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Operators

An operator 1" maps each point in R" to a subset of R"

» set valued 7'(x) returns a set
- single-valued T'(x) (function) returns a singleton

The domain of T'is the set dom T = {x | T'(z) # ()}

Example

» The subdifferential 0f is a set-valued operator
* The gradient V f Is a single-valued operator



Zero
r is a zero of T if 0eT(x)

Zero set
The setof allthe zeros  T71(0) ={x |0 T(x)}

Example Many problems
f7T"=0fand f: R" — R, then can be posed as finding zeros
0 € T'(x) means that x minimizes f of an operator



Fixed points

z IS a fixed-point of a single-valued operator 7' if

r="T(x)

Set of fixed points fix7T = {x € domT |z =T(z)} = (I —T) *(0)

Examples
» Identity 7'(x) = z. Any point is a fixed point
» Zero operator T'(x) = 0. Only 0 is a fixed point



Lipschitz operators

An operator 7' is L-Lipschitz if
|T(z) —T(y)|| < Lllz —yll, Vz,y€domT

Fact If 7" is Lipschitz, then it is single-valued
Proof If y = T'(z),z =T(z),then [ly — 2| < Lllz —z|| =0 =y =2 N

For L =1 we say 7' Is nonexpansive
For L. < 1 we say T’ is contractive (with contraction factor L)



Lipschitz operators examples

Lipschitz affine functions maximum singular value

T(x)=Az+b — L =|A|: :QAmaX(ATA)



Lipschitz operators examples

Lipschitz affine functions maximum singular value

T(x)=Az+b —— L =A]2 =\ max (A" A)

~

Lipschitz differentiable functions derivative i1s bounded
T such that there exists derivative DTT +«— ||DT||o < L



Lipschitz operators and fixed points

Given a L-Lipschitz operator T and a fixed point r = T'z,
|Te —z|| = ||[Te — Tz| < Lijr — z|

A contractive operator (L < 1) can have at most
one fixed point, i.e., fixT = {z}
Proof

If z,y € fix1T and r # y then
|z =yl =[T(z) = T(y)|| < ||z -yl (contradiction) Il

A nonexpansive operator (L = 1) need not
have a fixed point

Example T'(x) = x + 2




Example o = 1/2

Averaged operators

We say that an operator 7" is a—averaged with o € (0, 1) if T

T=(1—-a)l+aR
and R IS honexpansive.

/N




How to design an algorithm

Problem
minimize  f(x)

Algorithm (operator) construction

1. Find a suitable 7" such that x € fix T’ solve your problem
2. Show that the fixed point iteration converges

If T" is contractive — linear convergence
If T'Is averaged — sublinear convergence

Most first order algorithms can be constructed in this way
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Today'’s lecture

[Chapter 4, First-order methods in optimization, Beck]
[Proximal Algorithms, Parikh and Boyd]

[A premier on monotone operator methods, Parikh and Boyd]

Monotone operators

» Conjugate functions and duality
 Monotone and cocoercive operators

» Subdifferential operator and monotonicity
 Operators in optimization problems

* Operators in algorithms

* Building contractions



Conjugate functions and duality




Convex closed proper functions

A function f : R™ — R is called CCP if it is

closed epl f IS a closed set
convex  flaz+(1—a)y) <af(x)+(1-a)f(y), acl01]

proper dom f IS nonempty

If not otherwise stated, we assume functions to be CCP
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Conjugate function

Given a function f : R — R we define its conjugate f* : R — R as
f*(y) = max y" z — f(x)

Note f/* is always convex (pointwise maximum of affine functions in y)
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Conjugate function

Given a function f : R — R we define its conjugate f* : R — R as
f*(y) = max y" z — f(x)

Note f/* is always convex (pointwise maximum of affine functions in y)

f* Is the maximum gap
between y* x and f(x)

14




Conjugate function properties and examples

Properties
Fenchel’s inequality  f(z)+ f*(y) > y'x
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Conjugate function properties and examples

Properties
Fenchel’s inequality  f(z)+ f*(y) > y'x

Biconjugate f*(y) =max y 'z — f(z) = f(x)> ()
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Conjugate function properties and examples

Properties
Fenchel’s inequality  f(z)+ f*(y) > y'x

Biconjugate f*(y)=max y' z — f*(zr) = f(z)> f"*(2)
Biconjugate for CCP functions If f CCP, then f** = f
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Conjugate function properties and examples

