ORF522 – Linear and Nonlinear Optimization

17. Operator theory

Recap

Operators

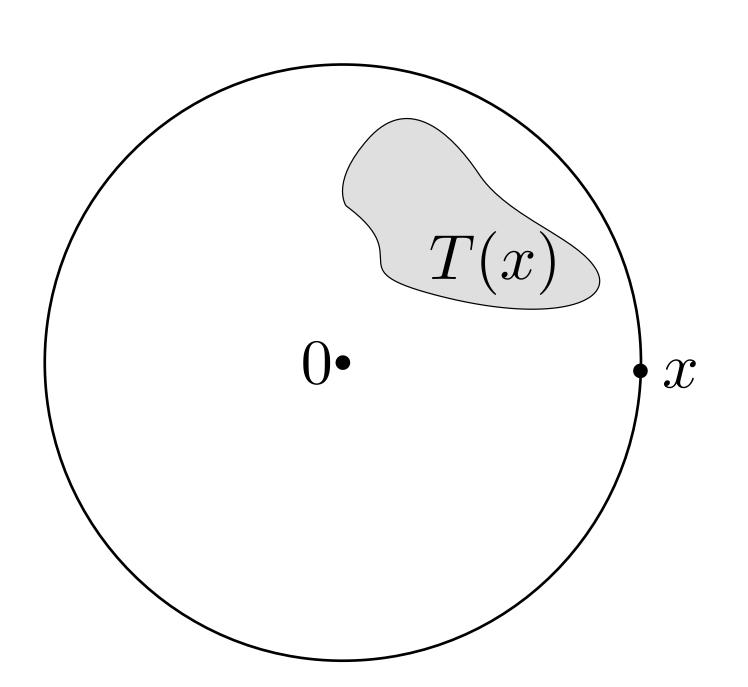
An operator T maps each point in \mathbf{R}^n to a subset of \mathbf{R}^n

- set valued T(x) returns a set
- single-valued T(x) (function) returns a singleton

The domain of T is the set $\operatorname{dom} T = \{x \mid T(x) \neq \emptyset\}$

Example

- The subdifferential ∂f is a set-valued operator
- The gradient ∇f is a single-valued operator



Zeros

Zero

x is a **zero** of T if

$$0 \in T(x)$$

Zero set

The set of all the zeros

$$T^{-1}(0) = \{x \mid 0 \in T(x)\}$$

Example

If $T=\partial f$ and $f:\mathbf{R}^n\to\mathbf{R}$, then $0\in T(x)$ means that x minimizes f

Many problems can be posed as finding zeros of an operator

Fixed points

 \bar{x} is a **fixed-point** of a single-valued operator T if

$$\bar{x} = T(\bar{x})$$

Set of fixed points
$$\text{ fix } T = \{x \in \text{dom } T \mid x = T(x)\} = (I - T)^{-1}(0)$$

Examples

- Identity T(x) = x. Any point is a fixed point
- Zero operator T(x) = 0. Only 0 is a fixed point

Lipschitz operators

An operator T is L-Lipschitz if

$$||T(x) - T(y)|| \le L||x - y||, \quad \forall x, y \in \text{dom } T$$

Fact If T is Lipschitz, then it is single-valued

Proof If
$$y = T(x), z = T(x)$$
, then $||y - z|| \le L||x - x|| = 0 \Longrightarrow y = z$

For L < 1 we say T is **contractive** (with contraction factor L)

Lipschitz operators examples

Lipschitz affine functions

$$T(x) = Ax + b$$

maximum singular value

$$L = ||A||_2 = \lambda_{\max}(A^T A)$$

Lipschitz operators examples

Lipschitz affine functions

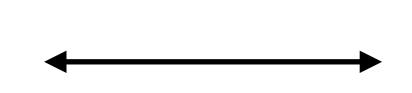
$$T(x) = Ax + b$$

maximum singular value

$$\longrightarrow L = ||A||_2 = \lambda_{\max}(A^T A)$$

Lipschitz differentiable functions

T such that there exists derivative DT



derivative is bounded

$$||DT||_2 \leq L$$

Lipschitz operators and fixed points

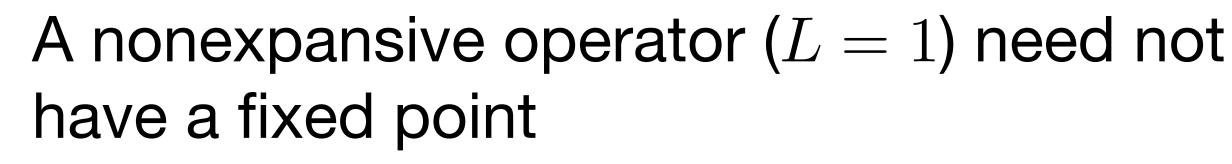
Given a L-Lipschitz operator T and a fixed point $\bar{x}=T\bar{x}$,

$$||Tx - \bar{x}|| = ||Tx - T\bar{x}|| \le L||x - \bar{x}||$$

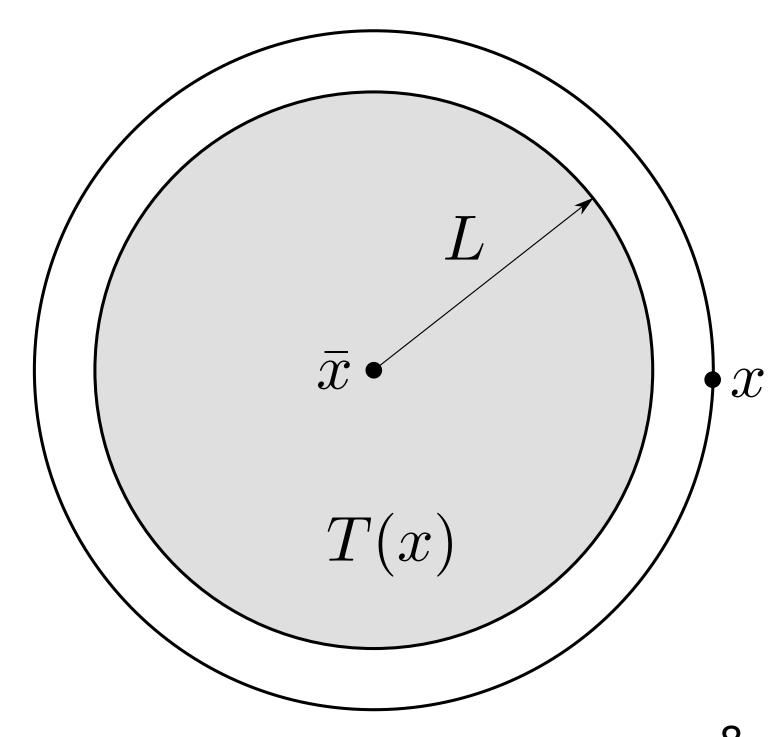
A contractive operator (L<1) can have at most one fixed point, i.e., fix $T=\{\bar{x}\}$

Proof

If $\bar x, \bar y \in \text{fix}\, T$ and $\bar x \neq \bar y$ then $\|\bar x - \bar y\| = \|T(\bar x) - T(\bar y)\| < \|x - y\|$ (contradiction)



