ORF522 - Linear and Nonlinear Optimization
18. Operator splitting algorithms
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Ed forum

« Homework 4 deadline: official deadline November 16
3 small typos at page 24, 33, 35 Lecture 17 (please download again)

e Other questions?






Resolvent and Cayley operators

The resolvent of operator A is defined as
Ra=(I+ A)_l

The Cayley (reflection) operator of A is defined as
Ca=2Ry—1=20+A)" -1

Properties

* |If A is maximal monotone, dom R4 = dom (4 = R"™ (Minty’s theorem)
- If A is monotone, R4 and C' 4 are nonexpansive (thus functions)

« Zeros of A are fixed points of R4 and C'4

Key result we can solve 0 € A(x) by finding fixed points of C'4 or R 4



“multiplier to residual” mapping

Lagrangian
—  L(z,y) = f(z) +y (Az —Db)

minimize  f(x)
subjectto Az =0

Dual problem
maximize ¢(y) = min L(z,y) = —max —L(z,y) = —(f*(—A"y) + y' b)

X

Operator Monotonicity

T(y) =b— Ax, where x = argmin, L(z,y) —— If f CCP, then T is monotone

Proof
0cdf(x)+ ATy «— (&f) H=ATy)

Therefore, T'(y) = b — A(0 ) H—ATy) =0, (bTy + f*(—ATy)) =0(—9) B
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Summary of monotone and cocoercive operators

Monotone Lipschitz
(@) = T@) (z —y) 2 0 |F(x) - F)|| < L]z — ]
p=20 | L=1/p
Strongly monotone Cocoercive
(T(x) = T(x))" (x —y) > pllz -yl <F—>T_1 (F(x) = F(y)" (x —y) > pllF(z) — F(y)|’
G=1-2uF

Nonexpansive
|G(z) =G| < llz =yl °



Strongly monotone and cocoercive subdifferential

f is u -strongly convex <«<—  0f p-strongly monotone
(Df(x) = 0f (y)" (x —y) > pllz —y|°

f 1s L-smooth
<= Of L-Lipschitzand 0f = V f: |Vf(x)—Vf(y)l| <Llx— 1yl
<= 0f (1/L)-cocoercive: (Vf(zx) - Vf(y)) (x —y) > (1/L)|Vf(z) = VI(y)|°

’ L
S @)+ V@) (y =)+ Flle =yl

f(y)

f(@)+ V@) (y— )+ Slle =yl 7



Inverse of subdifferential
If fis CCP, then, (Of)~t =0f*

Proof
(u,v) € gph(0f)™" <= (v,u) € gphdf
< u € Jf(v)

<— 0€df(v) —u

= v € argmin f(z) — u’
X

= f*(u) =u v — f(v)

Therefore, f(v) + f*(u) = ulv. If fis CCP, then f** = f and we can write
fr)+ffw)=wv <= (uv) egphdf’



Strong convexity is the dual of smoothness

f is p-strongly convex <= f*is (1/u)-smooth

Proof
f w-strongly convex <=  0Jf p-strongly monotone

— (0f)"'=0f* p-cocoercive
<~ f* (1/u)-smooth B

Remark: strong convexity and (strong) smoothness are dual



Requirements for contractions

Function f
Operator A
i (A =0f)

Forward step _strongly monotone 1-strongly convex
I —~A s L-smooth
nesolvent 1 -strongly monotone p-strongly convex
Ra=(I+ A) - L-smooth
Cayley B u-strongly monotone u-strongly convex
Ca=2I+A) " -1 L-Lipschitz L-smooth

faster convergence

Key to contractions: strong monotonicity/convexity 10



Today'’s lecture

[A primer on monotone operator methods, Parikh and Boyd]

[Proximal Algorithms, Parikh and Boyd]
[Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers,

Boyd, Parikh, Chu, Peleato, Eckstein]

Operator splitting algorithms

Proximal method

Forward-backward splitting
Douglas-Rachford splitting

Alternating Direction Method of Multipliers
Examples

Distributed optimization
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Proximal method



Proximal point method

Resolvent iterations Many traditional algorithms
k+1 _ BY — (T 4 AY—1(,F are proximal point method
v Ra(@®) = (I +4) (") with a specific A

If A = 0tf, we get proximal minimization algorithm

1
it = proxtf(xk) — argmin (tf(z) 5 |2 — xﬂ\%)

Z

Proximal minimization properties

* Ryis1/2averaged: Ry = (1/2)I +(1/2)Cyx = R.5f cOnverges Vit
+ fix Rp:¢ are zeros of Jf: optimal solutions