Properties
Fenchel’s inequality  f(z) + f*(y) >y«

Biconjugate f*(y)=max y' z — f*(zr) = f(z)> f"*(2)
Biconjugate for CCP functions If f CCP, then f** = f

Examples /f/ O+ /(/4

Norm — : (o)) — T indicator function -
fla) =l 1) ol <1(8) of dual norm set {‘?:
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Conjugate function properties and examples

Properties
Fenchel’s inequality  f(z) + f*(y) >y«

Biconjugate f*(y)=max y' z — f*(zr) = f(z)> f"*(2)
Biconjugate for CCP functions If f CCP, then f** = f

Examples

Norm — : (o)) — T indicator function
flay=lel: 7w =T <1(¥) of dual norm set

: - _ . x % _ T . support
Indicator function f(z) =Zo(x): [ (y) =Z5(y) = max y- T = oo (y) finction

15

More examples of conjugate functions [Page 101, First Order Methods in Optimization, Beck]



Fenchel dual

Dual using conjugate functions

minimize f(x) + g(x) —

Equivalent form (variables spilit)
minimize  f(x) + g(2)
subjectto x ==z
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Fenchel dual

Dual using conjugate functions
Equivalent form (variables spilit)

minimize  f(x) + g(2)

Lagrangian
L(z,z,y) = f(z) +9(2) +y" (2 —2) = —=(y" = — f(x)) — (~y" 2 — g(2))
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Fenchel dual

Dual using conjugate functions
Equivalent form (variables spilit)

minimize  f(x) + g(2)

Lagrangian

L(z,z,y) = f(z) +9(2) +y (2 —2) = —(y . — f(2)) — (€Y = — 9(2))

Dual function /

min L(z, z,y) = —f*(y) = 97 (=y)

16



Fenchel dual

Dual using conjugate functions
Equivalent form (variables spilit)

minimize  f(x) + g(2)

Lagrangian
L(z,z,y) = f(z) +9(2) +y" (2 —2) = —=(y" = — f(x)) — (~y" 2 — g(2))

Dual function
min L(z, z,y) = —f*(y) — 9" (—y)

Dual problem
maximize — f*(y) — g"(—y)

16



Fenchel dual example

Constrained optimization

minimize f(z) + Z¢(x) —

Dual problem

maximize — f*(y) — oo (—y)
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Fenchel dual example

Constrained optimization

minimize f(z) + Z¢(x) —

Norm penalization

minimize f(z) + ||z —

Dual problem

maximize — f*(y) — oo (—y)

Dual problem
maximize —f*(y)
subjectto |jy|l. <1

17



Fenchel dual example

Constrained optimization Dual problem
minimize f(x) 4+ Z¢(x) ——  maximize — f*(y) —oc(—y)
Norm penalization Dual problem
maximize —f*(y)
Mminimize f(a:) -+ HLIZ‘H —_— subject to HyH* <1
Remarks

* Fenchel duality can simplify derivations
» Useful when conjugates are known
* VVery common in operator splitting algorithms
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Mlonotone cocoercive operators



Monotone operators

An operator 7' on R"™ is monotone if

(u—v)"(z—y) >0,

V(z,u), (y,v) € gphT

19



Monotone operators

An operator 7' on R"™ is monotone if

(u—v) (x—y) >0, V(zx,u),(y,v) € gphT

T 1s maximal monotone if
B(z,u) ¢ gphT such that

(. —u)" (2 —2x) >0

Equivalently: # monotone R
such that gph T’ C gphR
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Monotone operators in 1D Let's fill the table

A T B T(x) Monotone Max Monotone
/ \ " v/ v
T T B >< X
o o C V4 X
D Y P
C 7@ D 7@ Monotonicity

/ / y>x = T(y)>T(x)

e 20



Monotone operators in 1D Let's fill the table

Monotone Max Monotone

A T'(z) B I'(x)
<N

N
J

C T(x) D T(x) Monotonicity

~ J y>z = T(y)=2T(x)

