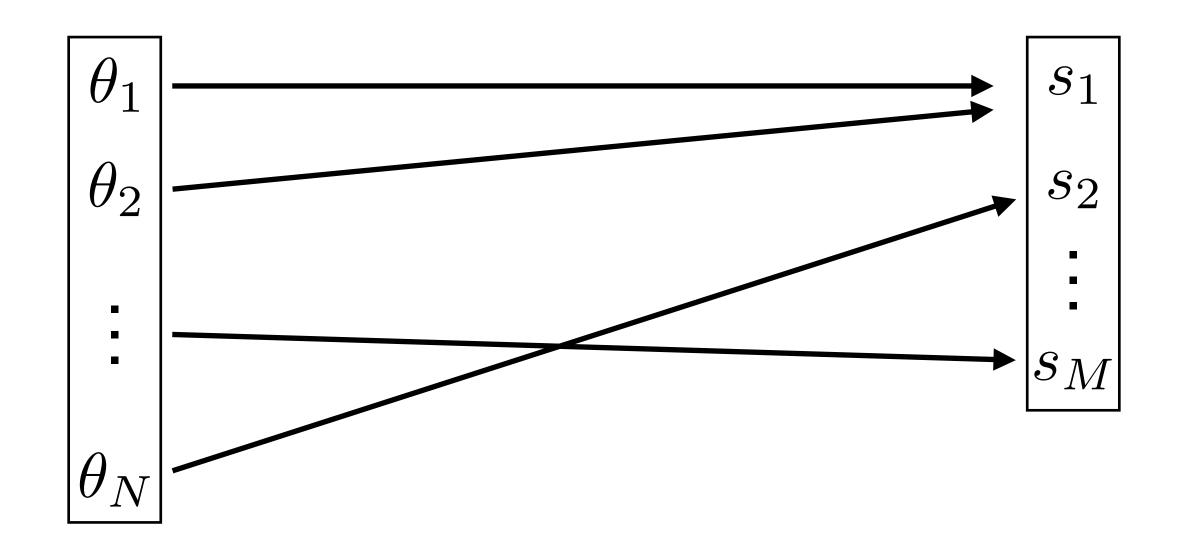
- Hard to understand
- It works for large problems

