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Ed forum

* |f the local minima is not unique, in that there's a set of x* with multiple values that yield the same objective value,
would the subgradient method still work? (One example might be LP when there are infinitely many solutions)

* |t is mentioned that in subgradient methods, algorithms just find one subgradient g and proceeds with the iteration. But
if it has already hit the minimum, 0 \in \partial f. Can the algorithm just pick out this 0 and terminate itself?

* In practice, are we ever able to derive, or approximate, the Lipschitz constant? Or, is it even necessary to do so?
How well do these methods translate over, if they do at all, to non Lipschitz functions? Or do we just make this
assumption in order to make the analysis cleaner?

[Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks, https://arxiv.org/pdf/
1906.04893.pdf]

* |f fAstar is known, we can apply the Polyak step size to find the optimal solution. Does it work if | only have an
estimation of the optimal value? Can it still lead to the right convergence point?

* At each iteration of the subgradient method, we don't need the whole subdifferential. Instead we only need one
subgradient. This is kind of reminiscent to picking the entering index for Simplex method. Picking diminishing step size
s like avoiding cycling for Simplex. |s there an analogous rule for picking which subgradient to use, if | have access
to more than one?






Subgradient method

Convex optimization problem
minimize f(x) (optimal cost f*)

Iterations

el = 2F — 1 g", g € 0f(z™)

g" is any subgradient of f at x"

Not a descent method, keep track of the best point



Step sizes

Line search can lead to suboptimal points

Step sizes pre-specified, not adaptively computed
(different than gradient descent)

Fixed: tp =tfork=0,...

(goes to 0 but not too fast)
e.g., tp = 0(1/7{7)

O O
Diminishing: th < 00, Zt’f — ~o Square summable but not summable
k=0 k=0



Implications for step size rules

fkes o f* <
. 21 o t
Fixed: t, =tfork=0,... May be suboptimal
2
R% + G2(k + 1)1 o fE <oy G
ko fx < lim fbestéf |
fbest f — 2(]‘6 n 1)t k— o0 2
> > Optimal
= = = = . 2 L
Diminishing: Y th<oo, » tp=o0 fim fE — f

eg., ty=7/(k+1)orty =7/Vk+1



Summary subgradient method

« Simple
- Handles general nondifferentiable convex functions
- Very slow convergence O(1/¢?)

* No good stopping criterion



Summary subgradient method

« Simple
- Handles general nondifferentiable convex functions
- Very slow convergence O(1/¢?)

* No good stopping criterion

Can we do better?

Can we incorporate constraints?



Today'’s lecture

[Chapter 3 and 6, First-order methods in optimization, Beck]
[Proximal Algorithms, Parikh and Boyd]

[A premier on monotone operator methods, Parikh and Boyd]

Proximal methods and introduction to operators
* Optimality conditions with subdifferentials
 Proximal operators

* Proximal gradient method

e Operator theory

* Fixed point iterations



Optimality conditions with
subdifferentials




Subgradient of indicator function

The subdifferential of the indicator
functon is the normal cone

0Zc(x) = Ne(o) )

where,

Ne(x)={g|g"(y—x) <0, forallyec C}

10



Subgradient of indicator function

The subdifferential of the indicator
functon is the normal cone

0Zc(x) = Ne(o) )

where,

Ne(x)={g|g"(y—x) <0, forallyec C}

Proof
By definition of subgradient g, Z(y) > Ze(z) + ¢* (y — x), Wy
ytC = Ic(y) =

yelC — OégT(y—ﬂf) 10



Constrained optimization

Indicator function
of a convex set

S

Constrained form Unconstrained form
minimize  f(x)

minimize T
subjectto xzeC inimize  f(z) + Zc(x)

11



First-order optimality conditions from subdifferentials

minimize f(x) + Zo(x) (f smooth, C' convex)

12



First-order optimality conditions from subdifferentials

minimize f(x) + Zo(x) (f smooth, C' convex)

Fermat’s optimality condition
0€0(f(z)+Zc(x))

— 0e€{Vf(x)} +Nc(z)
— —Vf(.il}) & Nc(aj)
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First-order optimality conditions from subdifferentials

minimize f(x) + Zo(x) (f smooth, C' convex)