* If f pu-strongly convex, Ry:+ contraction: linear convergence

» Usetul only if you can evaluate prox, , efficiently
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Method of multipliers

minimize  f(x) Lagrangian
subjectto Ax =0 L(z,y) = f(z) +y (Az — D)

Dual problem
maximize g(y) = —(f*(=A"y) +y" b)

Operator
T(y) =b— Ax, where x = argmin_ L(z,y) — T(y) = 0(—g)

Therefore,  9(—g)(y) = b — Ax, 0€df(x)+ Ay

Solve the dual with proximal point method
yk_l_l — th’?(—g) (yk)

14



Method of multipliers

Derivation
Solve the dual with proximal point method

yk_H — Rt@(—g) (yk)
where 0(—g)(y) =b— Az,  withzsuchthat 0cdf(z)+ Ay

Resolvent reformulation
v = Rig_ g (y") = " +10(—g)(y" ) =
— y" T t(b— Az =¢F, with 0€ df(a" ) + AT yFT!

z**T1 minimizes the augmented Lagrangian L, (z,y"*!)
0 € Of (") + AT (y* + t(Az* Tt — b))
— 2" € argmin f(x) + (v") (Az — b) + (¢t/2)|| Az — b||* = argmin L(x, y") 15



Method of multipliers (augmented Lagrangian method)

Primal Iterates
minimize  f(x) Yyt = Rip(—g) (yk)
subjectto Az =10 l

Dual A= argmin Lt(x,yk)

maximize g¢(y) = —(f*(—=A'y) + y' b) g

yk—l—l _ yk t(AZCk_H B b)

Properties

 Always converges with CCP f forany ¢t > 0
» If f L-smooth
f*and g are (1/u)-strongly convex
Ry(—4) IS @ contraction: linear convergence
» If f strictly convex (>), then argmin has a unigue solution (¢ becomes =)
» Useful when f L-smooth and A sparse

16



Method of multipliers dual update

k+
minimize  f(x)

X

"t € argmin Ly (z, y~)

SUbjeCt to Ax =50 yk_l_l — yk | t(Agjk_'_l _ b)

Optimality conditions (primal and dual feasibility)

Az — b, Of(x)+ A"y >0

From z**! update
0 € Of(z") + ATy +-tAT (AT —b)
_ 8f(33k+1) 4+ ATyk—l—l

——

($k+1 k+1)

y Y
dual feasible

primal feasible in the limit, i.e. Az* —b — 0

17



Forward-backward splitting




Operator splitting
Main idea
We would like to solve

0 € F(x), F maximal monotone

Split the operator

F=A+B, A and B are maximal monotone

Solve by evaluating

Ra=(I+ A" Cy=2Ry—1
or
RB:(I—I—B)_l Cp=2Rp —1

Useful when R4 and Rp are cheaper than Rg 19



Forward-backward splitting

Goal
Find x suchthat 0¢€ A(x)+ B(x)

Rewrite optimality condition
0€(A+ B)(x) <— 0€t(A+ B)(x)
<— 0e [ +tB)(x)— I —tA)(x)
< ([+tB)(x)> (I —tA)(x)
— = I+tB)" (I —tA)(z)
<— = Rig(l —tA)(x)

Iterations
2"t = Rip(I — tA)(z)

20



Forward-backward splitting

Properties

Iterations
(I —tA)(

Dany

resolvent forward step

Properties

» R;p is 1/2 averaged
» |If Ais u-cocoercive then I — 21 A Is nonexpansive
— [ —tA is averaged for ¢t € (0,2u)
» Therefore forward-backward splitting converges
» If either A or B Is strongly monotone, then linear convergence

21



Proximal gradient descent as forward-backward splitting

f I1s L-smooth

minimize  f(z) + g(z) g IS nonsmooth but proxable

Therefore, Vfis (1/L)-cocoercive and dg maximal monotone

Proximal gradient descent
¥ = Rypg(I —tV f)(2")
— p]f'():x;tg(xl‘C — tV f(z™))

Remarks
» Converges fort € (0,2/L)
» If either f or g strongly convex linear convergence

- If ¢ = I, then it’s projected gradient descent 22



Example: Lasso with linear convergence
Iterative Soft Thresholding Algorithm (ISTA)

