ORF522 - Linear and Nonlinear Optimization

14. Gradient descent

Bartolomeo Stellato — Fall 2020

Ed forum

* For unconstrained: have seperate necessary conditions and sufficient
condition; do we have a compacted necessary and sufficient condition?

* Could you explain again how to make KKT conditions sufficient?

* Why does the normal cone condition involve the whole set?

KKT necessary conditions for optimality

minimize f(x)

subjectto g¢g;(x) <0, 2=1,...,m
hz(x):(), i:1,...,p
Theorem
If * Is a local minimizer and LICQ holds, then there exists y*, v* such that
m P
Vi(x™)+ Z y:Vagi(x™) + Z vy Vhi(x*) =0 stationarity
1—=1 1=1
* > dual feasibility
gi(z™) <

| primal feasibility
, 1=1,...,p

0
0, 2=1,....,m
0
0, 2=1,...,m complementary slackness

4

Strong duality theorem

minimize f(x)
subjectto g¢g;(x) <0, i=1,....,m
— 0,

h@(CIZ’) izl,...,p
Theorem
If the problem is convex and there exists at least a strictly feasible z, i.e.,

gi(r) <0, 2=1,...,m, (fornon-affine g;)
hz(CC):(), iZl,...,p
then p* = d* (strong duality holds)

Slater’s condition

Strong duality theorem

minimize f(x)
subjectto g¢g;(x) <0, i=1,....,m
— 0,

h@(CIZ’) izl,...,p
Theorem
If the problem is convex and there exists at least a strictly feasible z, i.e.,

gi(r) <0, 2=1,...,m, (fornon-affine g;)
hz(CC):(), iZl,...,p
then p* = d* (strong duality holds)

Slater’s condition

Remarks

 For nonconvex optimization, we need harder conditions
* (Generalizes LP conditions [Lecture 7]

KKT for convex problems

Always sufficient
For x*, y*, v* that satisfy the P§KT conditions

f(@*) = f@) +) yrgi(@®)+ > vihi(z*) = L(x*, y*v*) (compl slackness)

Vflx™)+ nyVgi(x*) + ZU;Vhi(x*) =0 = gy, v*) = Lz",y*,0v")

Therefore, f(xz*) = g(y*,v*) and x*, y*, v* are primal-dual optimal

(convexity)

KKT for convex problems

Always sufficient
For :c*, y* V> that satisfy the KKT conditions

f(a”) + Z y; 9i(x™) + Z v; i UENTC (compl slackness)

) + Zy Vagi(x™) + Z v;Vhi(z = g(y",v") = L(z",y",v") (convexity)

Therefore, f(x*) = g(y*,v)and r*, y*, v* are primal-dual optimal

Necessary when constraint qualifications (Slater’s) condition holds

If «* strictly primal feasible (Slater’s), then strong duality f(x*) = g(y*, v™)
Therefore, dual optimum attained and KKT conditions satisfied

Normal cone condition

First-order necessary optimality condition
If * 1S a local minimum, then

Vi) (y—a*)>0, VyeC

Normal cone condition

First-order necessary optimality condition
If * 1S a local minimum, then

Vi) (y—a*)>0, VyeC

Normal cone
Ne(z)={g|g (y—=z) <0, forallyeC}

Reformulated condition
—Vf(z*) € No(z¥)

Normal cone condition

First-order necessary optimality condition
It x* is a local minimum, then

—x¥) >0, VyedCl

ke) >€&\
/Ngmal cone

Ne(z)={g|g (y—x) <0, foralyeC}

Reformulated condition
memark N ~Vf(a") € Ne(a™)
If f and C are convex, then it is

necessary and sufficient
[Section 4.2.3, B and V] 7

Today'’s lecture

[Chapter 1 and 2, Lectures on Convex Optimization, Nesterovj
[Chapter 9, Convex Optimization, Boyd and Vandenberghe]
[Chapter 5, First-Order Methods in Optimization, Beck]

Gradient descent algorithms
* Optimization algorithms and convergence rates
* Gradient descent
* Fixed step size:
e guadratic functions, smooth and strongly convex, only smooth
* Line search: can we adapt the step size?