Fermat’s optimality condition
0€0(f(z)+Zc(x))

— 0e€{Vf(x)} +Nc(z)
— —Vf(.il}) & Nc(aj)

Equivalent to
Vi) (y—2)>0, VyeC

12



Example: KKT of a quadratic program

minimize
subject to

(1/2)x! Px + ¢'
Ax < b

——— minimize (1/2)z" Px

q

T

X

I{Axgb} (CE)

13



Example: KKT of a quadratic program

minimize  (1/2)z? Pz + q''z
subjectto Az <b

—— minimize (1/2)z" Pz 4+ q' = + Ly ap<pr (@)

Gradient Normal cone to polyhedron
Vi) =Pr+q Niae<vy(T) = {Ay|y>0 and yi(agﬂf —b;) =0}

13



Example: KKT of a quadratic program

minimize  (1/2)z? Pz + q''z
subjectto Az <b

—— minimize (1/2)z" Pz 4+ q' = + Ly ap<pr (@)

Gradient Normal cone to polyhedron
Vf(r) =Pr+q Niag<py (@) ={A"y |y >0 and y;(a; x —b;) =0}
First-order optimality condition KKT Optimality conditions
Pr+4+q+ Aty =0
(Tl
—V/f(z) € 3I{Aa;gb}($) — N{Aa;gb}(f) - Axr — b <0

yi(a;-ra:—bi):O, i =1,...,m
13



Proximal operators



Composite models

minimize f(x) 4+ g(x)

f(x) convex and smooth
g(x) convex (may be not differentiable)

Examples

» Regularized regression: g(x) = ||z|1
» Constrained optimization: g(z) = Z¢(x)

15



Proximal operator

Definition
The proximal operator of the function g : R — R Is

, 1
prox, () = argmin (9(2) + 3 |z - o

)

16



Proximal operator

Definition
The proximal operator of the function g : R — R Is

, 1
prox,(z) — argmin ((2) + 3 = - 3)

Optimality conditions of prox

0€0g(z)+2z—2 =— x—2z¢€0g(z)

16



Proximal operator

Definition
The proximal operator of the function g : R — R Is

, 1
prox,(z) — argmin ((2) + 3 = - 3)

Optimality conditions of prox

0€0g(z)+2z—2 =— x—2z¢€0g(z)

Properties
» [t involves solving an optimization problem (not always easy!)

» Easy to evaluate for many standard functions, i.e. proxable functions

» Generalizes many well-known algorithms

16



Generalized projection

The prox operator of the indicator function Z. is the projection onto C

proxrs (v) = argnéin |x — bl = I (v)
xTC

17



Generalized projection

The prox operator of the indicator function Z. is the projection onto C

proxrs (v) = argnéin |x — bl = I (v)
xTC

Example projectionontoabox C' ={z || <z < u}

17



Generalized projection

The prox operator of the indicator function Z. is the projection onto C

(\7/
proxz (v) = argmin [« — b, = e (v
€T C

Example projectionontoabox C' ={z || <z < u}

Remarks
- Easy for many common sets (e.g., closed form)
» Can be hard for surprisingly simple lets, e.g., C = {Ax < b} 7

Projections at [p. 156, First order methods in optimization, A Beck]



Quadratic functions

If g(x) = (1/2) #g = Pz + q' = + r with P = 0, then

prox, (v) = (I + P) (v —q)

g

Remarks

» Closed-form always solvable (even with P not full rank)
« Symmetric, positive definite and usually sparse linear system
« Can prefactor I + P and solve for different v

18



Separable sum .
f g(x) is block separable, i.e., g(z) = gi(z;)

(key to parallel/distributed

then, (prox,(v)); =prox, (v;), i=1,...,N proximal algorithms)

19



Separable sum .
f g(x) is block separable, i.e., g(z) = gi(z;)

then, (prox,(v)); = prox, (v;), i=1,...,N

n

Example: g(z) = A||z|[y = > ;1 Al

soft-thresholding
Vi — A U > A
(prox, (v)); = prox,(v) = Sp(v;) = 40 o < A

Vi + A v < —A

(key to parallel/distributed
proximal algorithms)