Proximal gradient descent

minimize (1/2)||Ax — bl|2 + \||z
(1/2)]] 15+ Az tF = Sy, (8 — tAT (Az" — b))

f (@) g(x)
Subgradient 0.001 /v/k + 1
022 Su_:_Jgradient 0.01/(k + 1) Example
i ............... ISTA ¢t = 0.001
' randomly A e R500x300
generated

= V’f=A"4+-0
=  f strongly convex

e — T linear convergence

6| i | | | |
10775 200 400 600 300 1000 23




Example: Lasso without linear convergence
Iterative Soft Thresholding Algorithm (ISTA)

minimize (1/2)||Az — b||2 + \||z||;

f(x) g()
Subgradient 0.0005/vk + 1
-------- Subgradient 0.005/(k + 1)
............... ISTA ¢ = 0.001
0 200 400 600 300

1000

Proximal gradient descent
it = Sy, (xk — tAT (Ax" — b))

Example

randomly 300 % 500
generated AeR

= Vf=A"A4>0
= f not strongly convex

sublinear convergence

24



Douglas-Rachford splitting




Operator splitting
Main idea
We would like to solve

0 € F(x), F maximal monotone

Split the operator

F=A+B, A and B are maximal monotone

Solve by evaluating

Ra=(I+ A" Cy=2Ry—1
or
RB:(I—I—B)_l Cp=2Rp —1

Useful when R4 and Rp are cheaper than Rg 26



Splitting Cayley iterations

Key result

0€ A(x)+ B(x) <= (CaCp(z)=2, =z = Rp(z)

Goal
Apply C' 4 and C'g sequentially instead of computing R 4. g directly

27



Splitting Cayley iterations

Proof of key result r = Rp(2)
MO Era———— ST
r = Rp(z2)
last
Since x = Rp(z), we have z € = + B(x) equation
Sincez = Ra(z),wehavez €+ A(x) =z + A(x)
20 = 2 + 2

By adding them, we obtain z + z € 2x + A(x) + B(x)
Therefore, 0 € A(z) + B(x) B

Note the arguments also holds the other way but we do not need it 28



Peaceman-Rachford splitting

w = CuCr(w")

It does not converge in general (product of nonexpansive).

Need C'4 or (' to be a contraction

Douglas-Rachford splitting (averaged iterations)

wt = (1/2)(I + C4Cg)(w")

» Always converges when 0 € A(x) 4+ B(x) has a solution
» If A or B strongly monotone and Lipschitz, then C4Cpg Is
a contraction: linear convergence

* This method traces back to the 1950s

Peaceman-Rachford and Douglas Rachford splitting

29



Douglas-Rachford splitting

Iterations

Zk+1 — RB (wk)

,J]k?—l—l __ 22k+1
wrETt = (1/2)(1 + C’AC’B)(wk) R ———

k

— W

CEk_l_l _ RA (wk—l—l)

wkH — wk + x

Last update (averaging) follows from:
wh T = (1/2)w” + (1/2) (225 — @~ 1)
= (1/2)w"” + 2"t — (1/2)(22F T — w")

_ Wk gkl ke

k41

&

k+1

30



Simplified iterations of Douglas-Rachford splitting

1 Swap iterations and counter
Wit = w"® + RA(227F — w") — 2"

Zk—l—l _ RB (wk—l—l)

3 Update w**! at the end

" = RA (227 — w")

2R — Rp(wk 4 oF L — o)

w

k

1

:wk—l—a:

k

1

— &

k

DR iterations
Zk—l—l _ RB (wk)

wk—l—l _ wk 4+ RA(22k+1 B wkz) o Zk—l—l

2 Introduce 2!
T = RA(22° — w")

WL — ok 4kl Lk

Zk—l—l _ RB (wk—|—1)

4 Define u* = wh — ZF
"t = Ra (2% — u)

Zk—l—l _ RB(ka+1 _|_uk)

WL =k g Rl ke

31



Douglas-Rachford splitting

Simplified iterations

- . k1l k1
QEk_H __ RA(Zk - uk) Residual: =z Z
k+l ki1 k —_— running sum of .
< Rp (™" +u”) g Interpretation as
k1 I k1 k1 residuals .
1 — u® Lz — 5 " Integral control
Remarks

* many ways to rearrange the D-R algorithm

» Equivalent to many other algorithms (proximal point, Spingarn’s partial
iInverses, Bregman iterative methods, etc.)

