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Ed forum

* Convex functions rule: nonincreasing (instead of decreasing) and nondecreasing (instead of
increasing)

* Without strong convexity, objective error acts better than variable error. Does this mean that
generally, we choose objective error in our algorithms for functions without strong convexity
and objective error for functions with strong convexity? Or can we always look at the objective
error for different functions??

(We can look at both and The truth: we look at what’s easiest to prove :))

* |f we don't have L-smooth and strong convex in the whole domain, but within some subset of
the domain, and the initial point is close to the optimal, can we still get linear convergence? It
seems to me that as long as the quadratic approximation is relatively accurate, we can
achieve similar result.

(Yes, local strong convexity. There are also other conditions: regularity condition, Polyak-
Lojasiewicz (PL) condition)






Slow convergence

Very dependent on scaling

f(z) = (21 + 20z3)/2
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Slow convergence



Non-differentiability

Wolfe’s example

ri +yxs  |xe| < ay

flz) = r1 + y|T2)
V147

‘$2| > I

Gradient descent with exact line search gets stuck at x = (0, 0)

In general: gradient descent cannot handle non-differentiable
functions and constraints



Today’s lecture

[Chapter 3 and 8, Beck]
[ee364b Lecture notes, Boyd]
[Chapter 3, Lectures on Convex Optimization, Nesterov]

Subgradient methods

* Geometric definitions

e Subgradients

 Subgradient calculus

* Optimality conditions based on subgradients

 Subgradient methods



Geometric definitions




Supporting hyperplanes

Given a set (' point « at the boundary of C
a hyperplane {z | al z = a' 2} is a supporting hyperplane if

o' (y—x) <0, YyeC




Function epigraph
epi f = {(v,t) | x € dom f, f(x) <t}

epi f

f is convex if and only if &M epi f is a convex set



Sublevel sets

Co ={x €domf | f(z) < a}

==
If fIs convex, then C, Is convex YV«
Note converse not true, e.qg., f(x \
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Subgradients



Gradients and epigraphs

For a convex differentiable function f, I.e.

f(y) > f(x) +Vf(z)" (y —x), Vy€cdomf
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Gradients and epigraphs

For a convex differentiable function f, I.e.

f(y) > f(x) +Vf(z)" (y —x), Vy€cdomf

(Vf(x),—1) defines a supporting hyperplane
to epigraph of f at (z, f(x))

V()
_ —1

Y

(¢

t

X

f(x)

) <0, VY(y,t)cepif

epi f

(Vf(ai), _1)
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Subgradient

We say that g is a subgradient of function f at point z if

fly) > flx)+g" (y—=x), Yy

f(x2) + g3 (x — x2)

e

< f(w2) + g5 (- o)
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Subgradient properties

g is a subgradient of f at x iff (¢, —1)
epi f supports epi f at (z, f(x))

(g3, —1)

(g2, —1)
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Subgradient properties

g is a subgradient of f at x iff (¢, —1)
epi f supports epi f at (z, f(x))

g is a subgradient of f iff f(z) + ¢” (y — )
IS a global underestimator of f

(g3, —1)

1, —1
S (g2, 1)
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Subgradient properties

g is a subgradient of f at x iff (¢, —1)
epi f supports epi f at (z, f(x))

g is a subgradient of f iff f(z) + ¢” (y — )
IS a global underestimator of f

If fis convex and differentiable, V f(x) is

(93, —1) a subgradient of f at z

1, —1
S (g2, 1)

14



(Sub)gradients and sublevel sets

g being a subgradient of f means f(y) > f(z) + g7 (y — x)

Therefore, if f(y) < f(z) (sublevel set), then ¢ (y — z) < 0.
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(Sub)gradients and sublevel sets

g being a subgradient of f means f(y) > f(z) + g7 (y — x)

Therefore, if f(y) < f(x) (sublevel set), then ¢ (y — z) < 0.
L0
f(y) < f(x)
L]
f differentiable at « 7
V f(z) is normal to the sublevel set {y | f(y) < f(z)} Vf(z1)

f nondifferentiable at x
subgradients define supporting hyperplane to sublevel set throgh «
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Subdifferential

The subdifferential 0f(x) of f at x is the set of all subgradients

Of(z)={g|g" (y—=) < f(z) — f(z), Vy€ dom f}
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Subdifferential

The subdifferential 0f(x) of f at x is the set of all subgradients

Of(x)={g]g (y—z) < f&) — f(z), Vye dom [}

Properties

» 0f(x) is always closed and convex, also for nonconvex f.
(intersection of halfspaces)

VA

« If 8f (z) # Dlthen f is convex (converse not true)

- If f is convex and differentiable at x, then 0f(x) = {V f(z)}

» If fisconvexand 0f(x) = {g}, then f is differentiable at x and g = V f(x)
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Example