Example
$$T(x) = x + 2$$

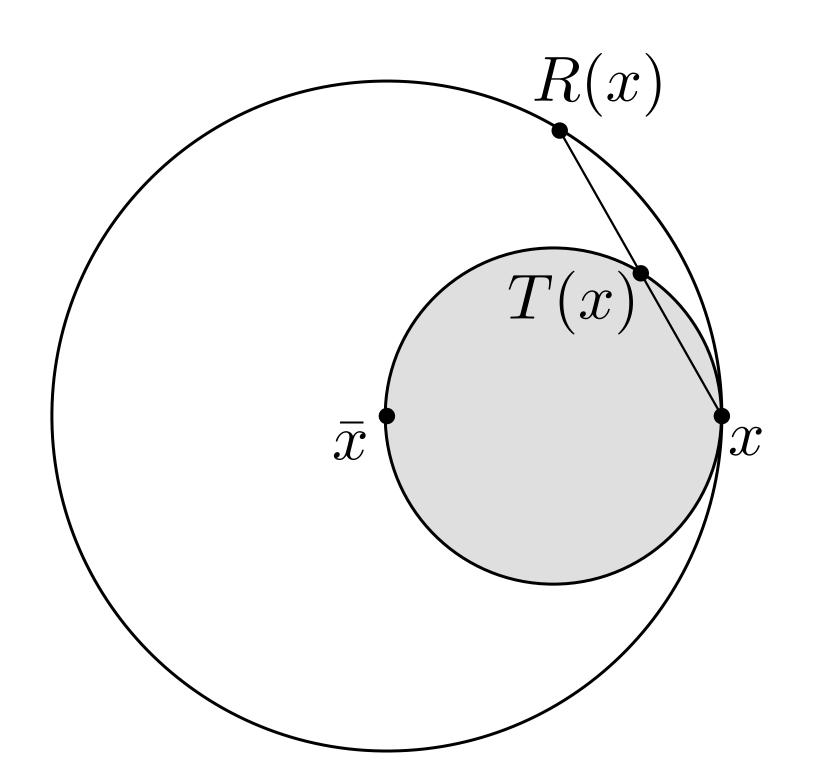


Averaged operators

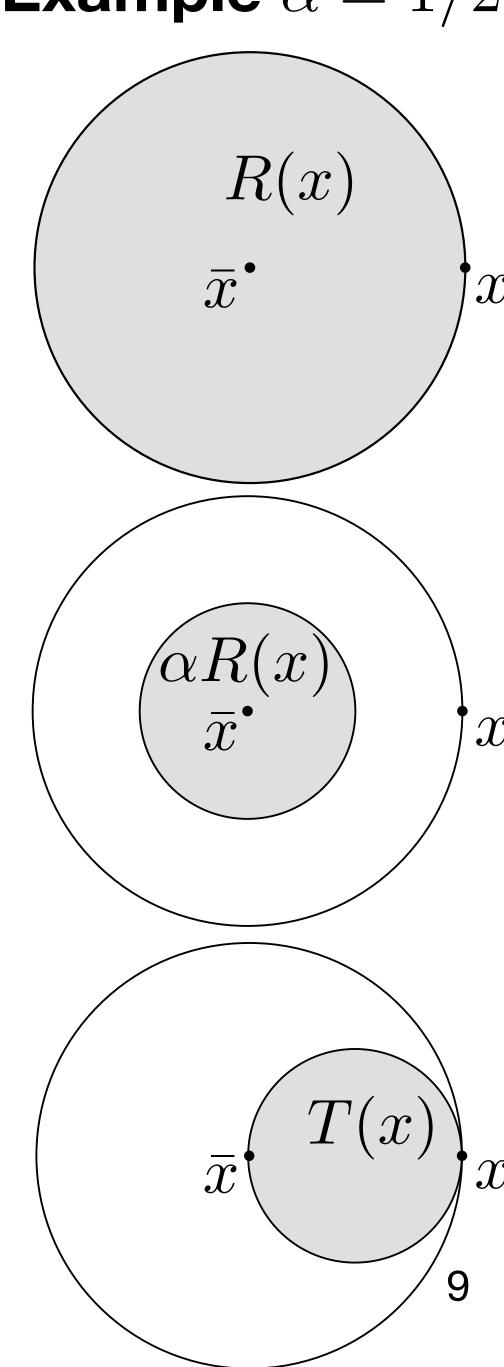
We say that an operator T is $\alpha-$ averaged with $\alpha\in(0,1)$ if

$$T = (1 - \alpha)I + \alpha R$$

and R is nonexpansive.



Example $\alpha = 1/2$



How to design an algorithm

Problem

minimize f(x)

Algorithm (operator) construction

- 1. Find a suitable T such that $\bar{x} \in \operatorname{fix} T$ solve your problem
- 2. Show that the fixed point iteration converges

```
If T is contractive \implies linear convergence If T is averaged \implies sublinear convergence
```

Most first order algorithms can be constructed in this way

Today's lecture

[Chapter 4, First-order methods in optimization, Beck] [Proximal Algorithms, Parikh and Boyd] [A premier on monotone operator methods, Parikh and Boyd]

Monotone operators

- Conjugate functions and duality
- Monotone and cocoercive operators
- Subdifferential operator and monotonicity
- Operators in optimization problems
- Operators in algorithms
- Building contractions

Conjugate functions and duality

Convex closed proper functions

A function $f: \mathbf{R}^n \to \mathbf{R}$ is called **CCP** if it is

closed epi f is a closed set

$$convex \qquad f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha)f(y), \quad \alpha \in [0,1]$$

proper dom f is nonempty

If not otherwise stated, we assume functions to be CCP

Conjugate function

Given a function $f: \mathbf{R}^n \to \mathbf{R}$ we define its **conjugate** $f^*: \mathbf{R}^n \to \mathbf{R}$ as

$$f^*(y) = \max_{x} \ y^T x - f(x)$$

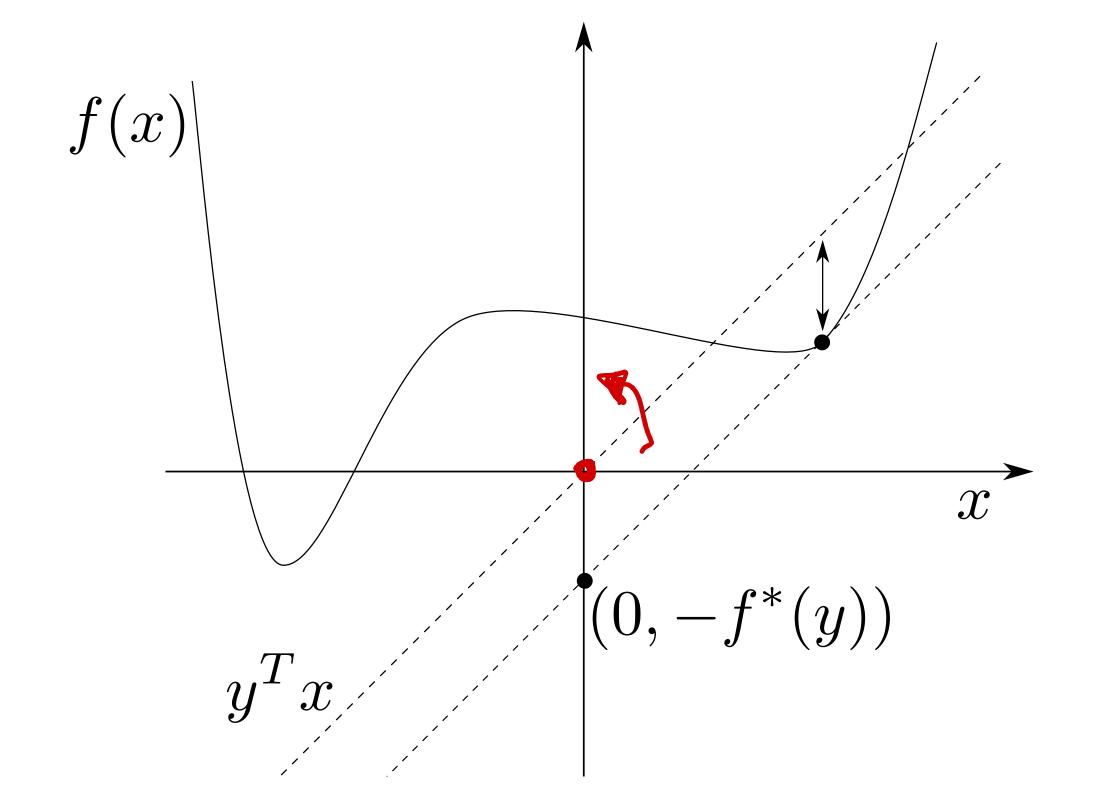
Note f^* is always convex (pointwise maximum of affine functions in y)

Conjugate function

Given a function $f: \mathbf{R}^n \to \mathbf{R}$ we define its **conjugate** $f^*: \mathbf{R}^n \to \mathbf{R}$ as

$$f^*(y) = \max_{x} y^T x - f(x)$$

Note f^* is always convex (pointwise maximum of affine functions in y)



 f^* is the maximum gap between y^Tx and f(x)

Properties

Fenchel's inequality
$$f(x) + f^*(y) \ge y^T x$$

Properties

Fenchel's inequality
$$f(x) + f^*(y) \ge y^T x$$

Biconjugate
$$f^{**}(y) = \max_{x} y^{T}x - f^{*}(x) \implies f(x) \ge f^{**}(x)$$

Properties

Fenchel's inequality
$$f(x) + f^*(y) \ge y^T x$$

Biconjugate
$$f^{**}(y) = \max_{x} y^{T}x - f^{*}(x) \implies f(x) \ge f^{**}(x)$$