Basic rules

» Scaling and translation: g¢(x) = ah(x) + b with @ > 0, then
prox,(z) = prox,, (z)
Examples - Affine addition: ¢(x) = h(z) + a’ x + b, then
prox, (z) = prox,(z — a)

» Affine transformation: ¢(x) = h(axz +b), witha # 0,a € R,

1
prox,(r) = - (prox 2, (ax + b) — b)

Proofs (exercise):

- Rearrange proximal term: (1/2)||z — z||5
* Apply prox optimality conditions

20

Many more examples at [p. 156, First order methods in optimization, A Beck]



Proximal gradient method



Gradient descent interpretation

Problem
minimize f(x)

Ilterations
"t = oF —tVf(2")

1
Quadratic approximation, replacing Hessian V? f(z*) with ZI
1
" = argmin (%) + V(%) (z = 27) + o[z — 275

22



Let’s exploit the smooth part

f(x) convex and smooth

minimize  f(z) + g(x) g(x) convex (may be not differentiable)

Quadratic approximation of f while keeping ¢

2"t = argmin g(2) + f(z") + V£ (z™) (2 — 2") 4 21t||2 — "3

23



Let’s exploit the smooth part

f(x) convex and smooth

minimize  f(z) + g(x) g(x) convex (may be not differentiable)

Quadratic approximation of f while keeping ¢

1
k41 - k T k k2 same as
= argmin V — | — — .
v gz 9(z) + J@7) £ VHa7) (= = 27) 2t”z vl gradient descent

23



Let’s exploit the smooth part

f(x) convex and smooth

minimize  f(z) + g(x) g(x) convex (may be not differentiable)

Quadratic approximation of f while keeping ¢

| 1
= argmin g(z) + f(z") + Vf(z")" (2 — 2") 4 57112 = ol — grad?:rwilggcent

k+1

X

Equivalent to

it = argmln tg(z Hz — (2" =tV f(x H2 prox,, (z" — tV f(z"))

23



Let’s exploit the smooth part

f(x) convex and smooth

minimize  f(z) + g(x) g(x) convex (may be not differentiable)

Quadratic approximation of f while keeping ¢
1

| . same as
"t = argmin g(2) + f(z") + V(") (z — ") - o7 |2 —2"[l5 +— gradient descent
Equivalent to Proximal operator
i = argmln tg(z HZ — (2" —tV f(x Hz prox;, (¢ —tV ("))
T !
make g stay close to

small gradient update -



Proximal gradient method

f(x) convex and smooth

minimize  f(z) + g(x) g(x) convex (may be not differentiable)

Iterations
e prox,, (2" —tV f(a"))

Properties

» Alternates between gradient updates of f and proximal updates on ¢
» Usetul If prox,, Is inespensive

» Can handle nonsmooth and constrained problems
24



Problem
minimize f(x) + g(x)

Special cases

- - Iterations
Generalized gradient descent A — prox,, (o — 1V f(a"))

25



Problem
minimize f(x) + g(x)

Special cases

Generalized gradient descent Iterations
d pFT = prox,, (:ck — tVf(a:k))

Smooth Gradient descent
g(r) =0 = prox,(z) =u — oM =gk 1V f(ah)

25



Problem
minimize f(x) + g(x)

Special cases

Generalized gradient descent Iterations
d pFT = prox,, (:ck — tVf(a:k))

Smooth Gradient descent
g(r) =0 = prox,(z) =2 — M =2k 1V (")
Constraints Projected gradient descent

g(x) =Zc(r) = prox,,(r)=Ic(x) — "t =TIo(2" — tV f(z"))

25



Special cases

Generalized gradient descent

Smooth
g(xr) =0 = prox,(r)==1x

Constraints

g(x) =1Zc(x) — proxtg(x) = Il ()

Non smooth

flz) =0

Problem
minimize f(x) + g(x)

Ilterations
I prox,, (:ck — tVf(a:k))

Gradient descent
— Pl = 2k ¢tV f(2F)

Projected gradient descent
— "t =TIo(2" — tV f(z"))

Proximal minimization
—>  z"t! = prox, (")
Note: useful if prox,, is cheap *°



What happens if we cannot evaluate the prox?

