ORF522 – Linear and Nonlinear Optimization

14. Gradient descent

Ed forum

- For unconstrained: have seperate *necessary conditions* and *sufficient condition*; do we have a compacted necessary and sufficient condition?
- Could you explain again how to make KKT conditions sufficient?
- Why does the normal cone condition involve the whole set?

Recap

KKT necessary conditions for optimality

minimize
$$f(x)$$
 subject to $g_i(x) \leq 0, \quad i=1,\ldots,m$ $h_i(x)=0, \quad i=1,\ldots,p$

Theorem

If x^* is a local minimizer and LICQ holds, then there exists y^*, v^* such that

$$\nabla f(x^*) + \sum_{i=1}^{m} y_i^* \nabla g_i(x^*) + \sum_{i=1}^{p} v_i^* \nabla h_i(x^*) = 0$$

stationarity

$$y^* \ge 0$$
$$g_i(x^*) \le 0,$$

dual feasibility

$$g_i(x^*) \le 0, \quad i = 1, ..., m$$

 $h_i(x^*) = 0, \quad i = 1, ..., p$

$$y_i^{\star} g_i(x^{\star}) = 0,$$

$$i=1,\ldots,m$$

 $y_i^{\star}g_i(x^{\star})=0, \quad i=1,\ldots,m$ complementary slackness

Strong duality theorem

minimize
$$f(x)$$
 subject to $g_i(x) \leq 0, \quad i=1,\ldots,m$ $h_i(x)=0, \quad i=1,\ldots,p$

Theorem

If the problem is convex and there exists at least a strictly feasible x, i.e.,

$$g_i(x) < 0, \quad i = 1, \dots, m,$$
 (for non-affine g_i) Slater's condition $h_i(x) = 0, \quad i = 1, \dots, p$

then $p^* = d^*$ (strong duality holds)

Strong duality theorem

minimize
$$f(x)$$
 subject to $g_i(x) \leq 0, \quad i=1,\ldots,m$ $h_i(x)=0, \quad i=1,\ldots,p$

Theorem

If the problem is convex and there exists at least a strictly feasible x, i.e.,

$$g_i(x) < 0, \quad i = 1, \dots, m,$$
 (for non-affine g_i) Slater's condition $h_i(x) = 0, \quad i = 1, \dots, p$

then $p^* = d^*$ (strong duality holds)

Remarks

- For nonconvex optimization, we need harder conditions
- Generalizes LP conditions [Lecture 7]

KKT for convex problems

Always sufficient

For x^*, y^*, v^* that satisfy the KKT conditions

$$f(x^{\star}) = f(x^{\star}) + \sum_{i=1}^{m} y_{i}^{\star} g_{i}(x^{\star}) + \sum_{i=1}^{p} v_{i}^{\star} h_{i}(x^{\star}) = L(x^{\star}, y^{\star} v^{\star})$$
 (complete slackness)
$$\nabla f(x^{\star}) + \sum_{i=1}^{m} y_{i}^{\star} \nabla g_{i}(x^{\star}) + \sum_{i=1}^{p} v_{i}^{\star} \nabla h_{i}(x^{\star}) = 0 \quad \Rightarrow \quad g(y^{\star}, v^{\star}) = L(x^{\star}, y^{\star}, v^{\star})$$
 (convexity)

Therefore, $f(x^*) = g(y^*, v^*)$ and x^*, y^*, v^* are primal-dual optimal

KKT for convex problems

Always sufficient

For $x^{\star}, y^{\star}, v^{\star}$ that satisfy the KKT conditions

$$f(x^\star) = f(x^\star) + \sum_{i=1}^{\infty} y_i^\star g_i(x^\star) + \sum_{i=1}^{\infty} v_i^\star h_i(x^\star) = L(x^\star, y^\star v^\star) \qquad \text{(compl slackness)}$$

$$\nabla f(x^*) + \sum_{i=1}^{m} y_i^* \nabla g_i(x^*) + \sum_{i=1}^{p} v_i^* \nabla h_i(x^*) = 0 \quad \Rightarrow \quad g(y^*, v^*) = L(x^*, y^*, v^*) \quad \text{(convexity)}$$