* |ssues with gradient descent

Optimization algorithms and
convergence rates

Iterative solution idea

1. Start from initial point z°

2. Generate sequence {z"} by applying an operator

3. Converge to fixed-point z* = T'(z*) for which
necessary optimality conditions hold

Note: typically, we have f(z*1) < f(zF)

10

Convergence rates

Rank methods by how fast they converge

Error function ¢(z) > 0 such that e(x*) = 0

» Cost function distance: e(z) = f(z) — f(a™)

» Solution distance: e(z) = ||x — x™||2

11

Convergence rates

Rank methods by how fast they converge

Error function ¢(z) > 0 such that e(x*) = 0

» Cost function distance: e(z) = f(z) — f(a™)

» Solution distance: e(z) = ||x — x™||2

Convergence rate
A sequence converges with order p and factor c if
6(:13k+1)

I =
b o e(xh)p y

11

Convergence rates types

Linear convergence (geometric) (c € (0, 1))
e(z" 1) < ce(z")

Examples
e(z") = 0.6"

12

Convergence rates types

Linear convergence (geometric) (c € (0, 1))
e(z" 1) < ce(z")

Sublinear convergence (slower than linear)

M
k1Y) < with —0.5.1.2. ...
6(2j) S (k—l— 1)q7 q y, Y, Y,

Examples
e(z") = 0.6"
1
k
e(z”) = —

12

Convergence rates types

Linear convergence (geometric) (c € (0, 1)) Examples
e(z") < ce(x™) e(z") = 0.6"

Sublinear convergence (slower than linear)

V 1
k - ——
Pl < with ¢=0.5,1,2,... e(z”) =
G(x) =~ (]C I 1)q7 q g Ly &y \/E
Superlinear convergence (faster than linear) 1

If it converges linearly p = 1 for any factor c € (0, 1) e(fk) ~ Lk

Convergence rates types

Linear convergence (geometric) (c € (0, 1))
e(z" 1) < ce(z")

Sublinear convergence (slower than linear)

M
k1Y) < with —0.5.1.2. ...
6(2j) S (k—l— 1)q7 q y, Y, Y,

Superlinear convergence (faster than linear)
If it converges linearly p = 1 for any factor c € (0, 1

—
Quadratic convergence (c can be > 1) e(ﬁ): “é

e(z" 1) < ce(x™)?

N—"

Examples
e(z") = 0.6"
1
k
e(z”) = —
(") 7
1
e(xk) = %
e(z") =0 0(2")

12

Convergence rates

Number of iterations

Solve inequality for &

13

Convergence rates

Number of iterations

Solve inequality for &

Example: linear convergence (c € (0, 1))

e(z" 1) < ce(x™)

e(z"F) <e = c("e(a’)<e = k> 0O(og(1l/e))

13

Convergence rates

Number of iterations

e(z" 1) < e

Solve inequality for &

Example: linear convergence (c € (0, 1))

e(z" 1) < ce(x™)

— c"e(z’) <e = k> O(log(1/e))

Example: sublinear convergence
M

e(zF 1) < = k> 0(1/e)

k41

13

Convergence rates

Examples

=~
N -

-
~_~__—
——
——
e
.. T ————

-------- 1/v/k (sublinear)
10~ : - -+ - 1/k (sublinear)
;|
y —— 0.6" (linear)
\
106 -_{F‘ 1/(k2) (superlinear)
||| - 0.9?") (quadratic)
| -
i
107" i
| :
\ 3
P
L
10—10 l | . .
10 20 30 40 50
k

14

Optimization methods overview

Zero order. They rely only on f(xz). Not possible to evalu-
ate the curvature. Extremely slow.

Examples: Random search, genetic algorithms, particle
swarm optimization, simulated annealing, etc.

15

Optimization methods overview

Zero order. They rely only on f(xz). Not possible to evalu-
ate the curvature. Extremely slow.

Examples: Random search, genetic algorithms, particle
swarm optimization, simulated annealing, etc.

First order. They use f(z) and Vf(x) or 0f(x). Inexpen-
sive iterations make them extremely popular in large-scale
optimization and machine learning

Examples: Gradient descent, stochastic gradient descent,
coordinate descent, proximal algorithms, ADMM.

15

Optimization methods overview

Zero order. They rely only on f(xz). Not possible to evalu-
ate the curvature. Extremely slow.

Examples: Random search, genetic algorithms, particle
swarm optimization, simulated annealing, etc.

First order. They use f(z) and Vf(x) or 0f(x). Inexpen-
sive iterations make them extremely popular in large-scale
optimization and machine learning

Examples: Gradient descent, stochastic gradient descent,
coordinate descent, proximal algorithms, ADMM.