* Need very little to converge: A, B maximal monotone

» Splitting A and B, we can uncouple and evaluate R4 and R separately 35



Alternating Direction Method of
Multipliers



Douglas-Rachford splitting in optimization

Problem Problem
minimize f(x) + g(x) B,
Scaling by \ > 0 minimize Af(z) 4+ Ag(x)
Optimality conditions —_— > Optimality conditions
0 € df(x)+ dg(x) 0 € A0 f(x)+ Adg(x)
A(x)  B(x)
DouglaS'RaChford Spllttlng Proximal operators
" = Ryor (2" —u”) it = pI‘OXAf(Zk — u")
" = Ryg (2" + ) 2"t = prox,, ("' 4+ u")
e N R . kL — ok kbl kA

34



Alternating direction method of multipliers (ADMM)
minimize f(x) 4+ g(x)

ADMM iterations

Proximal iterations
2"t = argmin (A f(x) + (1/2)]|z — 2" + u"||?)

2"t = prox, (2" — u*) k
k+1 - k+1 2

Skl prOXAg(ka Luky T 2 Tl = Argmin (Ag(z) + (1/2)||z — 2T — u”||?)

uFth = oF £ phtl R+l e I R

Remarks

» |t works forany A > 0
» The choice of A can greatly change performance
» |t recently gained a wide popularity in various fields:
Machine Learning, Imaging, Control, Finance 35



ADMM and the Augmented Lagrangian

minimize  f(z) + g(z)

subjectto Az + Bz = ¢ (more generic form)

Augmented Lagrangian

f(x)+g(2)+y (Ax + Bz —c) + (t/2)||Ax + Bz — c||* = dueﬁcvz:figble
— f(@)+ 9() + (/D) Az + Bz — e+l = /Dl = Lz, z0) =y

Note: t =1/
Rewritten ADMM iterations

"t = argmin Ly (z, 2%, u")

X

2T = argmin Ly (2

Z

1z b)

36
ui Tt = 4 AT 4 BT — ¢



Comparison with method of multipliers

minimize  f(x) minimize  f(x) + g(z2)
subjectto Ax =0 subjectto Ax + Bz =c
L ADMM
Method of Multipliers #F+ — argmin Ly (z, 2%, u)
k+1 - k x
""" € argmin L (x, y")
z 2T = argmin L, ("1, 2, u®)

<

Tt = 4 AT 4 BT — ¢

u it = 4 Azt — b

Remarks
+ Same dual variable update u**1

» Augmented Lagrangian does not split f and ¢: argmin can be expensive

- ADMM splits f and g making steps easier
- We can derive ADMM by splitting the dual subdifferential operator

[page 35, A Primer on Monotone Operator Methods] 37



Examples



Constrained optimization

minimize  f(x)

=7
subjectto xz e C 9(2) c(2)

ADMM iterates

it = p]f'():sc;)\f(zlC — u") it = p]f'():x;)\f(zl“C — u")
R — p]f'():xg\g(a:/leLl + u) —_— =TI (2" 4+ u®)
o S R R s S S R

* Easy If prox,  and Il are easy
« Many ways to split (we can include some constraints also in f)

39



Linear/Quadratic Optimization

minimize  (1/2)xz! Px + ¢’ f(x) = (1/2)2T Pz + ¢Tx
subjectto Ax =0 » dom f = {x | Az = b}
r >0

g(Z) :IR+ (Z)
AcR™M™*™

ADMM iterations

21 — argmin (Af(z) + (1/2)]|z — 2" 4 uk||2)
{x|Ax=b}
Zk—|—1 __ ($k+1 4 uk)_'_

s R i S N S



Linear/Quadratic Optimization

Rewriting prox
Equality constrained QP

T = argmin N/ 22T P+ NTx + (1/2)|z — 2% + uF||?

subjectto Az =0

Optimality conditions

AP+ AT gkt _—)\q vy
A 0 % b

» Symmetric, possibly sparse, linear system O((n + m)?)
» We can factor only once (it does not depend on the iterates)



Linear/Quadratic Optimization

minimize  (1/2)z" Pz + ¢«

| Ilterations
subjectto Az =10 '\ p e, AT T
r >0 1. 2Pt = Solve A ) .

23 Zk+1 _ ($k+1 L uk)+

3kl — gk 4kl k]

Remarks

- Cheap iterations (after factorization) O((n + m)?)