Sampling the strategies

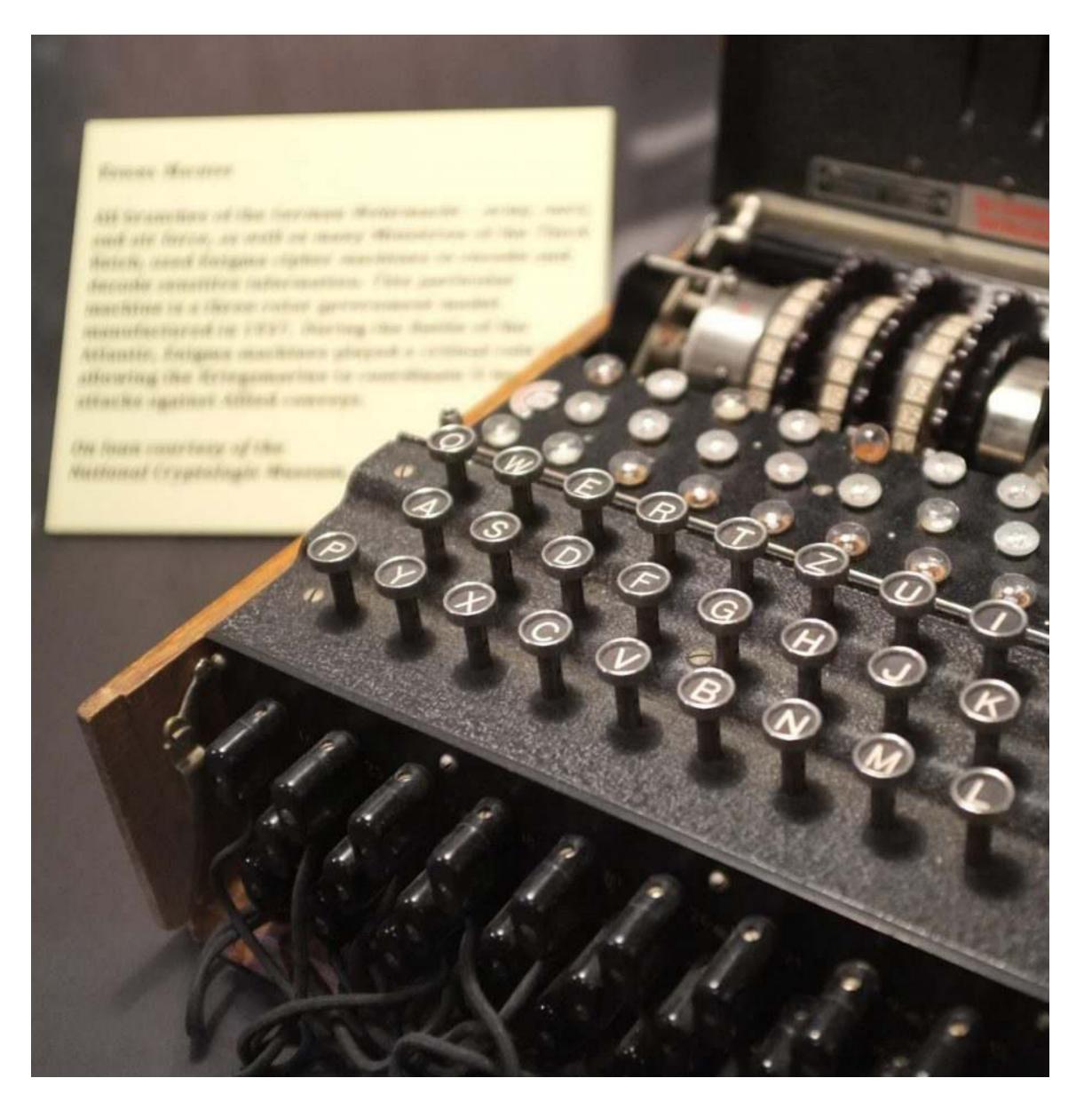
Have we seen enough data?

Multiclass classification





Alan Turing Already worked on this...



Good-Turing estimator

strategies appeared once

$$GT = \frac{N_1}{N} \approx \mathbf{P}(s(\theta_{N+1}) \notin \mathcal{S}(\Theta_N))$$

Probability of unseen strategies

samples

Concentration bound (confidence β)

Sample until

$$\mathbf{P}(s(\theta_{N+1}) \notin \mathcal{S}(\Theta_N)) \le GT + C\sqrt{(1/N)\ln(3/\beta)}$$

$$\leq \epsilon$$

Example

$$N = 15$$
 $M = 5$

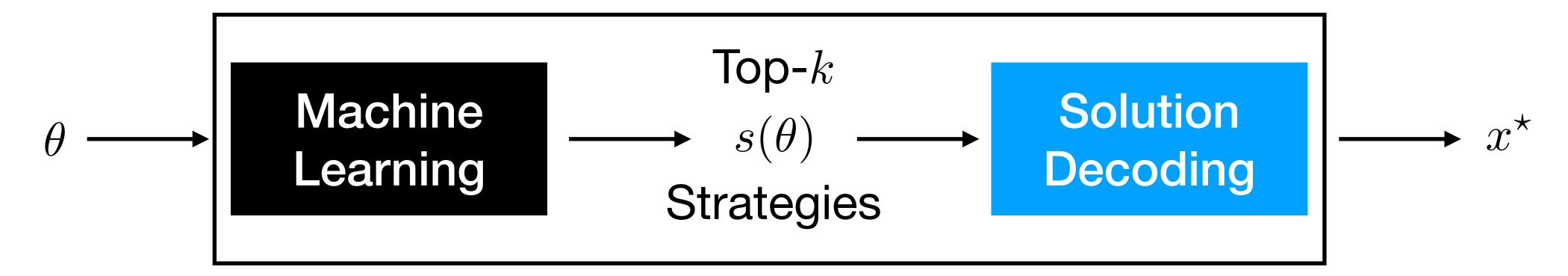
- s_1 6 times
- s_2 3 times
- s_3 1 time
- s_4 3 times
- s_5 2 times