Biconjugate for CCP functions If f CCP, then $f^{**} = f$

Properties

Fenchel's inequality
$$f(x) + f^*(y) \ge y^T x$$

Biconjugate
$$f^{**}(y) = \max_{x} y^T x - f^*(x) \implies f(x) \ge f^{**}(x)$$

Biconjugate for CCP functions If f CCP, then $f^{**} = f$

Examples

Norm
$$f(x) = ||x||$$
: $f^*(y) = \mathcal{I}_{||y||_* \le 1}(y)$

indicator function of dual norm set
$$\begin{array}{c} 1/p + 1/q = 1 \\ p = 2 \quad q = 2 \\ p = 0 \end{array}$$

Properties

Fenchel's inequality
$$f(x) + f^*(y) \ge y^T x$$

Biconjugate
$$f^{**}(y) = \max_{x} y^T x - f^*(x) \implies f(x) \ge f^{**}(x)$$

Biconjugate for CCP functions If f CCP, then $f^{**} = f$

Examples

Norm
$$f(x) = ||x||$$
: $f^*(y) = \mathcal{I}_{||y||_* \le 1}(y)$ indicator function of dual norm set

Indicator function
$$f(x) = \mathcal{I}_C(x)$$
: $f^*(y) = \mathcal{I}_C^*(y) = \max_{x \in C} y^T x = \sigma_C(y)$

support function

Dual using conjugate functions

minimize
$$f(x) + g(x)$$

Equivalent form (variables split)

minimize
$$f(x) + g(z)$$

subject to $x = z$

Dual using conjugate functions

minimize
$$f(x) + g(x)$$

Equivalent form (variables split)

minimize
$$f(x) + g(z)$$

subject to $x = z$

Lagrangian

$$L(x, z, y) = f(x) + g(z) + y^{T}(z - x) = -(y^{T}x - f(x)) - (-y^{T}z - g(z))$$

Dual using conjugate functions

minimize f(x) + g(x)

Equivalent form (variables split)

minimize
$$f(x) + g(z)$$

subject to $x = z$

Lagrangian

$$L(x, z, y) = f(x) + g(z) + y^{T}(z - x) = -(y^{T}x - f(x)) - (-y^{T}z - g(z))$$

Dual function

$$\min_{x,z} L(x,z,y) = -f^*(y) - g^*(-y)$$

Dual using conjugate functions

minimize f(x) + g(x) ———

Equivalent form (variables split)

minimize f(x) + g(z)subject to x = z

Lagrangian

$$L(x, z, y) = f(x) + g(z) + y^{T}(z - x) = -(y^{T}x - f(x)) - (-y^{T}z - g(z))$$

Dual function

$$\min_{x,z} L(x,z,y) = -f^*(y) - g^*(-y)$$

Dual problem

maximize
$$-f^*(y) - g^*(-y)$$

Fenchel dual example

Constrained optimization

minimize $f(x) + \mathcal{I}_C(x)$

Dual problem

maximize
$$-f^*(y) - \sigma_C(-y)$$

Fenchel dual example

Constrained optimization

minimize
$$f(x) + \mathcal{I}_C(x)$$

Dual problem

maximize
$$-f^*(y) - \sigma_C(-y)$$

Norm penalization

minimize
$$f(x) + ||x||$$

Dual problem

$$\begin{array}{ll} \text{maximize} & -f^*(y) \\ \text{subject to} & ||y||_* \leq 1 \end{array}$$

Fenchel dual example

Constrained optimization

minimize
$$f(x) + \mathcal{I}_C(x)$$

Dual problem

maximize
$$-f^*(y) - \sigma_C(-y)$$

Norm penalization

minimize
$$f(x) + ||x||$$

Dual problem

 $\begin{array}{ll} \text{maximize} & -f^*(y) \\ \text{subject to} & \|y\|_* \leq 1 \end{array}$

Remarks

- Fenchel duality can simplify derivations
- Useful when conjugates are known
- Very common in operator splitting algorithms

Monotone cocoercive operators

Monotone operators

An operator T on \mathbb{R}^n is monotone if

$$(u-v)^T(x-y) \ge 0, \quad \forall (x,u), (y,v) \in \mathbf{gph}T$$

Monotone operators

An operator T on \mathbb{R}^n is monotone if

$$(u-v)^T(x-y) \ge 0, \quad \forall (x,u), (y,v) \in \mathbf{gph}T$$

T is maximal monotone if

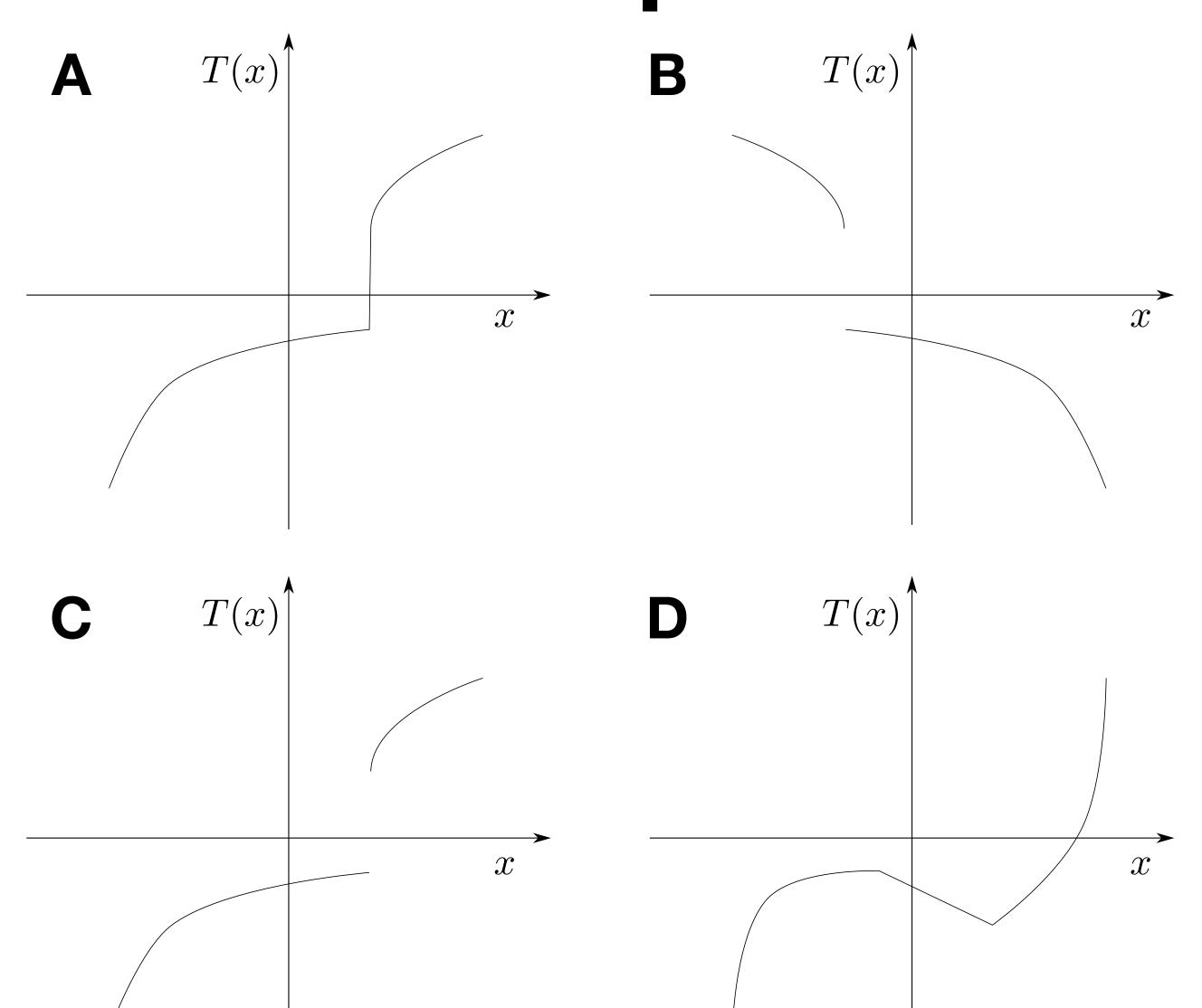
 $\nexists(\bar{x},\bar{u})\notin\mathbf{gph}T$ such that

$$(\bar{u} - u)^T (\bar{x} - x) \ge 0$$

Equivalently: \nexists monotone R such that $\mathbf{gph}T \subset \mathbf{gph}R$