At every Iteration, it can be very expensive to evaluate

, 1
prox,(z) = argmin ((2) + 5 = — 3)

Idea: solve it approximately!

20



What happens if we cannot evaluate the prox?

At every Iteration, it can be very expensive to evaluate

, 1
prox,(z) = argmin ((2) + 5 = — 3)

Idea: solve it approximately!

If you precisely control the prox (x) evaluation errors

you can obtain the same convergence guarantees (and rates)
as the exact evaluations.

20

[Schmidt et al. (2011), “Convergence rates of inexact proximal-gradient methods for convex optimization”]



Example: Lasso
Iterative Soft Thresholding Algorithm (ISTA)

minimize (1/2)||Az — b||2 + \||z||;

27



Example: Lasso
Iterative Soft Thresholding Algorithm (ISTA)

minimize (1/2)||Az — b||2 + \||z||;
f(z) g(x)
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Example: Lasso
Iterative Soft Thresholding Algorithm (ISTA)

minimize (1/2)||Az — b||2 + \||z||;
f(z) g(x)

Proximal gradient descent Vf(z)=A"(Ax — b)

kA1 prox,, (2% — tV f(zF)) (component wise

PFOth(f) = Sxe () soft-thresholding)
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Example: Lasso
Iterative Soft Thresholding Algorithm (ISTA)

minimize (1/2)||Az — b||2 + \||z||;
f(z) g(x)

Proximal gradient descent Vf(z)=A"(Ax — b)

kA1 prox,, (2% — tV f(zF)) (component wise

PFOth(f) = Sxe () soft-thresholding)

Closed-form iterations

"t = Sy (27 — tAT (A" — b))
27



(=1

Example: Lasso

Iterative Soft Thresholding Algorithm (ISTA)
Closed-form iterations

minimize  (1/2)|| Az — b]j3 + Az o4 = Sy (a* — AT (Axh b))
Subgradient 0.001/v/k + 1
Subgradient 0.01/(k + 1)
ISTA ¢t = 0.001
0 100 200 300 400 500

28



Example: Lasso

Iterative Soft Thresholding Algorithm (ISTA)
Closed-form iterations

minimize (1/2)||Az — b||2 + \||z||; rFHt = Sy, (aF — tAT (Az® — b))

Subgradient 0.001/v/k + 1

ubgradient 0.01/(k + 1) Better convergence
ISTA ¢ = 0.001

Can we prove convergence
generally?

________________ — Can we combine different
operators?

_______________________

0 100 200 300 400 500 28



Introduction to operators



Operators

An operator 1" maps each point in R" to a subset of R"

» set valued 7'(x) returns a set
- single-valued T'(x) (function) returns a singleton

The domain of T'is the set dom T = {x | T'(z) # ()}

=

30



Operators

An operator 1" maps each point in R" to a subset of R"

» set valued 7'(x) returns a set
- single-valued T'(x) (function) returns a singleton

The domain of T'is the set dom T = {x | T'(z) # ()}

Example

» The subdifferential 0f is a set-valued operator
» The gradient V f Is a single-valued operator

=

30



Graph and inverse operators

Graph
The graph of an operator 7' is defined as

gphT = {(z,y) |y € T'(v)}

In other words, all the pairs of points (x,y) such that y € T'(x).

31



Graph and inverse operators

Graph
The graph of an operator 7' is defined as

gphT = {(z,y) |y € T'(v)}

In other words, all the pairs of points (x,y) such that y € T'(x).

Inverse
The graph of the inverse operator 7! is defined as

gphT ™' = {(y,2) | (z,y) € gphT}

Therefore, y € T'(x) ifand only if x € T 1(y).