Second order. They use f(x), Vf(z) and V*f(z). Expen-
sive iterations but very fast convergence

Examples: Newton method, BFGS, interior-point methods.

15

Optimization methods overview

Zero order. They rely only on f(xz). Not possible to evalu-
ate the curvature. Extremely slow.

Examples: Random search, genetic algorithms, particle
swarm optimization, simulated annealing, etc.

First order. They use f(z) and Vf(x) or 0f(x). Inexpen-
sive iterations make them extremely popular in large-scale
optimization and machine learning

Examples: Gradient descent, stochastic gradient descent,
coordinate descent, proximal algorithms, ADMM.

Second order. They use f(x), Vf(z) and V*f(z). Expen-
sive iterations but very fast convergence

Examples: Newton method, BFGS, interior-point methods.

(our focus)

15

lterative descent algorithms

Problem setup

Unconstrained smooth optimization

minimize f(x) re R"

f i1s differentiable

17

General descent scheme

Iterations
- Pick descent direction d*, i.e., Vf(z*)Td" < 0

* Pick step size i,

e Tl =gk 1 tFdk kE=0,1,...

18

Gradient descent
[Cauchy 1847]

Choose d;, = —V f(z")

N
Interpretation: steepest descent (Cauchy-Schwarz) Vi
argmin Vf(z)'d= -V f(z) a a\

{d|[|d]|2<1} \

19

Gradient descent
[Cauchy 1847]

Choose d;, = —V f(z")

Interpretation: steepest descent (Cauchy-Schwarz)

argmin Vf(z)'d= -V f(x)
tdlf[d]l2<1}

lterations
2"t =2F 4, Vf(2®), k=0,1,...

(very cheap iterations)

19

Quadratic function interpretation

1

Quadratic approximation, replacing Hessian V2 f(z") with t_[
k
. 1
ot = argmin (") + V£ (") (g = ") + 5l — 2
Y

Set gradient with respect to y to 0...
et = 2 — , Vf(2")

20

Quadratic function interpretation

1

Quadratic approximation, replacing Hessian V2 f (") with —1I

1

ot = argmin f(a*) + V(") (y =) + Selly = 25§
Y
Set gradient with respect to y to 0...
k+1 k k
T =" — .V f(a¥)
f(a**)

L
proximity to x*)

20

Fixed step size

Fixed step size

tp =tforall k=0,1,...

f(z) = (x1 + 20x3) /2 z’ = (20, 1)
- t =0.15

It diverges

'“!“'F“'i““h““'!““““““"‘“““““'“E““'E““E“'!“%“!

////// \\\\\

22

Fixed step size

tp =tforall k=0,1,...

f(z) = (a1 + 2023)/2

—_

\

I
-

—
>

\

\
\

) = (20,1)
t = 0.01

too slow

23

Fixed step size

tp =tforall k=0,1,...

f(x) = (27 + 20x3) /2 = (20, 1)
— =010
-
~— / it oscillates

Fixed step size

tp =tforall k=0,1,...

f(z) = (a1 + 2023)/2

e

I
—

\

R BIEERC00000 S0-0-0-0-0-0-&-0-&

\
s

—
>

JRERHHROR0 X OO0 & & & §

S

/

\
\

I

' = (20,1)
t = 0.05

just right!

It converges In 149 iterations

25

Fixed step size

tp =tforall k=0,1,...

f(x) = ($% + 2():133)/2 o (20, 1)
- - t = 0.0

R BIEERC00000 S0-0-0-0-0-0-&-0-&

\ //
——

// \
/ \ [[]
- — just right!

LT 33 © I t C O n Ve rg e S i n 1 4 9 i te rat i O n S
\
\

How do we find the best one?

/

_ 25

Quadratic optimization

Quadratic optimization

minimize f(z) = %(x —)" P(x — 2*)

Study behavior of
" = btV f(2")

where P >~ (

Vfi(z) = P(r —x7)

27

Quadratic optimization

1
minimize f(x) = 5(x — ") P(x — %) where P >~ 0

Vfi(x)=Plzx—x")

Study behavior of
" = btV f(2")

Remarks
» Always possible to write QPs in this form

» Important for smooth nonlinear programming. Close to «*,
V f(xz*) = 0and V- f(z*) dominates other terms of the Taylor expansion. 27