Continuity

- If T single-valued,
/ continuous and monotone,

" . 20
then 1it’s maximal monotone




Monotone operator properties

* sum 7" + R Is monotone
* nonnegative scaling o7 with o > 0 Is monotone

 inverse 7! is monotone

- congruence for M € R™"*™, then MTT(ZHz) IS monotone on R™

. . . . #«\: 4 DP’%Q?)(
Affine function 7'(x) = Ax + b is maximal monotone
— A+A" ~0 Wﬂ»\ 1D><f. 9
00



Strongly monotone operators

An operator 7' on R" is u-strongly monotone if

(uw —v)" (z —y) Z\,uHx — yJQ, >0 (also called p~-coercive)

V(z,u), (y,v) € gphT

22



Strongly monotone operators

An operator 7' on R" is u-strongly monotone if

(u—v)" (x —y) > pllz—yl|?, >0 (also called p~-coercive)

V(z,u), (y,v) € gphT

Let’s fill the table

Monotone Strongly Monotone

- A

- BV 4

\f\
\)

4
22



Strongly monotone operators

An operator 7' on R" is u-strongly monotone if
(u—v)" (x—y) > pllz —yl]?, pu>0 (also called p~-coercive)

V(z,u), (y,v) € gphT

Let’s fill the table

Monotone Strongly Monotone

- o

v B

XL /
/ / The slope is at least 11 2




Cocoercive operators

An operator T' is 5-cocoercive, 5 > 0, If
(T(z) = T(y))" (x —y) > BIT(x) = T(y)|I”

23



Cocoercive operators

An operator T' is 5-cocoercive, 5 > 0, If
(T(z) = T(y))" (x —y) > BIT(x) = T(y)|I”

If T"is -cocoercive, then T'is (1/3)-Lipschitz

Proof f|T(z) —T(y)|I* < (T(z) = T(y)) (z —y) < |T(z) = T(y)ll[lz -yl
= ||T(x) =T(y)ll =< (1/8)llz =y _
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Cocoercive operators

An operator T' is 5-cocoercive, 5 > 0, If
(T(z) = T(y))" (x —y) > BIT(x) = T(y)|I”

If T"is -cocoercive, then T'is (1/3)-Lipschitz

Proof f|T(z) —T(y)|I* < (T(z) = T(y)) (z —y) < |T(z) = T(y)ll[lz -yl
= ||T(x) =T(y)ll =< (1/8)llz =y _

If T is u-strongly monotone if andonlyif 7! is u-cocoercive

Proof  (T(x) — T(2))"(x —y) > pllz — y| -
Inverse: w =T (x)and v =T(y) ifandonlyif z € T-'(u) and y € T (v)
(u— )" (T () = T~ () > p| T (w) — T (0)’ I

23



Cocoercive and nonexpansive operators

If T is S-cocoercive ifandonlyif [ — 257 is nonexpansive

24



Cocoercive and nonexpansive operators

If T is S-cocoercive ifandonlyif [ — 257 is nonexpansive

Proof  |(1-29T)(y) — (1 - 26T)(w)| =

= ||y — 28T (y) — v — 28T ()|

y—z||? —48(T(y) — T(x))" (y — ) + 48°||T(y) — T'(x)|°
y—xz||* =46 (T(y) — T(x))" (y — x) — B|T(y) — T(x)]*)
B

A

y — z||7

24



Cocoercive and nonexpansive operators

If T is S-cocoercive ifandonlyif [ — 257 is nonexpansive

Proof  ||(1-261)(y) — (I — 267) () -

— lly - 28T(y) — = — 26T ()|

y — || = 4B8(T(y) — T(x))" (y — x) +46°|T(y) — T(x)|
y— x| =48 (T(y) — T(x))" (y — x) = BT (y) — T(x)[*)
y — |7 o (cocoercive)

A

24



Summary of monotone and cocoercive operators

Monotone Lipschitz
(@) = T@) (z —y) 2 0 |F(x) - F)|| < L]z — ]
p=20 | L=1/p
Strongly monotone Cocoercive
(T(x) = T(x))" (x —y) > pllz -yl <F—>T_1 (F(x) = F(y)" (x —y) > pllF(z) — F(y)|’
G=1-2uF

Nonexpansive
|G(z) -G <z —yll =°



Subdifferential operator and
monotonicity



Subdifferential operator monotonicity
Of(x)={g| fly) > flx)+g" (y— )}

0f(xz) is monotone (also for nonconvex functions)