Monotone operators in 1D

Let's fill the table



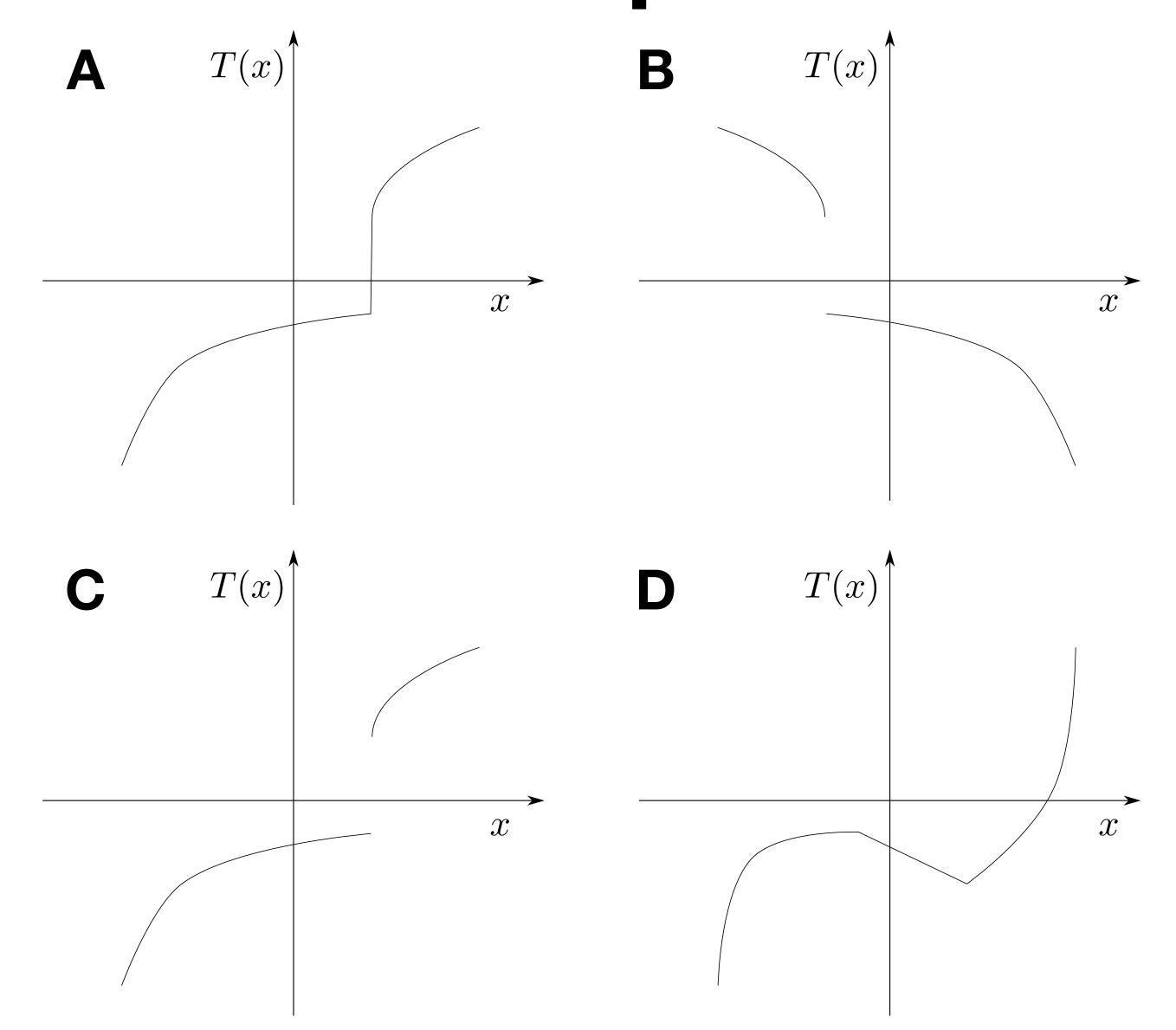
	Monotone	Max Monotone
A		
В		
C		
D		

Monotonicity

$$y > x \Rightarrow T(y) \ge T(x)$$

Monotone operators in 1D

Let's fill the table





Monotonicity

$$y > x \Rightarrow T(y) \ge T(x)$$

Continuity

If T single-valued, continuous and monotone, then it's maximal monotone

Monotone operator properties

- $\operatorname{sum} T + R$ is monotone
- nonnegative scaling αT with $\alpha \geq 0$ is monotone
- inverse T^{-1} is monotone
- congruence for $M \in \mathbf{R}^{n \times m}$, then $M^T T(\mathbf{H} z)$ is monotone on \mathbf{R}^m

Affine function T(x) = Ax + b is maximal monotone $\iff A + A^T \succeq 0$

HU= 12 Px + 9 P+P & 0

Strongly monotone operators

An operator T on ${\bf R}^n$ is μ -strongly monotone if

$$(u-v)^T(x-y) \ge \mu \|x-y\|^2, \quad \mu > 0$$
 (also called μ -coercive)

$$\forall (x, u), (y, v) \in \mathbf{gph}T$$

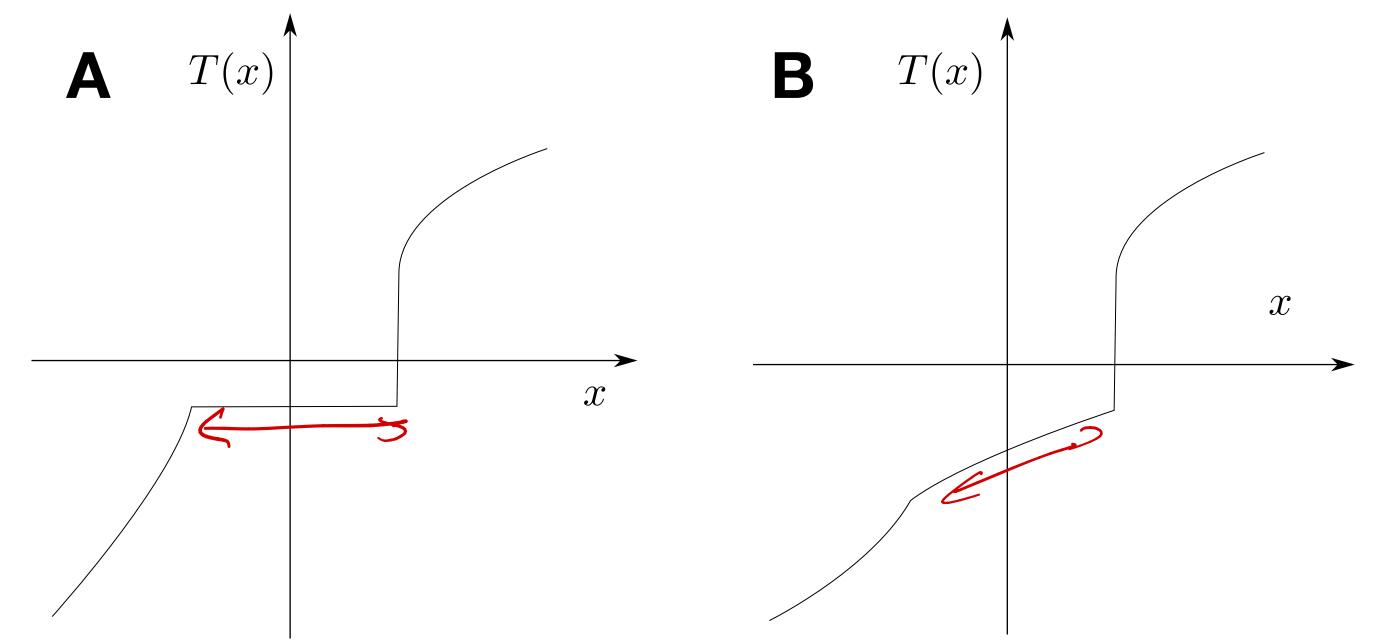
Strongly monotone operators

An operator T on ${\bf R}^n$ is μ -strongly monotone if

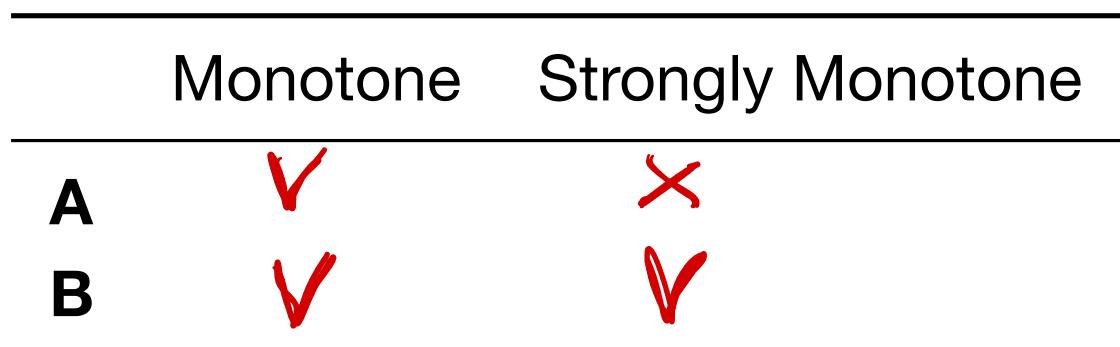
$$(u-v)^T(x-y) \ge \mu ||x-y||^2, \quad \mu > 0$$