Therefore, $f(x^*) = g(y^*, v^*)$ and x^*, y^*, v^* are primal-dual optimal

Necessary when constraint qualifications (Slater's) condition holds

If x^* strictly primal feasible (Slater's), then strong duality $f(x^*) = g(y^*, v^*)$ Therefore, dual optimum attained and KKT conditions satisfied

Normal cone condition

First-order necessary optimality condition

If x^* is a local minimum, then

$$\nabla f(x^*)^T (y - x^*) \ge 0, \quad \forall y \in C$$

Normal cone condition

First-order necessary optimality condition

If x^* is a local minimum, then

$$\nabla f(x^*)^T (y - x^*) \ge 0, \quad \forall y \in C$$

Normal cone

$$\mathcal{N}_C(x) = \{g \mid g^T(y - x) \le 0, \text{ for all } y \in C\}$$

Reformulated condition

$$-\nabla f(x^{\star}) \in \mathcal{N}_C(x^{\star})$$

Normal cone condition

First-order necessary optimality condition

If x^* is a local minimum, then

$$\nabla f(x^*)^T (y - x^*) \ge 0, \quad \forall y \in C$$

$$\nabla f(x^*) \ge f(y)$$

Normal cone

$$\mathcal{N}_C(x) = \left\{ g \mid g^T(y - x) \le 0, \text{ for all } y \in C \right\}$$

 $-\nabla f(x^{\star}) \in \mathcal{N}_C(x^{\star})$

Reformulated condition Remark

If f and C are convex, then it is necessary and sufficient [Section 4.2.3, B and V]

Today's lecture

[Chapter 1 and 2, Lectures on Convex Optimization, Nesterov] [Chapter 9, Convex Optimization, Boyd and Vandenberghe] [Chapter 5, First-Order Methods in Optimization, Beck]

Gradient descent algorithms

- Optimization algorithms and convergence rates
- Gradient descent
- Fixed step size:
 - quadratic functions, smooth and strongly convex, only smooth
- Line search: can we adapt the step size?
- Issues with gradient descent

Optimization algorithms and convergence rates

Iterative solution idea

- 1. Start from initial point x^0
- 2. Generate sequence $\{x^k\}$ by applying an operator

$$x^{k+1} = T(x^k)$$

3. Converge to fixed-point $x^* = T(x^*)$ for which necessary optimality conditions hold

Note: typically, we have $f(x^{k+1}) \leq f(x^k)$

Rank methods by how fast they converge

Error function $e(x) \ge 0$ such that $e(x^*) = 0$

- Cost function distance: $e(x) = f(x) f(x^*)$
- Solution distance: $e(x) = ||x x^*||_2$

Rank methods by how fast they converge

Error function $e(x) \ge 0$ such that $e(x^*) = 0$

- Cost function distance: $e(x) = f(x) f(x^*)$
- Solution distance: $e(x) = ||x x^*||_2$

Convergence rate

A sequence converges with order p and factor c if

$$\lim_{k \to \infty} \frac{e(x^{k+1})}{e(x^k)^p} = c$$

Linear convergence (geometric) ($c \in (0,1)$)

$$e(x^{k+1}) \le ce(x^k)$$

Examples

$$e(x^k) = 0.6^k$$

Linear convergence (geometric) ($c \in (0,1)$)

$$e(x^{k+1}) \le ce(x^k)$$

Sublinear convergence (slower than linear)

$$e(x^{k+1}) \le \frac{M}{(k+1)^q}$$
, with $q = 0.5, 1, 2, ...$

Examples

$$e(x^k) = 0.6^k$$

$$e(x^k) = \frac{1}{\sqrt{k}}$$

Linear convergence (geometric) ($c \in (0,1)$)

$$e(x^{k+1}) \le ce(x^k)$$

Examples

$$e(x^k) = 0.6^k$$

Sublinear convergence (slower than linear)

$$e(x^{k+1}) \le \frac{M}{(k+1)^q}$$
, with $q = 0.5, 1, 2, \dots$

$$e(x^k) = \frac{1}{\sqrt{k}}$$

Superlinear convergence (faster than linear)