Quadratic optimization convergence

Theorem

Ift, =1t = ° then
S)\min(P) _|_>\maX(P),

d(P)—1\"
k_ * < con O_ *
ot = ol < (S) et = ol

28

Quadratic optimization convergence

Theorem
2
Ift, =1 = , then
")\min(P) T AmaX(P)
ot = ol < (SRAPI=IN 0
— L — X
v 2= cond(P) + 1 ’
Remarks
» Linear (geometric) convergence rate: O(log(1/¢)) iterations

Amax (£)

» It depends on the condition number of P: cond(P) = -

28

Quadratic optimization convergence

Proof
Rewrite iterations using Vf(z") = P(z" — z*)

et p* =2t —a* —tVf(2F) = (I — tP)(z" — 2*)

Therefore ||z° T — 2* ||y < ||[I — tP]|2]|x® — 2*|-

29

Quadratic optimization convergence

Proof
Rewrite iterations using Vf(z") = P(z" — z*)

et p* =2t —a* —tVf(2F) = (I — tP)(z" — 2*)

Therefore ||z° T — 2* ||y < ||[I — tP]|2]|x® — 2*|-

Let’s rewrite ||I — tP||o:

Matrix norm: ||M || = max [\; (M)

29

Quadratic optimization convergence

Proof
Rewrite iterations using Vf(z") = P(z" — z*)

et p* =2t —a* —tVf(2F) = (I — tP)(z" — 2*)

Therefore ||z° T — 2* ||y < ||[I — tP]|2]|x® — 2*|-

Let’s rewrite ||I — tP||o:
Matrix norm: ||M || = max [\; (M)

Decomposition: I — tP = Udiag(1 — t\)U? where P = Udiag(\)U?*

29

Quadratic optimization convergence

Proof
Rewrite iterations using Vf(z") = P(z" — z*)

et p* =2t —a* —tVf(2F) = (I — tP)(z" — 2*)

Therefore ||z° T — 2* ||y < ||[I — tP]|2]|x® — 2*|-

Let’s rewrite ||I — tP||o:
Matrix norm: ||M |5 = max A (M)
Decomposition: I —tP = Udiag(1 — t\)U! where P = Udiag(\)U?*
Theretore, ||[I —tP||; = max 1 —tA\;(P)]
= max{|l — tAnmax(P)|, |1 — tAmin(P)|}

29

Quadratic optimization convergence

Proof (continued)

|2t — 2*[|y < [= tP]2[la" — 2|

In order to have the fastest convergence, we want to minimize
|1 — tPl|lo = max{|l — tAnax(P)|, |1 — tAmin(P)|}

30

Quadratic optimization convergence

Proof (continued)

|2t — 2*[|y < [= tP]2[la" — 2|

In order to have the fastest convergence, we want to minimize

|1 — tPl|lo = max{|l — tAnax(P)|, |1 — tAmin(P)|}
2

)\max(P) -+)\min(P)

— . =

30

Quadratic optimization convergence

Proof (continued)

|2t — 2*[|y < [= tP]2[la" — 2|

In order to have the fastest convergence, we want to minimize

|1 — tPl|lo = max{|l — tAnax(P)|, |1 — tAmin(P)|}
2

)\max(P) -+)\min(P)

— . =

Amax(P) — Amin (P) cond(P) — 1
Therefore, || — tP|o = —
H H2 ()\maX(P) +)\min > (

30

Quadratic optimization convergence

Proof (continued)

|2t — 2*[|y < [= tP]2[la" — 2|

In order to have the fastest convergence, we want to minimize

|1 — tPl|lo = max{|l — tAnax(P)|, |1 — tAmin(P)|}
2

— . =
)\maX(P) +)\min(P)

)\maX(P) o)\min(P)> _
Amax (P) + Amin (P)

Therefore, (|1 — tP||s = (

Apply the inequality recursively to get the result

Optimal fixed step size

tp =tforall k=0,1,...

f(x) = (a7 + 2023) /2 ¥ = (20,1)
t =2/(1+20) = 0.0952

/ \
// \

7 \ Optimal step size
It converges in 80 iterations

SR ORO

/

/
I

I

31

When does it converge?

Iterations Contraction factor
|2* — 2|2 < |z — ¥ |2 c = ||I —tP||2 = max{|l — tAmax(P)|, |1 — tAmin (P)|}

Ift <2/Amax(P) then c<1

32

When does it converge?