(also called μ -coercive)

 $\forall (x, u), (y, v) \in \mathbf{gph}T$



Let's fill the table



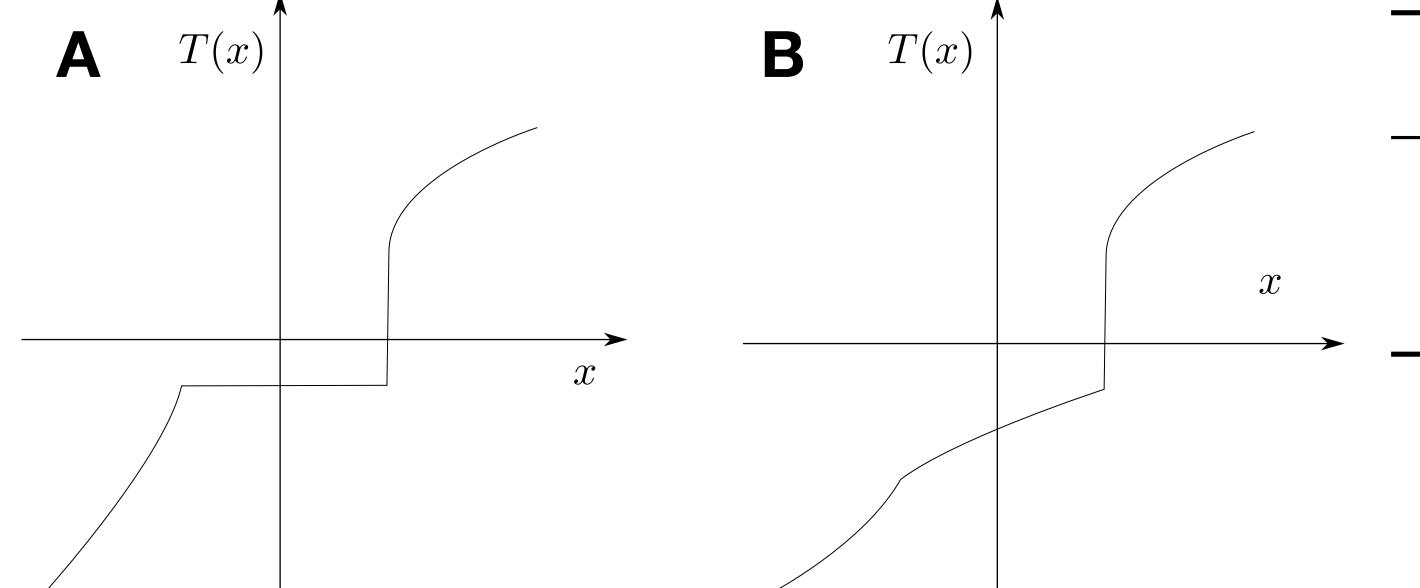
Strongly monotone operators

An operator T on ${\bf R}^n$ is μ -strongly monotone if

$$(u-v)^T(x-y) \ge \mu ||x-y||^2, \quad \mu > 0$$

(also called μ -coercive)

$$\forall (x, u), (y, v) \in \mathbf{gph}T$$



Let's fill the table

Monotone Strongly Monotone

A

B

Cocoercive operators

An operator T is β -cocoercive, $\beta > 0$, if

$$(T(x) - T(y))^T (x - y) \ge \beta ||T(x) - T(y)||^2$$

Cocoercive operators

An operator T is β -cocoercive, $\beta > 0$, if

$$(T(x) - T(y))^T (x - y) \ge \beta ||T(x) - T(y)||^2$$

If T is β -cocoercive, then T is $(1/\beta)$ -Lipschitz

Proof
$$\beta \|T(x) - T(y)\|^2 \le (T(x) - T(y))^T (x - y) \le \|T(x) - T(y)\| \|x - y\|$$

 $\Longrightarrow \|T(x) - T(y)\| \le (1/\beta) \|x - y\|$

Cocoercive operators

An operator T is β -cocoercive, $\beta > 0$, if

$$(T(x) - T(y))^T (x - y) \ge \beta ||T(x) - T(y)||^2$$

If T is β -cocoercive, then T is $(1/\beta)$ -Lipschitz

Proof
$$\beta \|T(x) - T(y)\|^2 \le (T(x) - T(y))^T (x - y) \le \|T(x) - T(y)\| \|x - y\|$$

 $\Longrightarrow \|T(x) - T(y)\| \le (1/\beta) \|x - y\|$

If T is μ -strongly monotone if and only if T^{-1} is μ -cocoercive

Proof
$$(T(x) - T(x))^T (x - y) \ge \mu ||x - y||^2$$

Inverse: u = T(x) and v = T(y) if and only if $x \in T^{-1}(u)$ and $y \in T^{-1}(v)$ $(u - v)^T (T^{-1}(u) - T^{-1}(v)) \ge \mu \|T^{-1}(u) - T^{-1}(v)\|^2$

Cocoercive and nonexpansive operators

If T is β -cocoercive if and only if $I-2\beta T$ is nonexpansive

Cocoercive and nonexpansive operators

If T is β -cocoercive if and only if $I-2\beta T$ is nonexpansive

Proof
$$\begin{aligned} & \|(I-2\beta T)(y) - (I-2\beta T)(x)\|^2 = \\ & = \|y - 2\beta T(y) - x - 2\beta T(x)\|^2 \\ & = \|y - x\|^2 - 4\beta (T(y) - T(x))^T (y - x) + 4\beta^2 \|T(y) - T(x)\|^2 \\ & = |y - x\|^2 - 4\beta \left((T(y) - T(x))^T (y - x) - \beta \|T(y) - T(x)\|^2 \right) \\ & \leq \|y - x\|^2 \end{aligned}$$

Cocoercive and nonexpansive operators

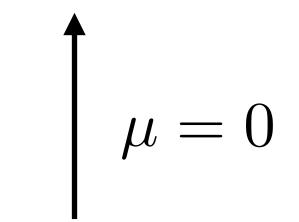
If T is β -cocoercive if and only if $I-2\beta T$ is nonexpansive

Proof
$$\begin{aligned} \|(I-2\beta T)(y) - (I-2\beta T)(x)\|^2 &= \\ &= \|y - 2\beta T(y) - x - 2\beta T(x)\|^2 \\ &= \|y - x\|^2 - 4\beta (T(y) - T(x))^T (y - x) + 4\beta^2 \|T(y) - T(x)\|^2 \\ &= |y - x\|^2 - 4\beta \left((T(y) - T(x))^T (y - x) - \beta \|T(y) - T(x)\|^2 \right) \\ &\leq \|y - x\|^2 \qquad \qquad \text{(cocoercive)} \end{aligned}$$

Summary of monotone and cocoercive operators

Monotone

$$(T(x) - T(x))^T(x - y) \ge 0$$

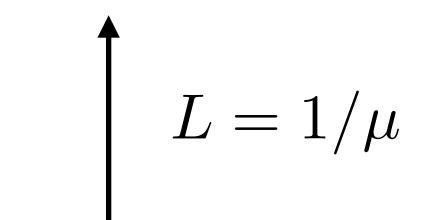


Strongly monotone

$$(T(x) - T(x))^T (x - y) \ge \mu ||x - y||^2$$

Lipschitz

$$||F(x) - F(y)|| \le L||x - y||$$



Cocoercive

$$(T(x) - T(x))^{T}(x - y) \ge \mu ||x - y||^{2} \longleftrightarrow_{F = T^{-1}} (F(x) - F(y))^{T}(x - y) \ge \mu ||F(x) - F(y)||^{2}$$

$$\downarrow G = I - 2\mu F$$

Nonexpansive

$$||G(x) - G(y)|| \le ||x - y||$$
 25

Subdifferential operator and monotonicity

Subdifferential operator monotonicity

$$\partial f(x) = \{ g \mid f(y) \ge f(x) + g^T(y - x) \}$$

 $\partial f(x)$ is monotone (also for nonconvex functions)