» Projection is just variables clipping

» Dual variables y = A\u

» More sophisticated version
[OSQP: An Operator Splitting Solver for Quadratic Programs,
Stellato, Banjac, Goulart, Bemporad, Boyd]

k+1

V

_—)\q + 28 — ub

42



Find point at the Iintersection of two sets

find T "t = To (25 — u®)
subjectto x e CND — A= T p (2P + o)
s S NS R
Remarks

 Much more robust convergence than simple alternating projections
 Useful when projections are cheap
 Similar to Dykstra’s alternating projections

* |t can be used to solve optimization problems
[Conic Optimization via Operator Splitting and Homogeneous Self-Dual
Embedding, O’Donoghue, Chu, Parikh, Boyd] 3



Matrix decomposition

Given M € R™*"™, consider the sparse + low rank decomposition

minimize  ||L]|. + v||S]1
subjectto L+S=M

n

* Nuclear norm (low-rank): || L|. =) _._, 0;(L) (I-norm on singular values)

- Elementwise 1-norm (sparse): ||S|; =

Sij

2,]

ADMM lterations
Lk_l_l — prOX>\||’H* (M — Sk_l — Wk)
SkJrl — PFOXMH-Hl(M — Lk_l_l + Wk)
Wk—l—l _ Wk 4+ M — Lk—l—l B Sk—l—l

[Robust Principal Component Analysis?, Candes et al.]

44



Matrix decomposition

Explicit iterations

Lk_I_l — pI‘OXAHH*(M — Sk_l — Wk) Lk+1 — ST)\(M — Sk_l — Wk)
Sk_l_l — pI'OX)\,yH.Hl(M — Lk_l_l -+ Wk) —_ Sk—l_l — S)\fy(M — Lk—l_l -+ Wk)
Wk—l—l _ Wk: 4 M — Lk—l—l o Sk—l—l Wk—l—l _ Wk 1 M — Lk—l—l o Sk—l—l

Soft thresholding: S, (X;)

(1 —7/|X;])+X; (we saw it in lecture 16)

Singular value thresholding: ST, (X)=U(X —7I). V! where X = UXV?
Note it involves an SVD!

45



Matrix decomposition surveillance example

Estlmated Estlmated

46

[Robust Principal Component Analysis?, Candes et al.]



Distributed optimization



Consensus optimization

Rewrite as consensus problem
N
minimize Zfi(mi)
1=1

subjectto xzeC

Goal solve
N
minimize f(x) = Zf@'(‘r)
1=1

Consensus set

C={(x1,...,25) |T1 =22 =---=2xN}
Constrained ADMM 25 = prox, ;. (2F — uf) separable
= profo(zk — u") N
=T (2" 4+ u”) —— 2T =(1/N) Z(mfﬂ +u;) averaging
L S R R S =1

k+1 kK k+1 k41
iy = Uu; + I, — 2 48



Distributed consensus optimization

ri = p]f'ox/\fi(zkj — u")
N .
rewrite
k+1 _ —k+1 | -k -
2t = (1/]\f)§:(mff+1 tuly ———— T =2+ u By combining,
. k41 _
i=1 — U = 0
average .1 k| k1l k1
w; t =l ot = R — > AT =at 4T =T l
Skl _ ket

Simplified distributed iterations
ri = prox, ;, (% — u®)

uFtl = o F gkl _ gk

) 1

» Fully distributed prox between processors/cores/agents

- Gather z;’s to compute z, which is then scattered 49



Global exchange problem

N
minimize )  fi(x;)

i]:\fl Tr; © R"
subjectto  » x; =0

1—=1

* (z;),;: quantity of commodity received (> 0) or contributed by (< 0) agent s
» £, utility function of each agent
 equilibrium constraint (market clearing) “supply” = “demand”

ADMM iterations

v; " = prox,; (zf — " —u”) proximal exchange

~ algrithm
uk Tl — ko gkt g o



Summary of ADMM

Convergence
» Slow to converge to high accuracy

» |t often converges to modest accuracy in a few tens of iterations
» Step size A (also called 1/p) can greatly influence convergence
» If f or g Is strongly convex, it converges linearly

Applications

Machine learning, control, finance, parallel computing,
advertising, imaging, robotics, etc...

Surveys

* [Proximal Algorithms, Parikh and Boyd]

 [Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, &+
Boyd, Parikh, Chu, Peleato, Eckstein]



Operator splitting algorithms

Today, we learned to:

Apply the proximal point method to the “multiplier to residual” mapping obtaining the
Method of Multipliers (Augmented Lagrangian)

Derive proximal gradient from forward-backward splitting
Split operators to obtain simpler averaged iterations with Douglas-Rachford splitting

Rewrite Douglas-Rachford splitting for optimization problems obtaining the Alternating
Directions Method of Multipliers

Apply ADMM to various examples

Develop distributed algorithms

52



Next lecture

e Acceleration schemes

53