31



Zero

r is a zero of T if 0eT(x)

Zero set

The set of all the zeros

T=(0) ={z |0 € T ()}

32



Zero
x 1S a zero of 7' If

Zero set

0eT(x)

The setof allthe zeros  T71(0) ={x |0 T(x)}

Example
f T =0fand f : R" — R, then
0 € T'(x) means that x minimizes f

Many problems
can be posed as finding zeros
of an operator

32



Fixed points

z IS a fixed-point of a single-valued operator 7' if

r="T(x)

Set of fixed points fix7T = {x € domT |z =T(z)} = (I —T) *(0)

Examples
» Identity 7'(x) = z. Any point is a fixed point
» Zero operator T'(x) = 0. Only 0 is a fixed point

33



Lipschitz operators

An operator 7' is L-Lipschitz if

T (z) =T(y)|| < Lijz —yl|,

Vr,y € domT’

34



Lipschitz operators

An operator 7' is L-Lipschitz if
|T(z) —T(y)|| < Lllz —yll, Vz,y€domT

Fact If 7" is Lipschitz, then it is single-valued
Proof If y = T'(z),z =T(z),then [ly — 2| < Lllz —z|| =0 =y =2 N

34



Lipschitz operators

An operator 7' is L-Lipschitz if
|T(z) —T(y)|| < Lllz —yll, Vz,y€domT

Fact If 7" is Lipschitz, then it is single-valued
Proof If y = T'(z),z =T(z),then [ly — 2| < Lllz —z|| =0 =y =2 N

For L =1 we say 7' Is nonexpansive
For L. < 1 we say T’ is contractive (with contraction factor L)

34



Lipschitz operators and fixed points

Given a L-Lipschitz operator T and a fixed point r = T'z,

T —z|| = ||Tz — Tz|| < Ljlz — Z|

/
NS

35



Lipschitz operators and fixed points

Given a L-Lipschitz operator T and a fixed point r = T'z,
|Te —z|| = ||[Te — Tz| < Lijr — z|

A contractive operator (L < 1) can have at most
one fixed point, i.e., fixT = {z}
Proof

If z,y € fix1T and r # y then
|z =yl =[T(z) = T(y)|| < ||z -yl (contradiction) Il

35



Lipschitz operators and fixed points

Given a L-Lipschitz operator T and a fixed point r = T'z,
|Te —z|| = ||[Te — Tz| < Lijr — z|

A contractive operator (L < 1) can have at most
one fixed point, i.e., fixT = {z}
Proof

If z,y € fix1T and r # y then
|z =yl =[T(z) = T(y)|| < ||z -yl (contradiction) Il

A nonexpansive operator (L = 1) need not
have a fixed point

Example T'(x) = x + 2

35



Combining Lipschitz operators

17 1s L1-Lipschitz and 15 Is Lo-Lipschitz

36



Combining Lipschitz operators

17 1s L1-Lipschitz and 15 Is Lo-Lipschitz

The composition 7,75 Is L L,-Lipschitz
Proof ||111Tox — TiToy|l2 < Ly||Tex — Toyl|ls < LiLao|lz —yll2 IR

» Composition of nonexpansive is nhonexpansive
« Composition of nonexpansive and contractive is contractive

36



Combining Lipschitz operators

17 1s L1-Lipschitz and 15 Is Lo-Lipschitz

The composition 7,75 Is L L,-Lipschitz
Proof ||111Tox — TiToy|l2 < Ly||Tex — Toyl|ls < LiLao|lz —yll2 IR

» Composition of nonexpansive is nhonexpansive
« Composition of nonexpansive and contractive is contractive

The weighted average 017 + (1 —0)15, 0 € (0,1) is (AL, 4+ (1—60)L-)-Lipschitz
Proof (exercise)

» Weighted average of nonexpansive is nonexpansive
» Weighted average of nonexpansive and contractive is contractive

36



Fixed point iterations



Fixed point iteration

Apply operator
$k+1 _ T(:ck)

until you reach r € fix T

38



Fixed point iteration

Apply operator

until you reach r € fix T

Main approach

1. Find a suitable 7" such that x € fix T’ solve your problem
2. Show that the fixed point iteration converges

38



Fixed point iteration

Apply operator

until you reach r € fix T

Main approach

1. Find a suitable 7" such that x € fix T’ solve your problem
2. Show that the fixed point iteration converges

Fixed point residual to terminate
r® =T (z") — 2"

38



Contractive fixed point iterations

Contraction mapping theorem
If T'is L-Lipschitz with L < 1 (contraction), the iteration

ka+1 — T(CIZ’k) >
3
converges to x, the unique fixed point of T’ /f \ 7
/ mO
39

N




=N g
Contractive fixed point iterations

Contraction mapping theorem
If T'is L-Lipschitz with L < 1 (contraction), the iteration