Subdifferential operator monotonicity

$$\partial f(x) = \{ g \mid f(y) \ge f(x) + g^T(y - x) \}$$

 $\partial f(x)$ is monotone (also for nonconvex functions)

Proof Suppose $u \in \partial f(x)$ and $v \in \partial f(y)$ then

$$f(y) \ge f(x) + u^T(y - x), \qquad f(x) \ge f(y) + v^T(x - y)$$

By adding them, we can write $(u-v)^T(x-y) \ge 0$

Subdifferential operator monotonicity

$$\partial f(x) = \{ g \mid f(y) \ge f(x) + g^T(y - x) \}$$

 $\partial f(x)$ is monotone (also for nonconvex functions)

Proof Suppose $u \in \partial f(x)$ and $v \in \partial f(y)$ then

$$f(y) \ge f(x) + u^T(y - x), \qquad f(x) \ge f(y) + v^T(x - y)$$

By adding them, we can write $(u-v)^T(x-y) \ge 0$

Maximal monotonicity

Strongly monotone and cocoercive subdifferential

f is μ -strongly convex $\iff \partial f \ \mu$ -strongly monotone $(\partial f(x) - \partial f(y))^T (x-y) \ge \mu \|x-y\|^{\lambda}$

Strongly monotone and cocoercive subdifferential

f is μ -strongly convex $\iff \partial f \ \mu$ -strongly monotone $(\partial f(x) - \partial f(y))^T (x-y) \ge \mu \|x-y\|^2$

f is L-smooth

 $\iff \partial f \text{ L-Lipschitz and } \partial f = \nabla f \text{:} \qquad \|\nabla f(x) - \nabla f(y)\|_{\text{1}} \leq L\|x - y\|_{\text{2}}$ $\iff \partial f (1/L) \text{-cocoercive: } (\nabla f(x) - \nabla f(y))^T (x - y) \geq (1/L) \|\nabla f(x) - \nabla f(y)\|_{\text{2}}^2$

Strongly monotone and cocoercive subdifferential

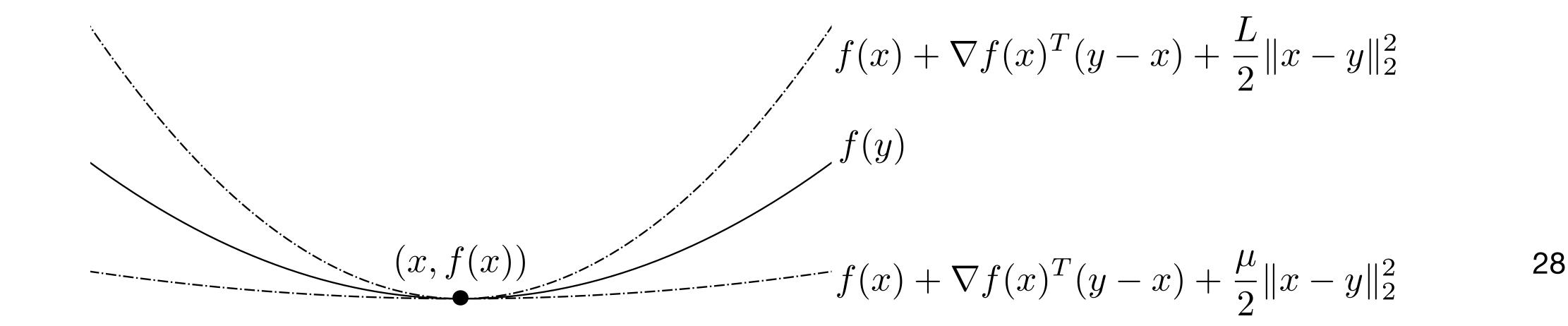
f is μ -strongly convex \iff $\partial f \; \mu\text{-strongly monotone}$

$$(\partial f(x) - \partial f(y))^T (x - y) \ge \mu ||x - y||^2$$

f is L-smooth

 $\iff \partial f \ L$ -Lipschitz and $\partial f = \nabla f$: $\|\nabla f(x) - \nabla f(y)\|_{\mathcal{F}} \le L\|x - y\|_{\mathcal{F}}$

 $\iff \partial f\left(1/L\right) \text{-cocoercive: } (\nabla f(x) - \nabla f(y))^T(x-y) \geq (1/L)\|\nabla f(x) - \nabla f(y)\|_{\text{\#}}^2$



Inverse of subdifferential

If
$$f$$
 is CCP, then, $(\partial f)^{-1} = \partial f^*$

Inverse of subdifferential

If
$$f$$
 is CCP, then, $(\partial f)^{-1} = \partial f^*$

Proof

$$(u,v) \in \mathbf{gph}(\partial f)^{-1} \iff (v,u) \in \mathbf{gph}\partial f$$

$$\iff u \in \partial f(v)$$

$$\iff 0 \in \partial f(v) - u$$

$$\iff v \in \operatorname*{argmin} f(x) - u^{T}x$$

$$x$$

$$\iff f^{*}(u) = u^{T}v - f(v)$$

Inverse of subdifferential

If
$$f$$
 is CCP, then, $(\partial f)^{-1} = \partial f^*$

Proof

$$(u,v) \in \mathbf{gph}(\partial f)^{-1} \iff (v,u) \in \mathbf{gph}\partial f$$

$$\iff u \in \partial f(v)$$

$$\iff 0 \in \partial f(v) - u$$

$$\iff v \in \operatorname*{argmin}_{x} f(x) - u^{T}x$$

$$\iff f^{*}(u) = u^{T}v - f(v)$$

Therefore, $f(v) + f^*(u) = u^T v$. If f is CCP, then $f^{**} = f$ and we can write

$$f^{**}(v) + f^*(u) = u^T v \iff (u, v) \in \mathbf{gph}\partial f^*$$

Strong convexity is the dual of smoothness

```
f is \mu-strongly convex \iff f^* is (1/\mu)-fsmoothf
```

Strong convexity is the dual of smoothness

$$f$$
 is μ -strongly convex \iff f^* is $(1/\mu)$ -(smooth)

Proof

$$f$$
 μ -strongly convex \iff ∂f μ -strongly monotone
$$\iff (\partial f)^{-1} = \partial f^* \quad \mu\text{-cocoercive}$$
 \iff f^* $(1/\mu)$ -smooth

Strong convexity is the dual of smoothness

$$f$$
 is μ -strongly convex \iff f^* is $(1/\mu)$ -(smooth)

Proof

$$f$$
 μ -strongly convex \iff ∂f μ -strongly monotone
$$\iff (\partial f)^{-1} = \partial f^* \quad \mu\text{-cocoercive}$$
 \iff f^* $(1/\mu)$ -smooth

Remark: strong convexity and (strong) smoothness are dual

Operators in optimization problems

minimize f(x)subject to Ax = b

Lagrangian

$$L(x,y) = f(x) + y^T (Ax - b)$$

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & Ax = b \end{array}$$

Lagrangian

$$L(x,y) = f(x) + y^T (Ax - b)$$

KKT operator

$$T(x,y) = \begin{bmatrix} \partial_x L(x,y) \\ -\partial_y L(x,y) \end{bmatrix} = \begin{bmatrix} \partial f(x) + A^T y \\ b - Ax \end{bmatrix} = \begin{bmatrix} r^{\text{dual}} \\ -r^{\text{prim}} \end{bmatrix}$$

zero set $\{(x,y) \mid 0 \in T(x,y)\}$ is the set of primal-dual optimal points

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & Ax = b \end{array}$$

Lagrangian

$$L(x,y) = f(x) + y^T (Ax - b)$$

KKT operator

$$T(x,y) = \begin{bmatrix} \partial_x L(x,y) \\ -\partial_y L(x,y) \end{bmatrix} = \begin{bmatrix} \partial f(x) + A^T y \\ b - Ax \end{bmatrix} = \begin{bmatrix} r^{\text{dual}} \\ -r^{\text{prim}} \end{bmatrix}$$

zero set $\{(x,y) \mid 0 \in T(x,y)\}$ is the set of primal-dual optimal points

Monotonicity

$$T(x,y) = \begin{bmatrix} \partial f(x) \\ b \end{bmatrix} + \begin{bmatrix} 0 & A^T \\ -A & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & Ax = b \end{array}$$