If it converges linearly
$$p=1$$
 for any factor $c\in(0,1)$

$$e(x^k) = \frac{1}{k^k}$$

Linear convergence (geometric) ($c \in (0,1)$)

$$e(x^{k+1}) \le ce(x^k)$$

Examples

$$e(x^k) = 0.6^k$$

Sublinear convergence (slower than linear)

$$e(x^{k+1}) \le \frac{M}{(k+1)^q}$$
, with $q = 0.5, 1, 2, \dots$

$e(x^k) = \frac{1}{\sqrt{k}}$

Superlinear convergence (faster than linear)

If it converges linearly p=1 for any factor $c\in(0,1)$

$$e(x^k) = \frac{1}{k^k}$$

Quadratic convergence (
$$c$$
 can be > 1) $c(x) = \frac{1}{c}$

$$e(x^{k+1}) \le ce(x^k)^2$$

$$e(x^k) = 0.9^{(2^k)}$$

Number of iterations

Solve inequality for *k*

Number of iterations

Solve inequality for k

Example: linear convergence ($c \in (0, 1)$)

$$e(x^{k+1}) \le ce(x^k)$$

$$e(x^{k+1}) \le \epsilon \implies c^k e(x^0) \le \epsilon \implies k \ge O(\log(1/\epsilon))$$

Number of iterations

Solve inequality for k

Example: linear convergence $(c \in (0, 1))$

$$e(x^{k+1}) \le ce(x^k)$$

$$e(x^{k+1}) \le \epsilon \implies c^k e(x^0) \le \epsilon \implies k \ge O(\log(1/\epsilon))$$

Example: sublinear convergence

$$e(x^{k+1}) \le \frac{M}{k+1} \le \Longrightarrow \quad k \ge O(1/\epsilon)$$

Examples

Zero order. They rely only on f(x). Not possible to evaluate the curvature. Extremely slow.

Examples: Random search, genetic algorithms, particle swarm optimization, simulated annealing, etc.

Zero order. They rely only on f(x). Not possible to evaluate the curvature. Extremely slow.

Examples: Random search, genetic algorithms, particle swarm optimization, simulated annealing, etc.

First order. They use f(x) and $\nabla f(x)$ or $\partial f(x)$. Inexpensive iterations make them extremely popular in large-scale optimization and machine learning

Examples: Gradient descent, stochastic gradient descent, coordinate descent, proximal algorithms, ADMM.

Zero order. They rely only on f(x). Not possible to evaluate the curvature. Extremely slow.

Examples: Random search, genetic algorithms, particle swarm optimization, simulated annealing, etc.

First order. They use f(x) and $\nabla f(x)$ or $\partial f(x)$. Inexpensive iterations make them extremely popular in large-scale optimization and machine learning

Examples: Gradient descent, stochastic gradient descent, coordinate descent, proximal algorithms, ADMM.

Second order. They use f(x), $\nabla f(x)$ and $\nabla^2 f(x)$. Expensive iterations but very fast convergence

Examples: Newton method, BFGS, interior-point methods.

Zero order. They rely only on f(x). Not possible to evaluate the curvature. Extremely slow.

Examples: Random search, genetic algorithms, particle swarm optimization, simulated annealing, etc.

First order. They use f(x) and $\nabla f(x)$ or $\partial f(x)$. Inexpensive iterations make them extremely popular in large-scale optimization and machine learning

(our focus)

Examples: Gradient descent, stochastic gradient descent, coordinate descent, proximal algorithms, ADMM.

Second order. They use f(x), $\nabla f(x)$ and $\nabla^2 f(x)$. Expensive iterations but very fast convergence

Examples: Newton method, BFGS, interior-point methods.

Iterative descent algorithms

Problem setup

Unconstrained smooth optimization

minimize
$$f(x)$$
 $x \in \mathbf{R}^n$

f is differentiable

General descent scheme

Iterations

- Pick descent direction d^k , i.e., $\nabla f(x^k)^T d^k < 0$
- Pick step size t_k
- $x^{k+1} = x^k + t^k d^k$, $k = 0, 1, \dots$

Gradient descent

[Cauchy 1847]

Choose
$$d_k = -\nabla f(x^k)$$

Interpretation: steepest descent (Cauchy-Schwarz)

$$\underset{\{d||d||_2\leq 1\}}{\operatorname{argmin}} \, \nabla f(x)^T d = -\nabla f(x)$$

Gradient descent [Cauchy 1847]