$$GT = 1/15$$

MLOPT: Machine Learning Optimizer github.com/bstellato/mlopt

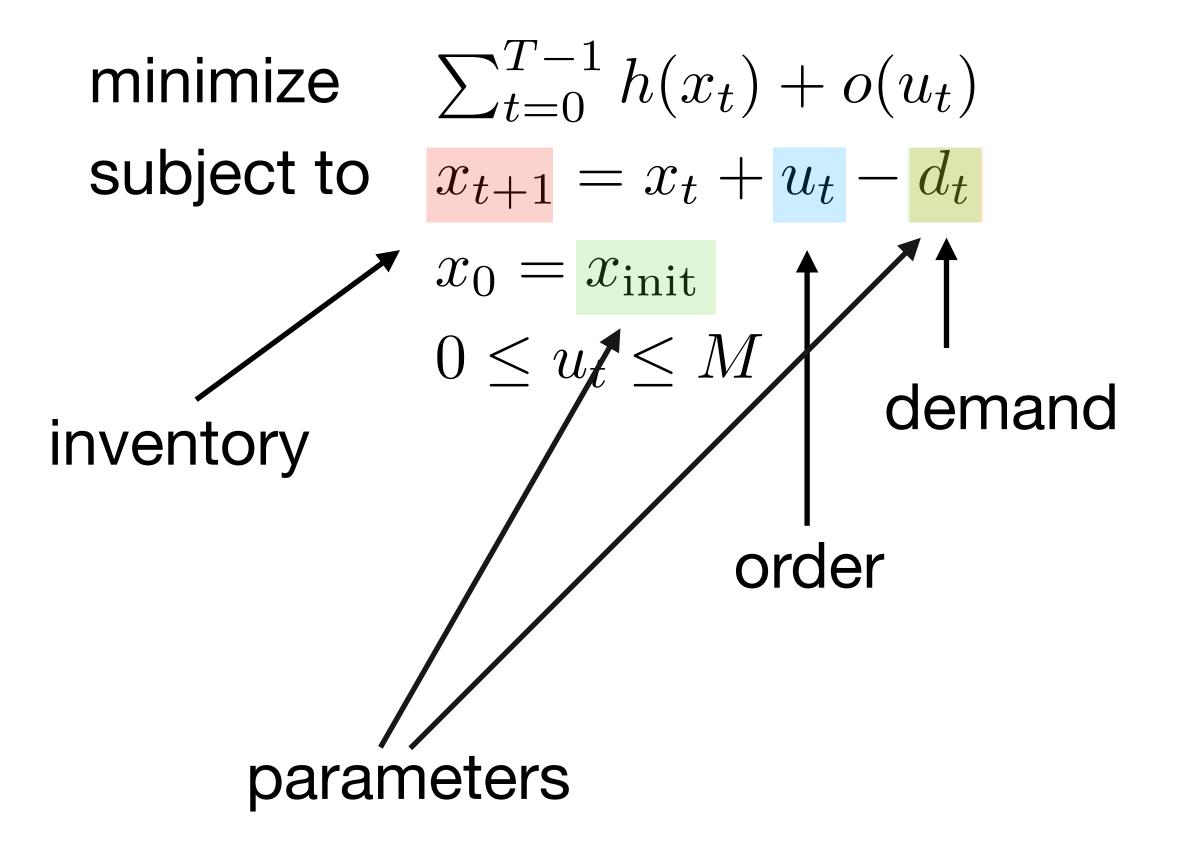
CVXPY Strategy sampling ML predictor training