Lagrangian

$$L(x,y) = f(x) + y^T(Ax - b)$$

KKT operator

$$T(x,y) = \begin{bmatrix} \partial_x L(x,y) \\ -\partial_y L(x,y) \end{bmatrix} = \begin{bmatrix} \partial f(x) + A^T y \\ b - Ax \end{bmatrix} = \begin{bmatrix} r^{\text{dual}} \\ -r^{\text{prim}} \end{bmatrix}$$

zero set $\{(x,y) \mid 0 \in T(x,y)\}$ is the set of primal-dual optimal points

Monotonicity

$$T(x,y) = \begin{bmatrix} \partial f(x) \\ b \end{bmatrix} + \begin{bmatrix} 0 & A^T \\ -A & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

skew-symmetric

sum of monotone operators

"multiplier to residual" mapping

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & Ax = b \end{array}$

Dual problem

"multiplier to residual" mapping

Dual problem

 $\begin{array}{ccc} \text{minimize} & f(x) \\ \text{subject to} & Ax = b \end{array}$

 $\text{maximize} \quad g(y) = -(f^*(-A^Ty) - y^Tb)$

Operator

T(y) = b - Ax, where $x = \operatorname{argmin}_z L(z, y)$

Monotonicity

If f CCP, then T is monotone

"multiplier to residual" mapping

Dual problem

$$\begin{array}{ccc} \text{minimize} & f(x) \\ \text{subject to} & Ax = b \end{array}$$

maximize $g(y) = -(f^*(-A^Ty) - y^Tb)$

Operator

$$T(y) = b - Ax$$
, where $x = \operatorname{argmin}_z L(z, y)$

Monotonicity

If f CCP, then T is monotone

Proof

$$0 \in \partial f(x) + A^T y \iff x = (\partial f)^{-1} (-A^T y)$$

$$0 \in \partial f(x) + A^T y \iff x = (\partial f)^{-1} (-A^T y)$$
 Therefore,
$$F(y) = b - A(\partial f)^{-1} (-A^T y) = \partial_y \left(b^T y + f^* (-A^T y) \right) = \partial(-g)$$

Operators in algorithms

Forward step operator

The forward step operator of T is defined as

$$I - \gamma T$$

In general monotonicity of T is not enough for convergence

Forward step operator

The forward step operator of T is defined as

$$I - \gamma T$$

In general ${\bf monotonicity}$ of T is not enough for convergence

Example

minimize xsubject to x = 0 KKT operator

$$T(x,y) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Monotone (skew-symmetric)

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad A + A^T = 0 \succeq 0$$

Forward step operator

The forward step operator of T is defined as

$$I - \gamma T$$

In general monotonicity of T is not enough for convergence

Example

minimize xsubject to x = 0 KKT operator

$$T(x,y) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Monotone (skew-symmetric)

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad A + A^T = 0 \succeq 0$$

Forward step

$$(I - \gamma T) \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & -\mathbf{z} \\ \mathbf{z} & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \longrightarrow$$

Expansive

$$\left\| \begin{bmatrix} 1 & -\gamma \\ \gamma & 1 \end{bmatrix} \right\|_{2} > 1, \quad \forall \gamma$$
35

Gradient step: special case of forward step

f L-smooth $\iff \nabla f (1/L)$ -cocoercive $\iff I - (2/L) \nabla f$ nonexpansive

Gradient step: special case of forward step

$$f$$
 L -smooth $\iff \nabla f (1/L)$ -cocoercive $\iff I - (2/L)\nabla f$ nonexpansive

Construct averaged iterations
$$I - \gamma \nabla f = (1-\alpha)I + \alpha(I-(2/L)\nabla f)$$

where
$$\alpha = \gamma L/2 \in (0,1)$$
 \iff $\gamma \in (0,L/2)$

Gradient step: special case of forward step

$$f$$
 L -smooth $\iff \nabla f (1/L)$ -cocoercive $\iff I - (2/L)\nabla f$ nonexpansive

Construct averaged iterations

$$I - \gamma \nabla f = (1 - \alpha)I + \alpha(I - (2/L)\nabla f)$$

where
$$\alpha = \gamma L/2 \in (0,1)$$
 \iff $\gamma \in (0,L/2)$

Remark

- Only smoothness assumption gives sublinear convergence
- Similar result we obtained in gradient descent lecture

Resolvent and Cayley operators

The **resolvent** of operator A is defined as

$$R_A = (I + A)^{-1}$$

The Cayley (reflection) operator of A is defined as

$$C_A = 2R_A - I = 2(I+A)^{-1} - I$$

Properties

- If A is maximal monotone, $\operatorname{dom} R_A = \operatorname{dom} C_A = \mathbf{R}^n$ (Minty's theorem)
- If A is monotone, R_A and C_A are nonexpansive (thus functions)
- Zeros of A are fixed points of R_A and C_A

Resolvent and Cayley operators

The **resolvent** of operator A is defined as

$$R_A = (I + A)^{-1}$$

The Cayley (reflection) operator of A is defined as

$$C_A = 2R_A - I = 2(I + A)^{-1} - I$$

Properties

- If A is maximal monotone, dom $R_A = \operatorname{dom} C_A = \mathbf{R}^n$ (Minty's theorem)
- If A is monotone, R_A and C_A are nonexpansive (thus functions)
- Zeros of A are fixed points of R_A and C_A

Key result we can solve $0 \in A(x)$ by finding fixed points of C_A or R_A

Fixed points of R_A and C_A are zeros of A Proof

$$R_A = (I + A)^{-1}$$

$$x \in \mathbf{fix} \, R_A$$
 $0 \in A(x) \iff x \in (I+A)(x)$ $\iff (I+A)^{-1}(x) \ncong x$ $\iff x = R_A(x)$ $(R_A \text{ is a function})$

Fixed points of R_A and C_A are zeros of A Proof

$$R_A = (I + A)^{-1}$$

$$x \in \mathbf{fix} \, R_A$$
 $0 \in A(x) \iff x \in (I+A)(x)$ $\iff (I+A)^{-1}(x) \cong x$ $\iff x = R_A(x)$ $(R_A \text{ is a function})$

$$x \in \mathbf{fix} \, C_A$$
 $C_A(x) = 2R_A(x) - I(x) = 2x - x = x$

If A is monotone, then R_A is nonexpansive

Proof

If
$$(x, u) \in R_A$$
 and $(y, v) \in R_A$, then

$$u + A(u) \ni x, \qquad v + A(v) \ni y$$

If A is monotone, then R_A is nonexpansive

Proof If $(x,u)\in \mathcal{R}_A$ and $(y,v)\in \mathcal{R}_A$, then

$$u + A(u) \ni x, \qquad v + A(v) \ni y$$

Subtract to get $u - v + (A(u) - A(v)) \ni x - y$

If A is monotone, then R_A is nonexpansive $\frac{1}{2}$

If $(x, u) \in R_A$ and $(y, v) \in R_A$, then

$$u + A(u) \ni x, \qquad v + A(v) \ni y$$

Subtract to get $u - v + (A(u) - A(v)) \ni x - y$

Multiply by $(u-v)^T$ and use monotonicity of A (being also a function) to get

$$||u - v||^2 \le (x - y)^T (u - v)$$

If A is monotone, then R_A is nonexpansive $\frac{1}{2}$

If $(x, u) \in R_A$ and $(y, v) \in R_A$, then

$$u + A(u) \ni x, \qquad v + A(v) \ni y$$

Subtract to get $u - v + (A(u) - A(v)) \ni x - y$

Multiply by $(u-v)^T$ and use monotonicity of A (being also a function) to get

$$||u - v||^2 \le (x - y)^T (u - v)$$

Apply Cauchy-Schwarz and divide by ||u-v|| to get

$$||u-v|| \leq ||x-y||$$

If A is monotone, then C_A is nonexpansive

Proof

Given $u = R_A(x)$ and $v = R_A(y)$ (R_A is a function)

$$\begin{split} \|C(x) - C(y)\|^2 &= \|(2u-x) - (2v-y)\|^2 \\ &= \|2(u-v) - (x-y)\|^2 \\ &= 4\|u-v\|^2 - 4(u-v)^T(x-y) + \|x-y\|^2 \\ &\leq \|x-y\|^2 \end{split}$$
 Note from previous slide: $\|u-v\|^2 \leq (u-v)^T(x-y)$