Choose
$$d_k = -\nabla f(x^k)$$

Interpretation: steepest descent (Cauchy-Schwarz)

$$\underset{\{d||d||_2\leq 1\}}{\operatorname{argmin}} \nabla f(x)^T d = -\nabla f(x)$$

Iterations

$$x^{k+1} = x^k - t_k \nabla f(x^k), \quad k = 0, 1, \dots$$

(very cheap iterations)

Quadratic function interpretation

Quadratic approximation, replacing Hessian $\nabla^2 f(x^k)$ with $\frac{1}{t_k}I$

$$x^{k+1} = \mathop{\rm argmin}_y f(x^k) + \nabla f(x^k)^T (y - x^k) + \frac{1}{2t_k} \|y - x^k\|_2^2$$

Set gradient with respect to y to 0...

$$x^{k+1} = x^k - t_k \nabla f(x^k)$$

Quadratic function interpretation

Quadratic approximation, replacing Hessian $\nabla^2 f(x^k)$ with $\frac{1}{t_k}I$

$$x^{k+1} = \underset{y}{\operatorname{argmin}} \ f(x^k) + \nabla f(x^k)^T (y - x^k) + \frac{1}{2t_k} \|y - x^k\|_2^2 \quad \text{(proximity to } x^k\text{)}$$

Set gradient with respect to y to 0...

$$x^{k+1} = x^k - t_k \nabla f(x^k)$$

Fixed step size

$$t_k = t$$
 for all $k = 0, 1, \dots$

$$f(x) = (x_1^2 + 20x_2^2)/2$$

$$x^0 = (20, 1)$$

 $t = 0.15$

It diverges

$$t_k = t$$
 for all $k = 0, 1, \dots$

$$f(x) = (x_1^2 + 20x_2^2)/2$$

$$x^0 = (20, 1)$$

 $t = 0.01$

too slow

$$t_k = t$$
 for all $k = 0, 1, \dots$

$$f(x) = (x_1^2 + 20x_2^2)/2$$

$$x^0 = (20, 1)$$

 $t = 0.10$

it oscillates

$$t_k = t$$
 for all $k = 0, 1, \dots$

$$f(x) = (x_1^2 + 20x_2^2)/2$$

$$x^0 = (20, 1)$$

 $t = 0.05$

just right!

It converges in 149 iterations

$$t_k = t$$
 for all $k = 0, 1, \dots$

$$f(x) = (x_1^2 + 20x_2^2)/2$$

$$x^0 = (20, 1)$$

 $t = 0.05$

just right!

It converges in 149 iterations

How do we find the best one?

Quadratic optimization

Quadratic optimization

minimize
$$f(x) = \frac{1}{2}(x - x^*)^T P(x - x^*)$$

where
$$P \succ 0$$

$$\nabla f(x) = P(x - x^*)$$

Study behavior of

$$x^{k+1} = x^k - t\nabla f(x^k)$$

Quadratic optimization

minimize
$$f(x) = \frac{1}{2}(x - x^*)^T P(x - x^*)$$

where
$$P \succ 0$$

$$\nabla f(x) = P(x - x^*)$$

Study behavior of

$$x^{k+1} = x^k - t\nabla f(x^k)$$

Remarks

- Always possible to write QPs in this form
- Important for smooth nonlinear programming. Close to x^* , $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ dominates other terms of the Taylor expansion.

Theorem

If
$$t_k = t = \frac{2}{\lambda_{\min}(P) + \lambda_{\max}(P)}$$
, then

$$||x^k - x^*||_2 \le \left(\frac{\mathbf{cond}(P) - 1}{\mathbf{cond}(P) + 1}\right)^k ||x^0 - x^*||_2$$

Theorem

If
$$t_k = t = \frac{2}{\lambda_{\min}(P) + \lambda_{\max}(P)}$$
, then

$$||x^k - x^*||_2 \le \left(\frac{\mathbf{cond}(P) - 1}{\mathbf{cond}(P) + 1}\right)^k ||x^0 - x^*||_2$$

Remarks

- Linear (geometric) convergence rate: $O(\log(1/\epsilon))$ iterations
- It depends on the condition number of P: $\mathbf{cond}(P) = \frac{\lambda_{\max}(P)}{\lambda_{\min}(P)}$