Absolute value

17



Subgradient calculus



Subgradient calculus

Strong subgradient calculus
Formulas for finding the whole subdifferential 0 f (x)

Weak subgradient calculus
Formulas for finding one subgradient g € 0f(x)

19



Subgradient calculus

Strong subgradient calculus
Formulas for finding the whole subdifferential 0f(r) — 8 —

Weak subgradient calculus
Formulas for finding one subgradient g € 0f(x)

Hard
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Subgradient calculus

Strong subgradient calculus
Formulas for finding the whole subdifferential 0 f(r) —— Hard

Weak subgradient calculus
Formulas for finding one subgradient g € 0f(x) — > Easy

In practice, most algorithms require only one subgradient ¢ at point x

19



Basic rules

Nonnegative scaling: d(af) = adf with a > 0

Addition: 8(f1 + fg) — 8f1 + 8f2

Affine transformation: f(z) = h(Ax + b), then

Of(x) = A* Oh(Ax + b)

20



Basic rules

Pointwise maxima

Finite pointwise maximum f(x) = max f(x), then

df(x) = conv (U{a () | fi(x) = f@)}) (convex hull of active functions)



Basic rules

Pointwise maxima

Finite pointwise maximum f(x) = max f(x), then

df(x) = conv (U{a () | fi(x) = f@)}) (convex hull of active functions)

General pointwise maximum f(x) = max f¢(x), then (SUkaMY

seS

Af(x) = cl (conv (U{a fo(@) | fe(z) = f@)})) (closure of the hull

Note: Equality requires some regularity assumptions (otherwise D)
(e.g. S compact and f; is continuous in s)

21



Example

Piecewise linear function

f(r) = max (a;-rx + b;)

1=1,....m

Subdifferential is a polyhedron
Of(x) =convia; |i € I(x)}

I(x) ={i|a; x +b; = f(x)}




Norms Y ¢
Given fi4= ||z||, we can express it as
|z||, = max 2"z,

l2]]q <1

where ¢ such that 1/p 4+ 1/q = 1 defines the dual norm. Therefore,

Of(x) = argmax z'
[z]lq<1
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Example

Norms
Given f = ||x||, we can express it as

|2l =

T

max 2z~ &,

l2]]q <1

where ¢ such that 1/p 4+ 1/q = 1 defines the dual norm. Therefore,

T

Of(r) = argmax z" x

Example: f(z) =||z||1 = ma}i@j

Of(x)=Jy x---xJ, where J, =

|z]lg<1

[_17 1]
1}

T, < 0
T.= 0

T.> 0

RS54
e
~\ | AN

Weak result alternative

sign(z) € 0f(x)
Ly GomPonsr WAL 23



Basic rules
Composition
f(x) = h(fi(x),..., fe(x)), h convex nondecreasing, f; convex

g=q191 + -+ qrgr € Of(x)

where ¢ € Oh(f1(z),..., fr(xz)) and g; € 0fi(x)
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Basic rules

Composition

Proof
fly) =h(f1(y), - [r(y))
> h(fi(x)+ g1 (y—x),..., fe(z) + g; (v — 2))
> h(fr(x), .. fe(@) + ' (9] (y—2),..., 95 (y — x))
= f(z)+g (y—x)




Optimality conditions




Fermat’s optimality condition

For any convex f, x* Is a local minimizer if and only if

0e€df(x™)

20



Fermat’s optimality condition

For any convex f, x* Is a local minimizer if and only if

0€df(x™)

Proof
A subgradient ¢ = 0 means that, for all y

f(y) = f(z*) + 0" (y — 2%) = f(27)

l@g df(@*) =0

Note differentiable case with 0f(z) = {V f(x)} 26



Example: piecewise linear function

Optimality condition
f(x) = max (a; x4+ b;) - 0€0f(x) =conv{a; | aj x+b; = f(z)}

27



Example: piecewise linear function

Optimality condition
f(x) = max (a; x4+ b;) - 0€0f(x) =conv{a; | aj x+b; = f(z)}

In other words, x> is optimal if and only if 3\ such that
A>0, 1"A=1, » Na; =0
1=1

where \; = 0 if al x* + b; < f(z*)

27



Example: piecewise linear function

Optimality condition
f(x) = max (a; x4+ b;) - 0€0f(x) =conv{a; | aj x+b; = f(z)}

In other words, x> is optimal if and only if 3\ such that
A>0, 1"A=1, » Na; =0
1=1

where \; = 0 if al x* + b; < f(z*)

Same KKT optimality conditions as the primal-dual problems
minimize ¢ maximize b1\

subjectto Az +b < t1 subjectto A'A =0
A>0, 1TA=1 2!