"t = T (2")

converges to z, the unique fixed point of T° X T

Properties X
» Distance to ¥ decreases at each step

|z — || < Lfj2" — 2]

(iteration is Fejer monotone)

» Linear convergence rate L 39



Contraction mapping theorem

Proof
The sequence z* is Cauchy
"8 — 2P| < |28 — 2R 4 |2 — 2R (Lipschitz constant)
< (Lé_1 + .-+ 1)ka+1 — ka
< 5 : LWH — 2| (geometric series)

A
=
|
S

40



Contraction mapping theorem

Proof
The sequence z* is Cauchy
"8 — 2P| < |28 — 2R 4 |2 — 2R (Lipschitz constant)
< (Lé_1 + o DT — 2
1 . .
< |zt — 2| (geometric series)
Lk
e

Therefore it converges to a point £ which must be the (unique) fixed point of T’

40



Contraction mapping theorem

Proof
The sequence z* is Cauchy
"8 — 2P| < |28 — 2R 4 |2 — 2R (Lipschitz constant)
< (Lé_1 + o DT — 2
1 . .
< |zt — 2| (geometric series)
Lk
e

Therefore it converges to a point £ which must be the (unique) fixed point of T’

The convergence is linear (geometric) with rate L

|z¥ — | = |T(«"") = T(@)]| < Lll«"" — 2| < L2 — 27| i



Nonexpansive fixed point iterations

If T'is L-Lipschitz with L = 1 (honexpansive), the iteration

need not converge to a fixed point, even if one exists.

41



Nonexpansive fixed point iterations

If T'is L-Lipschitz with L = 1 (honexpansive), the iteration
et = T (2")

need not converge to a fixed point, even if one exists.

Example X
» Let T be a rotation around the origin

+ T is nonexpansive and has a fixed point z = 0 0
- ||2*|| never decreases

41



Averaged operators

We say that an operator 7' is a—averaged with o € (0, 1) if

T=(1—-a)l+aR
and R IS honexpansive.

/N

42



Example o = 1/2

Averaged operators

We say that an operator 7" is a—averaged with o € (0, 1) if T

T=(1—-a)l+aR
and R IS honexpansive.

/N




Averaged operators fixed points

We say that an operator 1" is a—averaged with o € (0, 1) if
T=(1—-a)l+aR

43



Averaged operators fixed points

We say that an operator 1" is a—averaged with o € (0, 1) if
T=(1—-a)l+aR

Fact If ' is a«-averaged, then fixT' = fix R
Proof z=T(z)=(1—a)l(Z)+ aR(Z)
= (1-a)z + aR(z)

ar = aR(Z)

T = R(Z) B

<
<

43



Averaged fixed point iterations

If T"'= (1 - a)l + aR is a-averaged

(a € (0,1) and R nonexpansive), the iteration \
‘ 1

converges to #eZz tuecaratiaets

(also called damped, averaged
or Mann-Krasnosel’skii iteration)

44



Averaged fixed point iterations

If T"'= (1 - a)l + aR is a-averaged

(a € (0,1) and R nonexpansive), the iteration \
‘ 1

converges 10 #e%

(also called damped, averaged
or Mann-Krasnosel’skii iteration)

Properties
» Distance to x decreases at each step (Fejer monotone)

» Sublinear convergence to fixed-point residual

1 _
|R(z") — 2| < |27 — 7 44

- \/(k + 1Da(l — a)




Averaged fixed point iterations

Proof
Use the identity (proof by expanding)
(1 -a)a+ad|® = (1-a)lall* + albp|* — a(l - a)la - b]*

and apply it to
"tz =(1—-a)(z" — ) + a(R(z") — )