Proof

Rewrite iterations using $\nabla f(x^k) = P(x^k - x^*)$

$$x^{k+1} - x^* = x^k - x^* - t\nabla f(x^k) = (I - tP)(x^k - x^*)$$

Therefore $||x^{k+1} - x^*||_2 \le ||I - tP||_2 ||x^k - x^*||_2$

Rewrite iterations using $\nabla f(x^k) = P(x^k - x^*)$

$$x^{k+1} - x^* = x^k - x^* - t\nabla f(x^k) = (I - tP)(x^k - x^*)$$

Therefore $||x^{k+1} - x^*||_2 \le ||I - tP||_2 ||x^k - x^*||_2$

Let's rewrite $||I - tP||_2$:

Matrix norm: $||M||_2 = \max_i |\lambda_i(M)|$

Proof

Rewrite iterations using $\nabla f(x^k) = P(x^k - x^*)$

$$x^{k+1} - x^* = x^k - x^* - t\nabla f(x^k) = (I - tP)(x^k - x^*)$$

Therefore $||x^{k+1} - x^*||_2 \le ||I - tP||_2 ||x^k - x^*||_2$

Let's rewrite $||I - tP||_2$:

Matrix norm: $||M||_2 = \max_i |\lambda_i(M)|$

Decomposition: $I - tP = U \operatorname{diag}(\mathbf{1} - t\lambda)U^T$ where $P = U \operatorname{diag}(\lambda)U^T$

Proof

Rewrite iterations using $\nabla f(x^k) = P(x^k - x^*)$

$$x^{k+1} - x^* = x^k - x^* - t\nabla f(x^k) = (I - tP)(x^k - x^*)$$

Therefore $||x^{k+1} - x^*||_2 \le ||I - tP||_2 ||x^k - x^*||_2$

Let's rewrite $||I - tP||_2$:

Matrix norm: $||M||_2 = \max_i |\lambda_i(M)|$

Decomposition: $I - tP = U \operatorname{diag}(\mathbf{1} - t\lambda)U^T$ where $P = U \operatorname{diag}(\lambda)U^T$

Therefore,
$$||I - tP||_2 = \max_i |1 - t\lambda_i(P)|$$

= $\max\{|1 - t\lambda_{\max}(P)|, |1 - t\lambda_{\min}(P)|\}$

Proof (continued)

$$||x^{k+1} - x^*||_2 \le ||I - tP||_2 ||x^k - x^*||_2$$

In order to have the fastest convergence, we want to minimize

$$||I - tP||_2 = \max\{|1 - t\lambda_{\max}(P)|, |1 - t\lambda_{\min}(P)|\}$$

Proof (continued)

$$||x^{k+1} - x^*||_2 \le ||I - tP||_2 ||x^k - x^*||_2$$

In order to have the fastest convergence, we want to minimize

$$||I - tP||_2 = \max\{|1 - t\lambda_{\max}(P)|, |1 - t\lambda_{\min}(P)|\}$$

$$\implies t = \frac{2}{\lambda_{\max}(P) + \lambda_{\min}(P)}$$

Proof (continued)

$$||x^{k+1} - x^*||_2 \le ||I - tP||_2 ||x^k - x^*||_2$$

In order to have the fastest convergence, we want to minimize

$$||I - tP||_2 = \max\{|1 - t\lambda_{\max}(P)|, |1 - t\lambda_{\min}(P)|\}$$

$$\implies t = \frac{2}{\lambda_{\max}(P) + \lambda_{\min}(P)}$$

Therefore,
$$||I - tP||_2 = \left(\frac{\lambda_{\max}(P) - \lambda_{\min}(P)}{\lambda_{\max}(P) + \lambda_{\min}(P)}\right) = \left(\frac{\mathbf{cond}(P) - 1}{\mathbf{cond}(P) + 1}\right)$$

Proof (continued)

$$||x^{k+1} - x^*||_2 \le ||I - tP||_2 ||x^k - x^*||_2$$

In order to have the fastest convergence, we want to minimize

$$||I - tP||_2 = \max\{|1 - t\lambda_{\max}(P)|, |1 - t\lambda_{\min}(P)|\}$$

$$\implies t = \frac{2}{\lambda_{\max}(P) + \lambda_{\min}(P)}$$

Therefore,
$$\|I - tP\|_2 = \left(\frac{\lambda_{\max}(P) - \lambda_{\min}(P)}{\lambda_{\max}(P) + \lambda_{\min}(P)}\right) = \left(\frac{\mathbf{cond}(P) - 1}{\mathbf{cond}(P) + 1}\right)$$