27



Subdifferential operator monotonicity
Of(x)={g| fly) > flx)+g" (y— )}

0f(xz) is monotone (also for nonconvex functions)

Proof Suppose u € df(x) and v € df(y) then
fly) > flx) +u' (y—az),  flx) > fly) +v (z—y)
0

By adding them, we can write (v — v)! (z — y) >

27



Subdifferential operator monotonicity
Of(x)={g| fly) > flx)+g" (y— )}

0f(xz) is monotone (also for nonconvex functions)

Proof Suppose u € df(x) and v € df(y) then
fly) > fl@)+u' (y—=),  fl@)>fly)+v (z-y)
By adding them, we can write (u —v){ (z —y) >0 |}

Maximal monotonicity
If fis convex, closed and proper (CCP), then 0f(x) is maximal monotone 27



Strongly monotone and cocoercive subdifferential

f is u -strongly convex <—  0f p-strongly monotone
(0 (x) = 0f W) (@ — ) > pllz =y

28



Strongly monotone and cocoercive subdifferential

f is u -strongly convex <=  0f u-strongly monotone
(0 (x) = 0f () (@ —v) > pllw — y||*

f 1s L=smooth
<= O0f L-Lipschitzand 0f =V f: |Vf(x)—=Vf(y)lls < Lz —y|s )
<= 0f (1/L)-cocoercive: (Vf(z) -~V f(y)) (x —y) > (1/L)|Vf(z) = VIi(y)le

28



Strongly monotone and cocoercive subdifferential

f is u -strongly convex <=  0f u-strongly monotone
(Of(x) = 0f ()" (z —y) > pllz — yl|*

f 1s L=-smooth
— Jf L-Lipschitzand §f = V 1: IVi(x) = Vi(y)lg <Lz -yl
< df (1/L)-cocoercive: (Vf(x) —Vf(y)' (zx —y)> (1/L)|Vf(x)— Vf(y)H;

L
1 @)+ V@) (=) + e — 1

28
|z — yl|3




Inverse of subdifferential

If fis CCP, then, (Of)~t =0f*

29



Inverse of subdifferential
If fis CCP, then, (Of)~t =0f*

Proof

(u,v) € gph(0f)™" <= (v,u) € gphdf
<~ u € Jdf(v)
<— 0€df(v) —u

= v € argmin f(z) — u’
X

= f*(u) =u v — f(v)

29



Inverse of subdifferential
If fis CCP, then, (Of)~t =0f*

Proof
(u,v) € gph(0f)™" <= (v,u) € gphdf
< u € Jf(v)

<— 0€df(v) —u

= v € argmin f(z) — u’
X

= f*(u) =u v — f(v)

Therefore, f(v) + f*(u) = ulv. If fis CCP, then f** = f and we can write
fr)+ffw)=wv <= (uv) egphdf’



Strong convexity is the dual of smoothness

f is p-strongly convex <= f*is (1/u)-¢smoothp

30



Strong convexity is the dual of smoothness

f is p-strongly convex <= f*is (1/u)-(smooth)

Proof
f w-strongly convex <=  0Jf p-strongly monotone

— (0f)"'=0f* p-cocoercive
<~ f* (1/u)-smooth B

30



Strong convexity is the dual of smoothness

f is p-strongly convex <= f*is (1/u)-(smooth)

Proof
f w-strongly convex <=  0Jf p-strongly monotone

— (0f)"'=0f* p-cocoercive
<~ f* (1/u)-smooth B

Remark: strong convexity and (strong) smoothness are dual

30



Operators in optimization
problems




KKT operator

minimize  f(x)
subjectto Az =0

—_—

Lagrangian
L(z,y) = f(z) +y" (Az —b)

32



KKT operator

minimize  f(x)

Lagrangian

subjectto Az =0
KKT operator
_8xLx, _ E :c—I—AT_
T(2.q) = 6’L( y) | _ |9f(x) y
—0yL(z,y) - b— Az

_Tprim

L(z,y) = f(z) +y" (Az —Db)

SYATLOMAR] Wﬂ_

zeroset {(z,y) | 0 € T'(x,y)} is the set of primal-dual optimal points

32



KKT operator

minimize  f(x)
subjectto Az =0

Lagrangian
——  L(z,y) = f(z) +y (Az — D)