Subgradient method



Negative subgradients are not necessarily descent directions

f(x) = || + 2l v =(1,0)

g1 = (1,0) € 0f(x) and
—g1 IS a descent direction

~

o g2 = (1,2) € 0f(x) and
— (g9 IS Not a descent direction

T ———

29



Subgradient method

Convex optimization problem
minimize f(x) (optimal cost f*)

30



Subgradient method

Convex optimization problem
minimize f(x) (optimal cost f*)

Iterations

el = 2F — 1 g", g € 0f(z™)

g" is any subgradient of f at x"

30



Subgradient method

Convex optimization problem
minimize f(x) (optimal cost f*)

Iterations

el = 2F — 1 g", g € 0f(z™)

g" is any subgradient of f at x"

Not a descent method, keep track of the best point

30



Step sizes

Line search can lead to suboptimal points

Step sizes pre-specified, not adaptively computed
(different than gradient descent)

31



Step sizes

Line search can lead to suboptimal points

Step sizes pre-specified, not adaptively computed
(different than gradient descent)

Fixed: tp =tfork=0,...

(goes to 0 but not too fast)
e.g., tp = 0(1/7{7)

O O
Diminishing: th < 00, Zt’f — ~o Square summable but not summable
k=0 k=0
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Convergence

Assumptions

» fIs convex with dom f = R"
* f(z*) > —oo (finite optimal value)

» f Is Lipschitz continuous with constant G > 0, I.e.

f(2) = fW)l < Gllz —yll2, Y,y

which is equivalent to ||g||s < G, Vg & 8f(x)/ W X

32



Convergence

Lipschitz continuity equivalence
f 1s Lipschitz continuous with constant GG > 0, I.e.

f(z) = f(y)| < Gllz —yll2,

which is equivalent to ||g||lo < G, Vg € df(x), Vo

v,y

33



Convergence

Lipschitz continuity equivalence
f 1s Lipschitz continuous with constant GG > 0, I.e.

f(z) = fy)] < Gllz —yll2,  Vr,y

which is equivalent to ||g||lo < G, Vg € df(x), Vo

Proof
If |g|| < G for all subgradients, pick x,g, € 0f(x)and y,g, € 0f(y). Then,

9y (x —y) > f(z) = f(y) > g, (. —y)
—  Gllz—yl2 > f(z) — f(y) = —Gllz —yl2
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Convergence

Lipschitz continuity equivalence

f 1s Lipschitz continuous with constant GG > 0, I.e.

f(z) = f(y)| < Gllz —yll2,

which is equivalent to ||g||lo < G, Vg € df(x), Vo

Proof

If |g|| < G for all subgradients, pick x,g, € 0f(x)and y,g, € 0f(y). Then,

9y (x —y) > f(z) = f(y) > g, (. —y)
—  Gllz—yl2 > f(z) — f(y) = —Gllz —yl2

If |lg|lo > G for some g € 0f(x). Take y = x

fly)> flx)+g (y—x) = f(z)+]

g/

g
g

v,y

5 such that || — y||. = 1:

0> f(z) +G
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Convergence

Theorem
Given a convex, GG-Lipschitz continuous f with finite optimal value,
the subgradient method obeys

where ||z° — 2*||s < R
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Convergence

Proof

Key quantity: euclidean distance to optimal set (not function value)

— a3 = [l2" — teg"” — 2|3

5 —2tk(g")" (2" — 2) + ;19" 15
< ||z" — 2|5 — 2tk (f(2") — ) + t2llg"]I3

ka+1

|
3
|
3

using f* = f(2*) > f(2*) + (¢")" (z* — a*)



Convergence

Proof (continued)
Apply inequality recursively, obtaining

k
|o" =2t <la® —a*[3 -2 ) ti(f(a’) = f*)+ )t

(/

0
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Convergence

Proof (continued)
Apply inequality recursively, obtaining

k
[o"*t — 2|3 < [la® —2*3 -2 ) t(f(z") — )

(/

0

36



Convergence

Proof (continued)
k k

2> (@t~ f) < RE+GRY £



Convergence

Proof (continued)

Combine it with

> ti(f(@h) = )

[V

00000
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Convergence

Proof (continued)

Combine it with

> ti(f(@h) = )

to get

[V




Implications for step size rules

38



Implications for step size rules

Fixed: tp, =tfork=0,...