If A is monotone, then C_A is nonexpansive

Proof

Given $u = R_A(x)$ and $v = R_A(y)$ (R_A is a function)

$$||C(x) - C(y)||^2 = ||(2u - x) - (2v - y)||^2$$

$$= ||2(u - v) - (x - y)||^2$$

$$= 4||u - v||^2 - 4(u - v)^T(x - y) + ||x - y||^2$$

$$\leq ||x - y||^2$$

Note from previous slide: $||u-v||^2 \le (u-v)^T(x-y)$

Remark

 R_A is nonexpansive since it is the average of I and C_A :

$$R_A = (1/2)I + (1/2)C_A = (1/2)I + (1/2)(2R_A - 1)$$

Role of maximality

We mostly consider maximal operators A because of

Theory: A, R_A and C_A do not bring iterates outside their domains

Practice: hard to compute R_A and C_A for non-maximal monotone operators, e.g., when $A = \partial f(x)$ where f nonconvex.

Resolvent of subdifferential: proximal operator

$$\mathbf{prox}_f = R_{\partial f} = (I + \partial f)^{-1}$$

Proof

Let $z = \mathbf{prox}_f(x)$, then

$$z = \underset{u}{\operatorname{argmin}} f(u) + \frac{1}{2} ||u - x||^{2}$$

$$\iff 0 \in \partial f(z) + z - x \quad \text{(optimality conditions)}$$

$$\iff x \in (I + \partial f)(z)$$

$$\iff z = (I + \partial f)^{-1}(x)$$

Resolvent of normal cone: projection

 $\mathcal{N}_C(x)$

$$R_{\partial \mathbf{I}_C} = \Pi_C(x)$$

Proof

Let $f = \mathcal{I}_C$, the indicator function of a convex set C

Recall: $\partial \mathcal{I}_C(x) = \mathcal{N}_C(x)$ normal cone operator

$$u = (I + \partial \mathcal{I}_C)^{-1}(x) \iff u = \underset{z}{\operatorname{argmin}} \mathcal{I}_C(u) + (1/2)||z - x||^2 = \Pi_C(x)$$

 $\mathcal{N}_C(x)$

Resolvent of normal cone: projection

 $\mathcal{N}_C(x)$

$$R_{\partial I_C} = \Pi_C(x)$$

Proof

Let $f = \mathcal{I}_C$, the indicator function of a convex set C

Recall: $\partial \mathcal{I}_C(x) = \mathcal{N}_C(x)$ normal cone operator

$$u = (I + \partial \mathcal{I}_C)^{-1}(x) \iff u = \underset{z}{\operatorname{argmin}} \mathcal{I}_C(u) + (1/2)||z - x||^2 = \Pi_C(x)$$

Proof

$$u \in \mathcal{N}_C(x) \Rightarrow u^T(z-x) \le 0, \ \forall z \in C \Rightarrow u^T(y-x) \le 0$$

 $v \in \mathcal{N}_C(y) \Rightarrow v^T(z-y) \le 0, \ \forall z \in C \Rightarrow v^T(x-y) \le 0$

Building contractions

Given T L-Lipschitz and μ -strongly monotone, then $I-\gamma T$ converges linearly at rate $1-2\gamma\mu+\gamma^2L^2$, with optimal step $\gamma=\mu/L^2$.

Given T L-Lipschitz and μ -strongly monotone, then $I-\gamma T$ converges linearly at rate $1-2\gamma\mu+\gamma^2L^2$, with optimal step $\gamma=\mu/L^2$.

Proof

$$||(I - \gamma T)(x) - (I - \gamma T)(y)||^{2} = ||x - y + \gamma T(x) - \gamma T(y)||^{2}$$

$$= ||x - y||^{2} - 2\gamma (T(x) - T(y))^{T} (x - y) + \gamma^{2} ||T(x) - T(y)||^{2}$$

$$\leq (1 - 2\gamma \mu + \gamma^{2} L^{2}) ||x - y||^{2}$$

Given T L-Lipschitz and μ -strongly monotone, then $I-\gamma T$ converges linearly at rate $1-2\gamma\mu+\gamma^2L^2$, with optimal step $\gamma=\mu/L^2$.

Given T L-Lipschitz and μ -strongly monotone, then $I-\gamma T$ converges linearly at rate $1-2\gamma\mu+\gamma^2L^2$, with optimal step $\gamma=\mu/L^2$.

Proof $\|(I-\gamma T)(x)-(I-\gamma T)(y)\|^2 = \|x-y+\gamma T(x)-\gamma T(y)\|^2 \qquad \text{monotone}$ Lipschitz $= \|x-y\|^2 - 2\gamma (T(x)-T(y))^T(x-y) + \gamma^2 \|T(x)-T(y)\|^2$ $\leq (1-2\gamma\mu+\gamma^2L^2)\|x-y\|^2$

Remarks

- It applies to ${f gradient\ descent\ with\ }L ext{-smooth\ and\ }\mu ext{-strongly\ convex}\ f$
- Better rate in gradient descent lecture. Bound derivative: $\|D(I-\gamma\nabla^2f(x))\|_2 \leq \max\{|1-\gamma L|,|1-\gamma\mu|\}$. Optimal step $\gamma=2/(\mu+L)$ and factor $(\mu/L-1)(\mu/L+1)$.

Resolvent contractions

If A is μ -strongly monotone, then

$$R_A = (I + A)^{-1}$$

is a contraction with Lipschitz parameter $1/(1 + \mu)$

Resolvent contractions

If A is μ -strongly monotone, then

$$R_A = (I + A)^{-1}$$

is a contraction with Lipschitz parameter $1/(1+\mu)$

Proof

$$A$$
 μ -strongly monotone $\implies (I+A) \qquad (1+\mu)$ -strongly monotone $\implies R_A = (I+A)^{-1} \quad (1+\mu)$ -cocoercive $\implies R_A \quad (1/(1+\mu))$ -Lipschitz

Cayley contractions

If A is μ -strongly monotone and L-Lipschitz, then

$$C_{\gamma A} = 2R_{\gamma A} - I = 2(I + \gamma A)^{-1} - I$$

is a contraction with factor $\sqrt{1-4\gamma\mu/(1+\gamma L)^2}$

Proof

[Page 20, A premier on monotone operator methods, Parikh and Boyd]

Cayley contractions

If A is μ -strongly monotone and L-Lipschitz, then

$$C_{\gamma A} = 2R_{\gamma A} - I = 2(I + \gamma A)^{-1} - I$$

is a contraction with factor $\sqrt{1-4\gamma\mu/(1+\gamma L)^2}$

REMARK: NEED ALSO LIPSCHITZ CONDITION

Proof

[Page 20, A premier on monotone operator methods, Parikh and Boyd]

If, in addition, $A=\partial f$ where f is CCP, then $C_{\gamma A}$ converges with factor $(\sqrt{\mu/L}-1)/(\sqrt{\mu/L}+1)$ and optimal step $\gamma=1/\sqrt{\mu L}$

Proof

[Linear Convergence and Metric Selection for Douglas-Rachford Splitting and ADMM, Giselsson and Boyd]

Requirements for contractions

${\bf Operator}\ A$

Function f $(A = \partial f)$

Forward step

$$I - \gamma A$$

$$\mu$$
-strongly monotone

$$\mu ext{-strongly convex} \ L ext{-smooth}$$

Resolvent

$$R_A = (I + A)^{-1}$$

$$\mu\text{-strongly monotone}$$

$$\mu ext{-strongly convex} \ L ext{-smooth}$$

Cayley

$$C_A = 2(I+A)^{-1} - I$$

$$\mu$$
-strongly monotone L -Lipschitz

$$\mu ext{-strongly convex} \ L ext{-smooth}$$

faster convergence

Key to contractions: strong monotonicity/convexity

Operator theory

Today, we learned to:

- Use conjugate functions to define duality
- Define monotone and cocoercive operators and their relations
- Relate subdifferential operator and monotonicity
- Recognize monotone operators in optimization problems
- Apply operators in algorithms: forward step, resolvent, Cayley
- Understand requirements for building contractions

Next lecture

Operator splitting algorithms