Iterations Contraction factor
|2* — 2|2 < |z — ¥ |2 c = ||I —tP||2 = max{|l — tAmax(P)|, |1 — tAmin (P)|}

Ift <2/Amax(P) then c<1

Oscillating case
f(x) = (z7 + 20x3)/2

—
\
\ t =0.1 =2/20 = 2/Amax(P)

P
-

—
>

32

\
\

When does it converge?

Iterations Contraction factor
|2* — 2|2 < |z — ¥ |2 c = ||I —tP||2 = max{|l — tAmax(P)|, |1 — tAmin (P)|}

Ift <2/Amax(P) then c<1

Oscillating case
f(x) = (z7 + 20x3)/2

I

\

\
\ t =0.1=2/20 = 2/A\nax(P)

/ Step size ranges
-
—
—

P
-

—
>

» If ¢t < 0.1, It converges
 |ft =0.1, it oscillates
» If¢ > 0.1, it diverges 32

\
\

Strongly convex and smooth
problems

Smooth functions

A convex function f is L-smooth if

Fu) < (@) + V@) (g —2) + 5l —yl3. vy

Smooth functions

A convex function f is L-smooth if

-
2

fly) < fl@)+ Vi) (y—2)+ =z —yl3, Vz,y

First-order characterization

IVf(x) =Vl < L|lz—yll2, Vr,y (strongly monotone gradient)
(V)= Vi) (@—y) = %Ilvf () =VfWlz. Va,y (co-coercive gradient)

34

Smooth functions

A convex function f is L-smooth if

Fu) < (@) + V@) (g —2) + 5l —yl3. vy

First-order characterization
IVf(x) =Vl < L|lz—yll2, Vr,y (strongly monotone gradient)

(Vi) =Vfy) (@ —y) > %va () =ViWlz Yo,y (co-coercive gradient)

Second-order characterization
VQf(QIZ‘) = L], Va 34

Gradient monotonicity for convex functions

A differentiable function f is convex if and only if dom f Is convex and

(Vi(@) =VIy) (z—y) >0, Vry L

. 4 /\
the gradient Is a monotone mapping \/ |
L =

|
Proof (only =)

Combine f(y) > f(x) + Vf(z)! (y —x)and f(z) > f(y) +Vf(y)' (z —vy) IR

35

Strongly convex functions

A function f is u-strongly convex if

fly) > f(x)

Vi) (y—x)

I
e =yl Yoy

36

Strongly convex functions

A function f is u-strongly convex if

fly) > flz)+ Vi) (y—)

First-order characterization
(V@)= Vi) (z—y) > plz—y|, Vry

o

(strongly monotone gradient)

36

Strongly convex functions

A function f is u-strongly convex if

fy) = f(@)+ V@) (y—2)+ Sllr—yl3, Vay

First-order characterization
(Vi) =V (z—vy) > pullzr—yl|, Vv (strongly monotone gradient)

Second-order characterization
V2f(x) = pl, Vo

Strongly convex and smooth functions

f is u~strongly convex and L-smooth if

0 = pl X V*f(x) X LI, Va

Jf @)+ V@) (- o) -

Useful fact

Fact
If fis u-strongly convex and L-smooth, we have
L 1
B T(r oy > M 2 -
(Vf(z) = Vi) (z—-y) > M+L||x yll3 L

for all x, vy

(z) = Vf(W)ll2

38

Useful fact

Fact

If fis u-strongly convex and L-smooth, we have

(V@) =V y) (z-y)
for all x,y
Proof
Define h(z) = f(x) - |5

2

> M

T pu+ L

1

|z — y3 -

pn+ L

[Vf(z) = V)l

—> h(z)is (L — m)—smooth

—> write co-coercivity of VA

38

Strongly convex and smooth convergence

Theorem)
Let f be u-strongly convex and L-smooth. If ¢t = L then
k—1\"
HZCk_gj*HZS (,{4_1) H;UO_;(;*HZ

where k = L/ is the condition number

39

Strongly convex and smooth convergence

Theorem

2
Let f be u-strongly convex and L-smooth. If ¢t = I then
v
k—1\"
HZCIC _ gj*H2 S (,{_|_ 1) HQEO _ ;(;*HQ

where k = L/ is the condition number

Remarks
» Linear (geometric) convergence rate O(log(1/¢)) iterations

- Generalizes quadratic problems where
t =2/(Amax(P) + Amin(P)) and cond(P) instead of