Apply the inequality recursively to get the result

30

Optimal fixed step size

$$t_k = t$$
 for all $k = 0, 1, \dots$

$$f(x) = (x_1^2 + 20x_2^2)/2$$

$$x^0 = (20, 1)$$

 $t = 2/(1 + 20) = 0.0952$

Optimal step size

It converges in 80 iterations

When does it converge?

Iterations

Contraction factor

$$\|x^k - x^\star\|_2 \le c^k \|x^0 - x^\star\|_2 \qquad c = \|I - tP\|_2 = \max\{|1 - t\lambda_{\max}(P)|, |1 - t\lambda_{\min}(P)|\}$$
 If $t < 2/\lambda_{\max}(P)$ then $c < 1$

When does it converge?

Iterations

$$||x^k - x^*||_2 \le c^k ||x^0 - x^*||_2$$

Contraction factor

$$||x^k - x^*||_2 \le c^k ||x^0 - x^*||_2$$
 $c = ||I - tP||_2 = \max\{|1 - t\lambda_{\max}(P)|, |1 - t\lambda_{\min}(P)|\}$

If
$$t < 2/\lambda_{\max}(P)$$
 then $c < 1$

Oscillating case

$$f(x) = (x_1^2 + 20x_2^2)/2$$

 $t = 0.1 = 2/20 = 2/\lambda_{\text{max}}(P)$

When does it converge?

Iterations

$$||x^k - x^*||_2 \le c^k ||x^0 - x^*||_2$$

Contraction factor

$$||x^k - x^*||_2 \le c^k ||x^0 - x^*||_2$$
 $c = ||I - tP||_2 = \max\{|1 - t\lambda_{\max}(P)|, |1 - t\lambda_{\min}(P)|\}$

If
$$t < 2/\lambda_{\max}(P)$$
 then $c < 1$

Oscillating case

$$f(x) = (x_1^2 + 20x_2^2)/2$$

 $t = 0.1 = 2/20 = 2/\lambda_{\text{max}}(P)$

Step size ranges

- If t < 0.1, it converges
- If t = 0.1, it oscillates
- If t > 0.1, it diverges

Strongly convex and smooth problems

Smooth functions

A convex function f is L-smooth if

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||x - y||_2^2, \quad \forall x, y$$

Smooth functions

A convex function f is L-smooth if

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||x - y||_2^2, \quad \forall x, y$$

First-order characterization

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2, \quad \forall x, y \qquad \text{(strongly monotone gradient)}$$

$$(\nabla f(x) - \nabla f(y))^T(x - y) \ge \frac{1}{L} \|\nabla f(x) - \nabla f(y)\|_2^2, \quad \forall x, y \qquad \text{(co-coercive gradient)}$$

Smooth functions

A convex function f is L-smooth if

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||x - y||_2^2, \quad \forall x, y$$

First-order characterization

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2, \quad \forall x, y \qquad \text{(strongly monotone gradient)}$$

$$(\nabla f(x) - \nabla f(y))^T(x - y) \ge \frac{1}{L} \|\nabla f(x) - \nabla f(y)\|_2^2, \quad \forall x, y \qquad \text{(co-coercive gradient)}$$

Second-order characterization

$$\nabla^2 f(x) \leq LI, \quad \forall x$$

Gradient monotonicity for convex functions

A differentiable function f is convex if and only if $\operatorname{dom} f$ is convex and

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge 0, \quad \forall x, y$$

the gradient Is a monotone mapping

Proof (only \Rightarrow)

Combine
$$f(y) \ge f(x) + \nabla f(x)^T (y-x)$$
 and $f(x) \ge f(y) + \nabla f(y)^T (x-y)$

Strongly convex functions

A function f is μ -strongly convex if

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||x - y||_2^2, \quad \forall x, y$$

Strongly convex functions

A function f is μ -strongly convex if

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||x - y||_2^2, \quad \forall x, y$$

First-order characterization

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge \mu ||x - y||, \quad \forall x, y$$
 (strongly monotone gradient)