KKT operator
o) — O-L(z,y) | _|0f(x)+ A y| | rov™
y Y) = —ﬁyL(x,y) — h— A o __pbrim

zeroset {(z,y) | 0 € T'(x,y)} is the set of primal-dual optimal points

Monotonicity

of(x)| |0 AT| |2
R e T




KKT operator

minimize  f(x)
subjectto Az =

T(v,y) =

b

KKT operator
0 L(x,y)

_f_6@]:CE7y)_

Of(x) + ATy

b— Ax

L(x,y)

Lagrangian

= f(z) +y" (Az - b)

Tdual

_JTprhn

zeroset {(z,y) | 0 € T'(x,y)} is the set of primal-dual optimal points

T(z,y)

Monotonlcra/

Of (x)
b

_I_

—-A 0

0 AT

X

Y

skew-symmetric

sum of monotone
operators

H{* O y/ 32



“multiplier to residual” mapping

Dual problem
maximize g(y) = —(f"(—A"y) —y" b)

minimize  f(x)
subjectto Az =0

33



“multiplier to residual” mapping

Dual problem
maximize g(y) = —(f"(—A"y) —y" b)

minimize  f(x)
subjectto Az =0

Operator
T(y) =b— Az, where x = argmin, L(z,y)

Monotonicity
If f CCP, then T is monotone

33



“multiplier to residual” mapping

Dual problem
maximize g(y) = —(f"(—A"y) —y" b)

minimize  f(x)
subjectto Az =0

Operator
T(y) =b— Ax, where x = argmin,_, L(z,y)

Monotonicity
If f CCP, then T is monotone

Proof
0€df(x)+ ATy = z=(0f)"(-ATy)

Therefore, F(y) = b — A(@f)_l(—ATyS = 0, (bTy + f*(—ATy)) =0d0(—9) B -




Operators in algorithms



Forward step operator

The forward step operator of 7' is defined as
I —~T

In general monotonicity of 7' is not enough for convergence

35



Example
minimize
subject to

Forward step operator

The forward step operator of 7' is defined as

I —~T

In general monotonicity of 7' is not enough for convergence

X

r =0

KKT o_perato[ _
0 1| |x

T(z,y) =
—1 0f |y

Monotone (skew-symmetric)

A =

0 1

—1 0

A+ A" =0=0

35



Forward step operator

The forward step operator of 7' is defined as
I —~T

In general monotonicity of 7' is not enough for convergence

Example

KKT operator Monotone (skew-symmetric)
minimize « ) 17T, - -
0 1] |x 0 1
i _ T(z,y) = A = A+ AT =0>0
subjectto =z =0 1 0| |y 10 -
Forward step Expansive
_m_ _1 — _ _ZC_ _1 — _
(L —~T) = f — ! > 1, Vv
AN B B LA | >




Gradient step: special case of forward step

f L-smooth <= Vf (1/L)-cocoercive <= I—(2/L)V f nonexpansive

36



Gradient step: special case of forward step

f L-smooth <= Vf (1/L)-cocoercive <= I—(2/L)V f nonexpansive

Construct averaged iterations
[1—~Vf=01-a)+a(l—(2/L)V])

where a =vyL/2 € (0,1) <= ~¢€(0,L/2)

N
et
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Gradient step: special case of forward step

f L-smooth <= Vf (1/L)-cocoercive <= I—(2/L)V f nonexpansive

Construct averaged iterations
I —wWVf=01—-a)l+ ol —(2/L)Vf)

where a =vyL/2 € (0,1) <= ~¢€(0,L/2)

Remark
» Only smoothness assumption gives sublinear convergence
 Similar result we obtained in gradient descent lecture
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Resolvent and Cayley operators

The resolvent of operator A is defined as
Ra=(I+ A)_l

The Cayley (reflection) operator of A is defined as
Ca=2Ry—1=20+A)" -1

Properties

* |If A is maximal monotone, dom R4 = dom (4 = R"™ (Minty’s theorem)
- If A is monotone, R4 and C' 4 are nonexpansive (thus functions)

« Zeros of A are fixed points of R4 and C'4

37



Resolvent and Cayley operators

The resolvent of operator A is defined as
Ra=(I+ A)_l

The Cayley (reflection) operator of A is defined as
Ca=2Ry—1=20+A)" -1

Properties

* |If A is maximal monotone, dom R4 = dom (4 = R"™ (Minty’s theorem)
- If A is monotone, R4 and C' 4 are nonexpansive (thus functions)