- Dimension-free contraction factor, if x does not depend on n

39

Strongly convex and smooth convergence

Proof
Given iterations 2"t = 2% — tV f(z*)

—a*|3 = [|2" — ¢tV f(2¥) — 2*|]3

= ||z" — z*||5 — 2tV f(2)T (" — 2*) + 2|V f(2")||3

|2

40

Strongly convex and smooth convergence

Proof
Given iterations 2"t = 2% — tV f(z*)

— |3 = $k—?fo(") =213
= ||z" — z*||5 — 2tV f(2)T (" — 2*) + 2|V f(2")||3

< ([1-—-1¢ — t| 7
< (1- 6255) I =B+ ¢ (£ = ==) I97) IR

2ul.
< (1—t /)Haz |2
pn+ L

|2

Note: step 3 follows from Fact from two slides ago and Vf(z*) = 0

O 26 40

Strongly convex and smooth convergence

Proof (continued)

Inequality
211

k * k * _
— < — c= 11—t
Hx L ||2 —CHQj X HQ (" | T

)

41

Strongly convex and smooth convergence

Proof (continued)

Inequality
201
k4l * * H
_ c=11-—-1
o= oy < lla® —] (1- 2
Optimal step size Optimal contraction factor
} — 2 K — 1

pot L T k1

)

41

Strongly convex and smooth convergence

Proof (continued)

Inequality
21
ottty <ellet -2y o= (1-t
Optimal step size Optimal contraction factor
} — 2 o K — 1
pot L T k1

Apply the inequality recursively to get the result

)

41

Dropping strong convexity

Many functions are not strongly convex
f(x)=1/x

X

Without strong convexity, the optimal solution might be very far (z* = oo) but
the objective value very close

43

Many functions are not strongly convex
f(x)=1/x

X

Without strong convexity, the optimal solution might be very far (z* = oo) but
the objective value very close

Focus on objective error f(z*) — f(x*) instead of variable error ||z" — 2*||s 43

Null growth directions without strong convexity

Hessian V“ f(z) has some null growth directions (it can even be 0)

44

Null growth directions without strong convexity

Hessian V“ f(z) has some null growth directions (it can even be 0)

1
Gradient descent interpretation: replace V= f(x*) with —1
k
. 1
o1 = argmin £ (%) + V1 (H) (g — 2*) 4+ 5y — 23

) 2t

44

Null growth directions without strong convexity

Hessian V“ f(z) has some null growth directions (it can even be 0)

Lo
Gradient descent interpretation: replace V= f(x*) with —1
k
. 1
ot = argmin f(@%) + V(27)" (y —2") + 5y — 2"
Y

How to pick a quadratic approximation?

Use L-Lipschitz smoothness

44

Convergence for smooth functions

Theorem
Let f be L-smooth. If t < 1/L then gradient descent satisfies

|27 — ™3

f@") = f") < =2

Sublinear convergence rate O(1/¢) iterations (can be very slow!)

45

Convergence for smooth functions
Proof
Use L-Lipschitz constant

Fh) < F(ab) + VAT (@ - ab) 4 7l - 2t

46

Convergence for smooth functions
Proof

Use L-Lipschitz constant

Fh) < F(ab) + VAT (@ - ab) 4 7l - 2t

Plug in iterate "1 = 2% — tV f(2*) in right-hand side

Fa) < f@h) = (1=) VG

46

Convergence for smooth functions
Proof
Use L-Lipschitz constant

Fh) < F(ab) + VAT (@ - ab) 4 7l - 2t

Plug in iterate "1 = 2% — tV f(2*) in right-hand side

) < f(ah) - (1 “) IV ()]

2
— IR N
Take 0 < ¢ < 1/L we get <%J

IVf(z¥)||3 (non increasing cost)

fa"T) < fa¥)

46

Convergence for smooth functions

Proof (continued)

Convexity of f implies f(z*) < f(a*) + Vf(2")! (zF — z*)

47

Convergence for smooth functions

Proof (continued)
Convexity of f implies f(z*) < f(a*) + Vf(2")! (zF — z*)

t
Therefore, we rewrite f(z""1) < f(z*) 5 |V f(z")||5 as

FhHh) = @) < VI @ -) — S|V (b))
= (||a: — 23— flz — o* — £V £ () 3)

— Iz =273

47

Convergence for smooth functions

Proof (continued)
Summing over the iterations with: =1, ...,k

k

1

272 2" — 2] — [|2* = 2¥)3)
1=1

1
- > (||:c0 -~)}/H

M-
e
N
=

48

Convergence for smooth functions

Proof (continued)

Summing over the iterations with: =1, ...,k
k k
i 1 i— i
> (fa) = F@) < 52 >0 (et = a3 = flaf — 2 3)
1=1 1=1
1 0 * || 2 k * || 2
= o7 (27 = 2%z = [la% — 2*[]3)
1
< - la® — a3

Since f(z") is non-increasing, we have

48

Issues with computing the optimal step size

Quadratic programs
Therule t = 2/(Amax(P) + Amin(P)) can be very expensive to compute

It relies on eigendecomposition of P (iterative factorizations...)