Strongly convex functions

A function f is μ -strongly convex if

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||x - y||_2^2, \quad \forall x, y$$

First-order characterization

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge \mu ||x - y||, \quad \forall x, y$$
 (strongly monotone gradient)

Second-order characterization

$$\nabla^2 f(x) \succeq \mu I, \quad \forall x$$

Strongly convex and smooth functions

f is μ -strongly convex and L-smooth if

$$0 \leq \mu I \leq \nabla^2 f(x) \leq LI, \quad \forall x$$

Useful fact

Fact

If f is μ -strongly convex and L-smooth, we have

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge \frac{\mu L}{\mu + L} \|x - y\|_2^2 + \frac{1}{\mu + L} \|\nabla f(x) - \nabla f(y)\|_2^2$$

for all x, y

Useful fact

Fact

If f is μ -strongly convex and L-smooth, we have

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge \frac{\mu L}{\mu + L} \|x - y\|_2^2 + \frac{1}{\mu + L} \|\nabla f(x) - \nabla f(y)\|_2^2$$

for all x, y

Proof

Define
$$h(x) = f(x) - \frac{\mu}{2} \|x\|_2^2 \implies h(x)$$
 is $(L-m)$ —smooth

 \Longrightarrow write co-coercivity of ∇h

Strongly convex and smooth convergence

Theorem

Let f be μ -strongly convex and L-smooth. If $t=\frac{2}{\mu+L}$, then

$$||x^k - x^*||_2 \le \left(\frac{\kappa - 1}{\kappa + 1}\right)^k ||x^0 - x^*||_2$$

where $\kappa = L/\mu$ is the condition number

Strongly convex and smooth convergence

Theorem

Let f be μ -strongly convex and L-smooth. If $t=\frac{2}{\mu+L}$, then

$$||x^k - x^*||_2 \le \left(\frac{\kappa - 1}{\kappa + 1}\right)^k ||x^0 - x^*||_2$$

where $\kappa = L/\mu$ is the condition number

Remarks

- Linear (geometric) convergence rate $O(\log(1/\epsilon))$ iterations
- Generalizes quadratic problems where $t=2/(\lambda_{\max}(P)+\lambda_{\min}(P))$ and $\operatorname{cond}(P)$ instead of κ
- Dimension-free contraction factor, if κ does not depend on n

Strongly convex and smooth convergence **Proof**

Given iterations $x^{k+1} = x^k - t\nabla f(x^\star)$

$$||x^{k+1} - x^*||_2^2 = ||x^k - t\nabla f(x^k) - x^*||_2^2$$

$$= ||x^k - x^*||_2^2 - 2t\nabla f(x)^T (x^k - x^*) + t^2 ||\nabla f(x^k)||_2^2$$

Strongly convex and smooth convergence **Proof**

Given iterations $x^{k+1} = x^k - t\nabla f(x^\star)$

$$||x^{k+1} - x^{\star}||_{2}^{2} = ||x^{k} - t\nabla f(x^{k}) - x^{\star}||_{2}^{2}$$

$$= ||x^{k} - x^{\star}||_{2}^{2} - 2t\nabla f(x)^{T}(x^{k} - x^{\star}) + t^{2}||\nabla f(x^{k})||_{2}^{2}$$

$$\leq \left(1 - t\frac{2\mu L}{\mu + L}\right) ||x^{k} - x^{\star}||_{2}^{2} + t\left(t - \frac{2}{\mu + L}\right) ||\nabla f(x^{k})||_{2}^{2}$$

$$\leq \left(1 - t\frac{2\mu L}{\mu + L}\right) ||x^{k} - x^{\star}||_{2}^{2}$$

Note: step 3 follows from Fact from two slides ago and $\nabla f(x^*) = 0$

Strongly convex and smooth convergence

Proof (continued)

Inequality

$$||x^k - x^*||_2 \le c||x^k - x^*||_2$$
 $c = \left(1 - t\frac{2\mu L}{\mu + L}\right)$

Strongly convex and smooth convergence

Proof (continued)