R* + G*(k + 1)t?

ko fx o
fbest f ~ 2(k‘|—1)t

May be suboptimal

2
{
lim fE, <+ 2

k— o0 2

38



Implications for step size rules

fkes o f* <
. 21 o t
Fixed: t, =tfork=0,... May be suboptimal
2
R% + G2(k + 1)1 o fE <oy G
ko fx < lim fbestéf |
fbest f — 2(]‘6 n 1)t k— o0 2
> > Optimal
= = = = . 2 L
Diminishing: Y th<oo, » tp=o0 fim fE — f

e.g.,tk:T/(k+1)ortk:7/\/k+1 38



Optimal step size and convergence rate

For a tolerance ¢ > 0, let’s find the optimal ¢, for a fixed &:
k
R+ G?Y 7  t

-

2 S:fl;—o i

< €

39



Optimal step size and convergence rate

For a tolerance ¢ > 0, let’s find the optimal ¢, for a fixed &:
k
R+ G?Y 7  t

-

2 S:fl;—o i

Convex and symmetric in (to, ..., ;) R? + G*(k + 1)t?

S ——

Hence, minimum when ¢; = ¢ 2(k + 1)t

< €

Optimal choice t

39



Optimal step size and convergence rate

For a tolerance ¢ > 0, let’s find the optimal ¢, for a fixed &:
k
R+ G?Y 7  t

P S €
2 S:z’—() Ly
Convex and symmetric in (to, ..., ts) R? + G?(k + 1)t?
Hence, minimum when t; =t 2(k + 1)t
Optimal choice t = .
GvVEk+1
Convergence rate Ilterations required
RG k= O(1/¢)

fkl)cest R f* < ,
Vk+1 (gradient descent £ = O(1/¢))
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Stopping criterion

Terminating when

IS really, really slow.

Bad news

There is not really a good stopping criterion for the subgradient method

40



Optimal step size when f* is known
Polyak step size
fa*) = £

[idlE:

t =

41



Optimal step size when f* is known
Polyak step size
fa*) = £

[idlE:

t =

Motivation: minimize righthand side of

|27 = 2¥[[3 < 2" — 22 = 2t (f(2%) = F*) + L llg" 13

Obtaining  (f(z%) = f)* < (=™ —2*[3 — [|l2" — 2"[|3) G*

41



Optimal step size when f* is known
Polyak step size
fa*) = £

[idlE:

t =

Motivation: minimize righthand side of

|27 = 2¥[[3 < 2" — 22 = 2t (f(2%) = F*) + L llg" 13

Obtaining  (f(z%) = f)* < (=™ —2*[3 — [|l2" — 2"[|3) G*

Applying recursively, ff . — f* < \/glj 1

41



Optimal step size when f* is known
Polyak step size
fa*) = £

[idlE:

t =

Motivation: minimize righthand side of

|27 = 2¥[[3 < 2" — 22 = 2t (f(2%) = F*) + L llg" 13

Obtaining  (f(z%) = f)* < (=™ —2*[3 — [|l2" — 2"[|3) G*

QR Ilterations required
. . k *
Applying recursively, 7 . — f* < i k= O(1/€)

still not great

41



Example: 1-norm minimization

C e T
minimize f(x) = ||Az — bl g= A" sign(Ax —b) € 0f(x)
Fixed step size Diminishing step size
10*;
—— ¢ =0.0010 — 0.01/VEk+1
"""" t = 0.0005 10°: - 0.001/vE + 1
"""""""" t = 0.0001 ‘\“ 0.01/0{j i 1)
. T t — 00001 \ o POIyak
_\
1074 —— __.E__E___-___.____
—5- | | | | | —9 | | | | |
10 0 1000 2000 3000 4000 5000 6000 10 0 1000 2000 3000 4000 5000 6000

k k



Example: 1-norm minimization

C e T
minimize f(x) = ||Az — bl g= A" sign(Ax —b) € 0f(x)
Fixed step size Diminishing step size
10*;
—— ¢ =10.0010 —— 0.01/VEk+1
"""" t = 0.0005 10°: - 0.001/vE + 1
"""""""" t = 0.0001 ‘\“ 0.01/0{j i 1)
. T t — 00001 \ o POIyak
_\
10~ —= __.E__E___-___.____
—5- | | | | | —5- | | | | |
10 0 1000 2000 3000 4000 5000 6000 10 0 1000 2000 3000 4000 5000 6000
k k

Efficient packages to automatically compute (sub)gradients:

Python: JAX, PyTorch
Julia: Zygote.|jl, ForwardDift.jl, ReverseDift.]l



Summary subgradient method

« Simple
- Handles general nondifferentiable convex functions
- Very slow convergence O(1/¢?)

* No good stopping criterion

43



Summary subgradient method

« Simple
- Handles general nondifferentiable convex functions
- Very slow convergence O(1/¢?)

* No good stopping criterion

Can we do better?

Can we incorporate constraints?
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Subgradient methods

Today, we learned to:

 Define subgradients

* Apply subgradient calculus

* Derive optimality conditions from subgradients

* Define subgradient method and analyze its convergence
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Next lecture

* Proximal algorithms
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