« Zeros of A are fixed points of R4 and C'4

Key result we can solve 0 € A(x) by finding fixed points of C'4 or R 4 37



Fixed points of R4 and (4 are zeros of A

Proof
Ra = (] + A)_l

v e fix Ry 0€ A(z) <—= z € I+ A)(z)
— ([+A) )=z
< x = Rj(x) (R4 is a function)

38



Fixed points of R4 and (4 are zeros of A

Proof
Ra = (] —+ A)_l
v e fix Ry 0€ A(z) <= xz€ (I + A)(x)
— ([+A) )=z
<— = Ra(x) (R4 is a function)

r € fix(Cy Ca(x) =2Ra(x) —I(zx) =20 —x == B

38



If Ai1s monotone, then R 4 IS nhonexpansive

Proof
If (CE,U) c R4 and (y,v) c R4, then

u—+ A(u) 3 x, v+ A(v) Dy

39



If Ai1s monotone, then R 4 IS nhonexpansive

Proof %PO“
If (CE, u) EﬂRA and (y, U) R 4, then
u—+ A(u) 3 x, v+ A(v) Dy

Subtracttoget u — v+ (A(u) — A(v)) 22—y
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If Ai1s monotone, then R 4 IS nhonexpansive

Proof
If (CE,U) c R4 and (y,v) c R4, then
u—+ A(u) 3 x, v+ A(v) Dy

Subtracttoget u — v+ (A(u) — A(v)) 22—y

Multiply by (v — v)! and use monotonicity of A (being also a function) to get

Ju—v|* < (z—y)" (u—0)

39



If Ai1s monotone, then R 4 IS nhonexpansive

Proof
If (CE,U) c R4 and (y,v) c R4, then

u—+ A(u) 3 x, v+ A(v) Dy

Subtracttoget u — v+ (A(u) — A(v)) 22—y

Multiply by (v — v)! and use monotonicity of A (being also a function) to get

Ju—v|* < (z—y)" (u—0)

Apply Cauchy-Schwarz and divide by ||u — v|| to get

Ju—ol| < [lz -y N



If Ai1s monotone, then (4 IS nonexpansive

Proof
Givenu = Ra(x) and v = R4(y) (R4 is a function)

|C(z) =C(y)lI* = [|2u —2) — (2v —y)|7
= [2(u—v) = (z —y)II

40



If Ai1s monotone, then (4 IS nonexpansive

Proof
Givenu = Ra(x) and v = R4(y) (R4 is a function)
[C(z) =CW)]° = [|(2u —2) — (2v - y)|7
= |12(u—v) = (@ =)

Remark
R 4 1s nonexpansive since it is the average of I and C4:

Ra = (1/2)I + (1/2)Ca = (1/2)I + (1/2)(2RA — 1)

40



Role of maximality

We mostly consider maximal operators A because of

Theory: A, R4 and C' 4 do not bring iterates outside their domains

Practice: hard to compute R4 and (4 for non-maximal monotone operators,
e.g., when A = 0f(z) where f nonconvex.

41



Resolvent of subdifferential: proximal operator

prox; = Ryy = (I + Of)*

Proof
Let z = prox,(z), then

1
z = argmin f(u) 1 2Hu—a:||2

< 0€0f(z)+z—x (optimality conditions)
< xe(l+0f)(2)
= z=UI+0f) x) B
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Resolvent of normal cone: projection

RaIC = 1l (:U) _Ne(z)

Proof

Let f =1, the indicator function of a convex set C

Recall: Jlc(x) = No(x) normal cone operator
uw= (I+0Ic) *(r) <+= wu=argmin Zc(u)+ (1/2)]|z — z||* = llc(z)

Z
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Resolvent of normal cone: projection

R@Ic — Hc(a?) _Ne(z)

Proof
Let f =1, the indicator function of a convex set C

Recall: 91~ (x) = Nc(z) normal cone operator
uw= (I+0Ic) *(r) <+= wu=argmin Zc(u)+ (1/2)]|z — z||* = llc(z)

Z

Nc monotone =— Il nonexpansive

Proof

ueNg(z) = u' (z—2)<0,V2ze€C = u (y—z) <0 addtoobtaln.

vENc(y) = v (2—y)<0,VzeC = v' (z—y) <0 monotonicity




Building contractions



Forward step contractions
Given T' L-Lipschitz and p-strongly monotone, then I — AT

converges linearly at rate)1 — 2vyu + ~“L?, with optimal step v = /L.
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Forward step contractions

Given T' L-Lipschitz and p-strongly monotone, then I — AT
converges linearly at ratel 1 — 2yu + ~?L?, with optimal step v = /L.