Fast online predictions



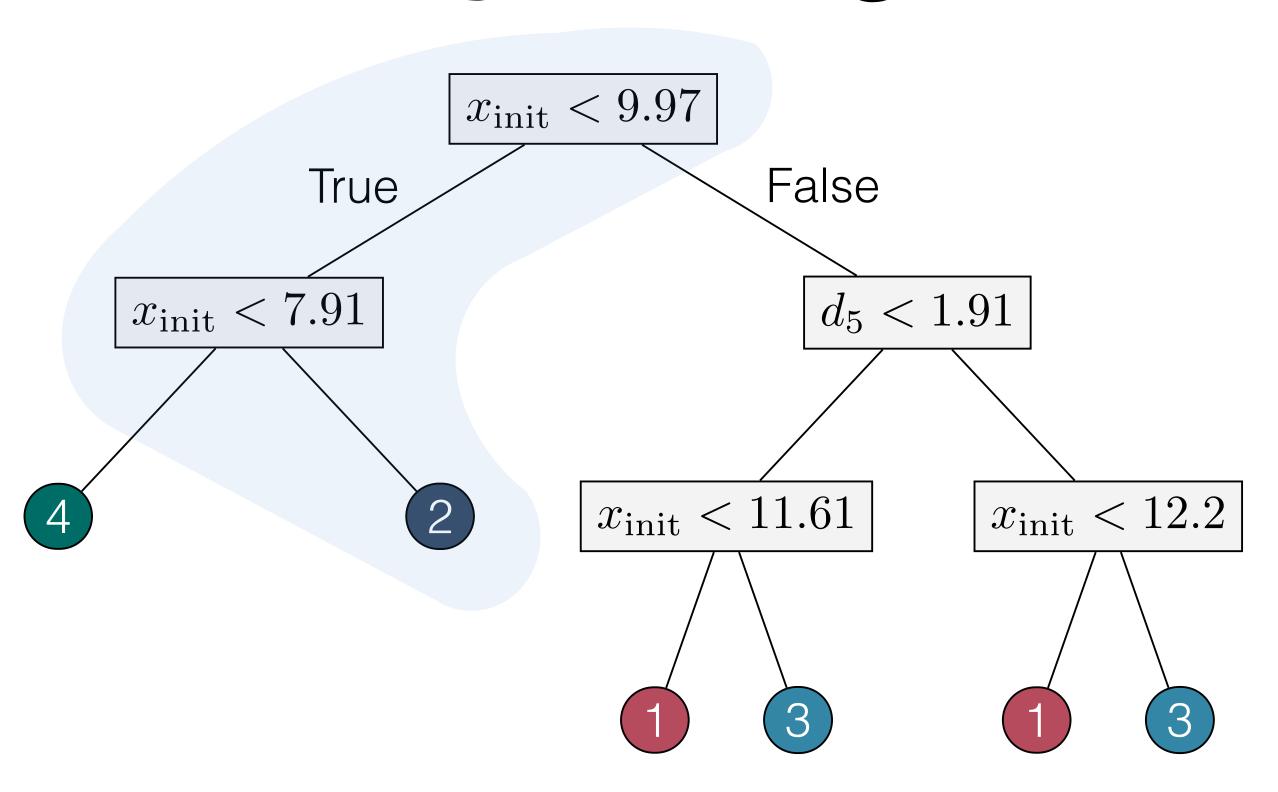
Examples

Inventory management





Inventory management strategies



minimize $\sum_{t=0}^{T-1} h(x_t) + o(u_t)$ subject to $x_{t+1} = x_t + u_t - d_t$ $x_0 = x_{\text{init}}$ $0 < u_t < M$