49

[Lecture 24, 25, Numerical Linear Algebra, Trefethen and Bau]

Issues with computing the optimal step size

Quadratic programs

Therule t = 2/(Amax(P) + Amin(P)) can be very expensive to compute
It relies on eigendecomposition of P (iterative factorizations...)

Smooth and strongly convex functons
Very hard to estimate 1 and L in general

[Lecture 24, 25, Numerical Linear Algebra, Trefethen and Bau] 49

Issues with computing the optimal step size

Quadratic programs
Therule t = 2/(Amax(P) + Amin(P)) can be very expensive to compute

It relies on eigendecomposition of P (iterative factorizations...)

Smooth and strongly convex functons
Very hard to estimate 1 and L in general

Can we select a good step-size as we go?

49

[Lecture 24, 25, Numerical Linear Algebra, Trefethen and Bau]

LIne search

Exact line search

Choose the best step along the descent direction

t, = argmiby f(z¥ — 1V f(2"))

>0

Used when
 computational cost very low or
e there exist closed-form solutions

In general, impractical to perform exactly

51

Backtracking line search

Condition

Armijo condition: forsome 0 < a <1

fa® =tV f(z")) < f(a") — at|V f(z7)]]3

Guarantees
sufficient decrease |
in objective value admissible o = |

52

Backtracking line search

Iterations
Initialization %t}
t=1, 0<a<l1l/2, 0<p<1

while f(zF — tV f(2*)) > f(z*) — at||V f(z*)]|2
t + Bt

admissible

53

Backtracking line search

flz) =

(x% + 20;1;3)/2

I
-

\

\

CO ~NECN ,,@\
ﬁ@‘@‘@@@fﬁ S ‘® \

//

g
>\

\
\

‘//
I

(20, 1)

Backtracking line search

Converges in 31 iterations

54

Backtracking line search convergence

Theorem

Let f be L-smooth. If ¢t < 1/L then gradient descent with backtracking line
search satisfies , ,
|27 — 2|5

2t mink

f(z®) — f(a*) <

where t,,;, = min{1, 5/L}

Proof almost identical to fixed step case

55

Backtracking line search convergence

Theorem

Let f be L-smooth. If ¢t < 1/L then gradient descent with backtracking line
search satisfies , ,
|27 — 2|5

2t mink

f(z®) — f(a*) <

where t,,;, = min{1, 5/L}

Proof almost identical to fixed step case

Remarks
- If 8 =~ 1, similar to optimal step-size (6/L vs 1/L)
» Still convergence rate O(1/¢) iterations (can be very slow!)

55

(GGradient descent issues

Slow convergence

Very dependent on scaling

f(z) = (21 + 20z3)/2

\
\

- —
—

\
\

\

ﬁ-'@@@@&*@g@ el \@" e

——
T ———

//.
I

Slow convergence

57

Non-differentiability

Wolfe’s example

i +yx5 22| < 14
flx) = r1 + 7|z T2| > 11 T *

V147

Gradient descent with exact line search gets stuck at x = (0, 0)

58

Non-differentiability

Wolfe’s example

ri +yxs |xe| < ay

flz) = r1 + y|T2)
V147

‘$2| > I

Gradient descent with exact line search gets stuck at x = (0, 0)

/\a
In general: gradient descent cannot handle non-differentiable ,lCCX)
functions and constraints 58

Gradient descent

Today, we learned to:

Classify optimization algorithms (zero, first, second-order)

Derive and recognize convergence rates

Analyze gradient descent complexity under smoothness and strong convexity

(linear convergence, fast!)

Analyze gradient descent complexity under only smoothness
(sublinear convergence, slow!)

Apply line search to get better step size

Understand issues of Gradient descent

59

Next lecture

 Subgradient methods

60