Proof

(I =~T)(x)=(I =T)Y)I'= llz —y + T (x) =T (y)|’
= ||z —ylI* = 29(T(z) = T(y))" (x —y) + VI T(z) — T(y)]”
< (1= 2ypu+2D)|lz — yl|?

=
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Forward step contractions
Given T' L-Lipschitz and p-strongly monotone, then I — AT

converges linearly at raté&l — 2vu + v*L#, with optimal step v = u/L~.

Proof strongly
(I = AT) (@)~ (I ~AT)(W)|| = [ — y + +T(x) —AT@)|2_— MO Lipschitz
— Jlz — 9l — 21(T(e) = TW) (@ — )+ 2IT() — T2~
< (1—2yp+~2L) |z -y I
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Forward step contractions
Given T' L-Lipschitz and u-strongly monotone, then I —~T

converges linearly at ratél 1 —2vu + WQLQ,Jwith optimal step v = u/L?.

Proof strongly

[(I = AT)(2)—(I = AT) ()| = |z — y +7T(z) = vT(y)] MONotoNe | ipschitz
= ||z — ylI* = 29(T(z) = T(y))" (x —y) + ¥*IT(z) — T(y)]" -
< (1=2ypu+~2D)|z —y|? N

Remarks
» |t applies to gradient descent with L-smooth and u-strongly convex f

» Better rate in gradient descent lecture.
Bound derivative: ||D(I — yV?f(x))|2 < max{|1 —vL|, |1 — yu|}.
Optimal step v = 2/(n + L) and factor (u/L — 1)(u/L + 1). 45



Resolvent contractions
If A is pu-strongly monotone, then
Ry = ([ A)_l

is a contraction with Lipschitz parameter 1/(1 + p)

46



Resolvent contractions
If A is pu-strongly monotone, then
Ry = ([ A)_l

is a contraction with Lipschitz parameter 1/(1 + p)

Proof
A p-strongly monotone — (I + A) (1 + u)-strongly monotone

— Ru={I+A"" (1+ p)-cocoercive
—> Rj (1/(1 + p))-Lipschitz u
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Cayley contractions

If A is pu-strongly monotone and L-Lipschitz, then
Cop=2R A —T=2I+~A)"" =1
is a contraction with factor /1 — 4yu /(1 + vL)?

Proof
[Page 20, A premier on monotone operator methods, Parikh and Boyd]
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Cayley contractions

If A is pu-strongly monotone and L-Lipschitz, then
Cop=2R A —T=2I+~A)"" =1

is a contraction with factor /1 — 4yu /(1 + vL)?

&EW\@ML‘. NeEN Ao AlycaE ConvAY oA
Proof
[Page 20, A premier on monotone operator methods, Parikh and Boyd]

If, in addition, A = 0f where f is CCP, then C, 4 converges
with factor (/u/L —1)/(v/p/L + 1) and optimal step v = 1/+/uL

Proof
[Linear Convergence and Metric Selection for Douglas-Rachford Splitting and ADMM, Giselsson and Boyd|]
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Requirements for contractions

Function f
Operator A
i (A =0f)

Forward step _strongly monotone 1-strongly convex
I —~A s L-smooth
nesolvent 1 -strongly monotone p-strongly convex
Ra=(I+ A) - L-smooth
Cayley B u-strongly monotone u-strongly convex
Ca=2I+A) " -1 L-Lipschitz L-smooth

faster convergence

Key to contractions: strong monotonicity/convexity 48



Operator theory

Today, we learned to:

Use conjugate functions to define duality

Define monotone and cocoercive operators and their relations
Relate subdifferential operator and monotonicity

Recognize monotone operators in optimization problems
Apply operators in algorithms: forward step, resolvent, Cayley

Understand requirements for building contractions
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Next lecture

» Operator splitting algorithms
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