Strategy 4

$$u_t = 0$$
 $t \le 3$

$$0 \le u_t \le M \quad t > 3$$

Strategy 2

$$u_t = 0 t \le 4$$

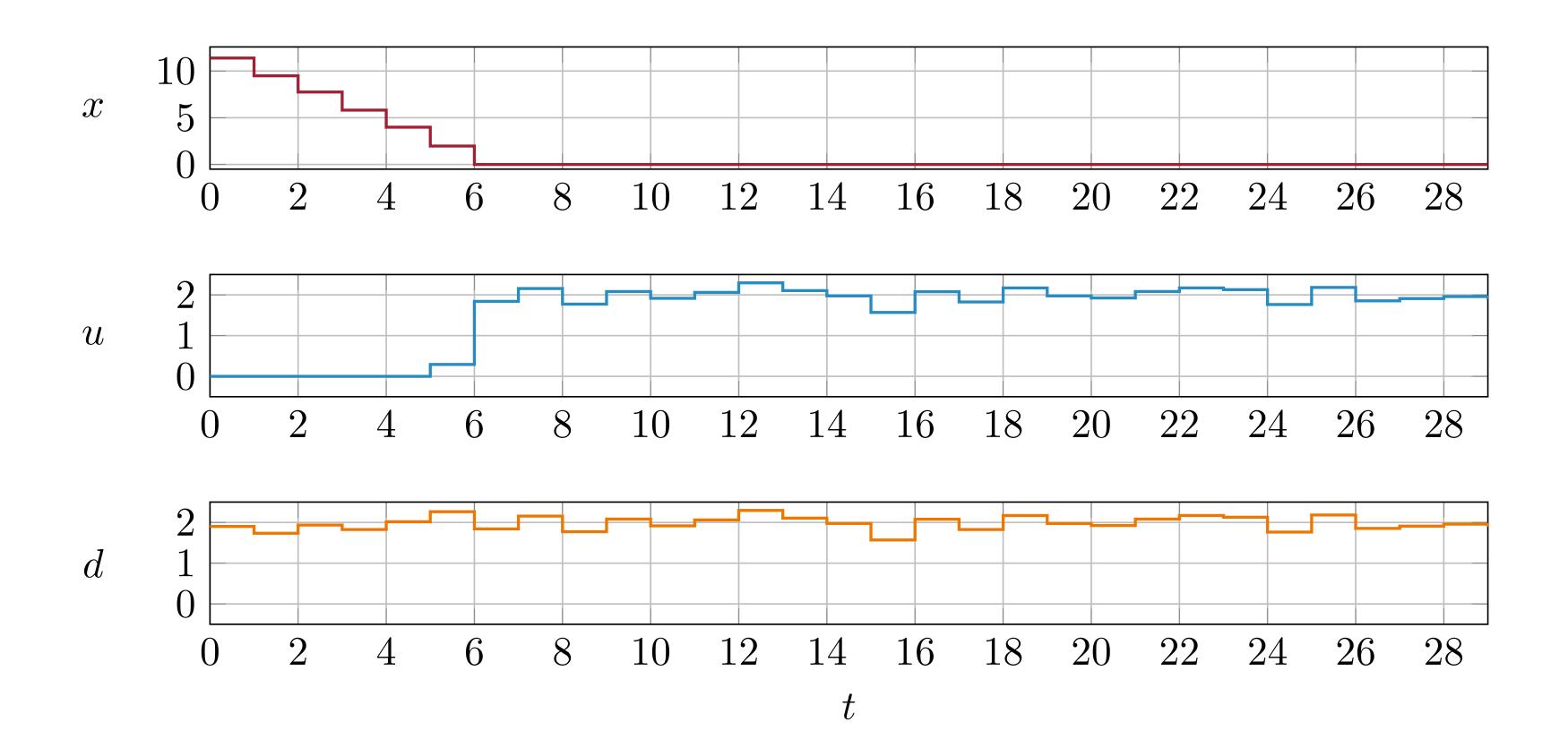
$$0 \le u_t \le M \quad t > 4$$

Inventory management trajectory

Strategy 2

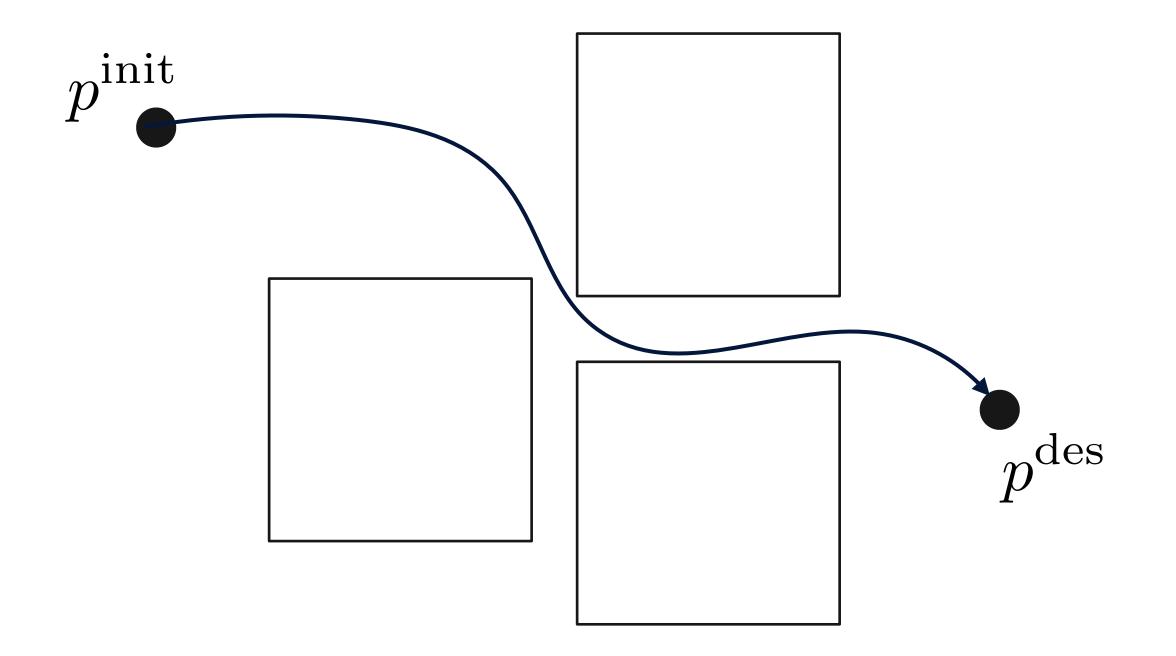
$$u_t = 0 \qquad t \le 4$$

$$0 \le u_t \le M \quad t > 4$$



Example

Motion planning with obstacles



$$p_t$$
 position $\in \mathbf{R}^d$ v_t velocity $\in \mathbf{R}^d$

 $p^{\rm init}$ initial position $v^{\rm init}$ initial velocity

 p^{des} desired position

Obstacles

Obstacle i is a box $[\underline{o}^i, \overline{o}^i]$