45



Averaged fixed point iterations

Proof
Use the identity (proof by expanding)
(1 -a)a+ad|® = (1-a)lall* + albp|* — a(l - a)la - b]*

and apply it to
"tz =(1-a)(2" — ) + a(R(z") — Z)
a b

45



Averaged fixed point iterations

Proof

Use the identity (proof by expanding)
(1 -a)a+ad|® = (1-a)lall* + albp|* — a(l - a)la - b]*
and apply it to
2"tz = (1 —a)(z" —2) + a(R(z") — z)

a b
obtaining

|27 —zff=(1-a

45



Averaged fixed point iterations

Proof
Use the identity (proof by expanding)

(1 -a)a+ad|® = (1-a)lall* + albp|* — a(l - a)la - b]*
and apply it to

a b
obtaining
|27 = 2)* = (1 = a)[la" — Z||* + a|R(z") — 2||* — a(1 - a)||2" — R(z")|]
< (1 — Oz) ® — Z||? + al|z" — CI_ZHQ — a(l — Oz)H.ﬁEk — R(x )|| (honexpansive)
= [|2" - 2|* = a(l = a)llz" — R(z")|]

lterations are Fejer monotone
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Averaged fixed point iterations

Proof (contin
oof (continued) iterate righthand side over kksteps

[" ! =z < ]2 = z2]* —a(l —a) ) _ [a* — R(z")|?
1=0
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Averaged fixed point iterations

Proof (contin
oof (continued) iterate righthand side over kksteps

[o" =z < [la® = 2|* —a(l —a) )|l -

46



Averaged fixed point iterations

Proof (contin
oof (continued) iterate righthand side over kksteps

[" ! =z < ]2 = z2]* —a(l —a) ) _ [a* — R(z")|?

1=0
- 1
: k+1 =12 ’L_R 1 2< O =12
Since ||z z||? > 0, we have ; |z (z)]]" < o0 o) |27 — Z|
k
Using Z |zt — R(z")||* > (k + 1) __rgf)lmlC |z* — R(z")||*, we obtain
P 1=0,..., |
b _ R(x* 2 < 0 =112
Juin N2 = REOIE < gopyaaz gl
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Proof (continued)

Averaged fixed point iterations

iterate righthand side over kksteps

[" ! =z < ]2 = z2]* —a(l —a) ) _ [a* — R(z")|?

1=0
k
- k+1 =112 T ) |2
Since ||z z||? > 0, we have ; |z" — R(z")]|” < ol — o)
k .
Using Z |zt — R(z")||* > (k+1) I(I)link |z* — R(z")||*, we obtain
P 1=0,..., |
T 2\ |2 < 0 =2
i o' = R < G —arlle® 3l
1
Since R is honexpansive, ||z* — R(z")||* < CESVE |2 — 7




Average fixed point iteration convergence rates

1
~ V(k+1a(l - a)

|27 — 7
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Average fixed point iteration convergence rates

1

R ij — $k < :EO — T
IR@") —a*| € —mmeslia® — 3]
Righthand side minimized when o = 1/2
Ilterations
R k k < 2 0 —
|R(z") —z"|| < W;HH@? — | 2P = (1/2)2% + (1/2)R(z¥)
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Average fixed point iteration convergence rates

1 _
|R(z") — 2| < |27 — 7

~ V(k+1a(l = a)

Iterations

IR@*) — 2] < —=|a” — 2] = (1/2)ak + (1/2)R(ab)

Remarks

» Sublinear convergence (same as subgrad method),
INn general not the actual rate
* o = 1/2 is very common for averaged operators 47



How to design an algorithm

Problem
minimize  f(x)

Algorithm (operator) construction

1. Find a suitable 7" such that x € fix T’ solve your problem
2. Show that the fixed point iteration converges
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How to design an algorithm

Problem
minimize  f(x)

Algorithm (operator) construction

1. Find a suitable 7" such that x € fix T’ solve your problem
2. Show that the fixed point iteration converges

If T" is contractive — linear convergence
If T'Is averaged — sublinear convergence

Most first order algorithms can be constructed in this way
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Proximal methods and introduction to operators

Today, we learned to:

* Derive optimality conditions for constrained optimization problems using
subdifferentials

 Define and evaluate proximal operators for various common functions

* Apply proximal operators to generalize gradient descent (vanilla, projected,
proximal)

 Use operator theory to construct general fixed-point iterations and prove
their convergence
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Next lecture

 Monotone operators and operator splitting algorithms
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