Motion planning formulation

minimize

$$||p_T - p^{\text{des}}||_2^2 + \sum_{t=0}^{T-1} ||p_t - p^{\text{des}}||_2^2 + \gamma ||u_t||_2^2$$

subject to
$$(p_{t+1},v_{t+1})=A(p_t,v_t)+Bu_t$$

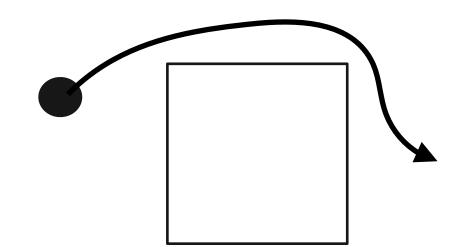
$$p_0=p^{\rm init},\quad v_0=v^{\rm init}$$

 $\overline{o}^i - M\overline{\delta}_t^i \le p_t \le \underline{o}^i + M\underline{\delta}_t^i, \quad i = 1, \dots, n_{\text{obs}}$ $\mathbf{1}^T \delta_t^i + \mathbf{1}^T \overline{\delta}_t^i \le 2d - 1$

$$\overline{\delta}_t^i, \underline{\delta}_t^i \in \{0, 1\}^d, \qquad i = 1, \dots, n_{\text{obs}}$$

Dynamics

Obstacle avoidance



Motion planning with obstacles

Worst-case timings

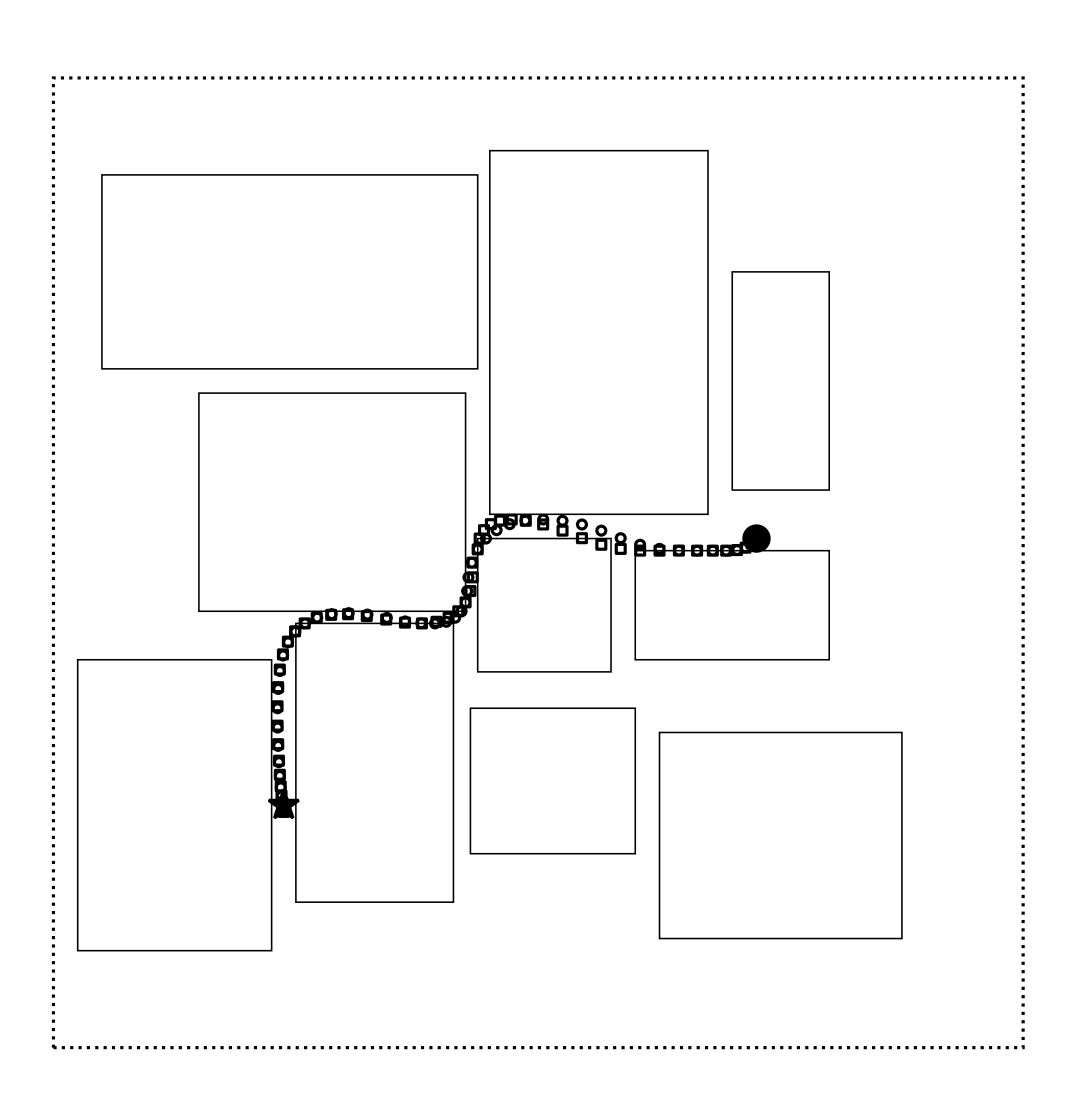
$n_{ m obstacles}$	$n_{ m var}$	$n_{ m constr}$	$t_{\rm max}$ MLOPT [s]	$t_{ m max}$ Gurobi [s]	$t_{\rm max}$ Gurobi heuristic [s]
2	1135	3773	0.4145	2.3776	2.2962
4	1615	10133	0.1878	11.8172	8.1443
6	2095	20333	0.3173	33.7869	11.5292
8	2575	34373	0.2235	392.3073	128.4948
10	3055	52253	0.2896	773.1476	206.4520

2600x speedups

Motion planning with obstacles

Circles optimal

Squares MLOPT



Learning strategies in parametric optimization

Benefits

- Extremely fast
- Simple online method for nonconvex optimization
- It learns from your pool of problems

Downsides

- No optimality guarantees
- Relies on many offline solutions (expert demonstrations)

Future directions

- Better NN architectures
- Optimality guarantees
- Reinforcement learning when we do not have offline solutions

Data-driven algorithms

Today, we learned recent research on data-driven algorithms:

- Learning heuristics in branch and bound search (global algorithm)
- Learning strategies in parametric optimization (heuristic algorithm)

Many more exciting directions

Differentiable optimization layers, reinforcement learning in optimization, learning-augmented first order methods, ...

[CS159 Caltech, https://sites.google.com/view/cs-159-spring-2020/]

Next lecture

Course recap and conclusions