Inequality

$$||x^{k+1} - x^*||_2 \le c||x^k - x^*||_2$$

$$c = \left(1 - t\frac{2\mu L}{\mu + L}\right)$$

Optimal step size

$$t = \frac{2}{\mu + L}$$

Optimal contraction factor

$$c = \frac{\kappa - 1}{\kappa + 1}$$

Strongly convex and smooth convergence

Proof (continued)

Inequality

$$\|x^{k+1} - x^{\star}\|_2 \le c \|x^k - x^{\star}\|_2$$

$$c = \left(1 - t \frac{2\mu L}{\mu + L}\right)$$

Optimal step size

$$t = \frac{2}{\mu + L}$$

Optimal contraction factor

$$c = \frac{\kappa - 1}{\kappa + 1}$$

Apply the inequality recursively to get the result

Dropping strong convexity

Many functions are not strongly convex

Without strong convexity, the optimal solution might be very far ($x^* = \infty$) but the objective value very close

Many functions are not strongly convex

Without strong convexity, the optimal solution might be very far ($x^* = \infty$) but the objective value very close

Focus on objective error $f(x^k) - f(x^*)$ instead of variable error $||x^k - x^*||_2$

Null growth directions without strong convexity

Hessian $\nabla^2 f(x)$ has some null growth directions (it can even be 0)

Null growth directions without strong convexity

Hessian $\nabla^2 f(x)$ has some null growth directions (it can even be 0)

Gradient descent interpretation: replace $\nabla^2 f(x^k)$ with $\frac{1}{t_k}I$ $x^{k+1} = \operatorname*{argmin}_y f(x^k) + \nabla f(x^k)^T (y-x^k) + \frac{1}{2t_k} \|y-x^k\|_2^2$

$$x^{k+1} = \underset{y}{\operatorname{argmin}} \ f(x^k) + \nabla f(x^k)^T (y - x^k) + \frac{1}{2t_k} \|y - x^k\|_2^2$$

Null growth directions without strong convexity

Hessian $\nabla^2 f(x)$ has some null growth directions (it can even be 0)

Gradient descent interpretation: replace
$$\nabla^2 f(x^k)$$
 with $\frac{1}{t_k}I$
$$x^{k+1} = \underset{y}{\operatorname{argmin}} \ f(x^k) + \nabla f(x^k)^T (y-x^k) + \frac{1}{2t_k} \|y-x^k\|_2^2$$

How to pick a quadratic approximation?

Use L-Lipschitz smoothness

Theorem

Let f be L-smooth. If t < 1/L then gradient descent satisfies

$$f(x^k) - f(x^*) \le \frac{\|x^0 - x^*\|_2^2}{2tk}$$

Sublinear convergence rate $O(1/\epsilon)$ iterations (can be very slow!)

Use L-Lipschitz constant

$$f(x^{k+1}) \le f(x^k) + \nabla f(x^k)^T (x^{k+1} - x^k) + \frac{L}{2} ||x^k - x^{k+1}||_2^2$$

Use L-Lipschitz constant

$$f(x^{k+1}) \le f(x^k) + \nabla f(x^k)^T (x^{k+1} - x^k) + \frac{L}{2} ||x^k - x^{k+1}||_2^2$$

Plug in iterate $x^{k+1} = x^k - t\nabla f(x^k)$ in right-hand side

$$f(x^{k+1}) \le f(x^k) - \left(1 - \frac{Lt}{2}\right) t \|\nabla f(x^k)\|_2^2$$

Use L-Lipschitz constant

$$f(x^{k+1}) \le f(x^k) + \nabla f(x^k)^T (x^{k+1} - x^k) + \frac{L}{2} ||x^k - x^{k+1}||_2^2$$

Plug in iterate $x^{k+1} = x^k - t\nabla f(x^k)$ in right-hand side

$$f(x^{k+1}) \leq f(x^k) - \left(1 - \frac{Lt}{2}\right) t \|\nabla f(x^k)\|_2^2$$
 Take $0 < t \leq 1/L$ we get

$$f(x^{k+1}) \le f(x^k) - \frac{t}{2} \|\nabla f(x^k)\|_2^2$$
 (non increasing cost)

Proof (continued)

Convexity of f implies $f(x^k) \leq f(x^*) + \nabla f(x^k)^T (x^k - x^*)$

Proof (continued)

Convexity of
$$f$$
 implies $f(x^k) \leq f(x^*) + \nabla f(x^k)^T (x^k - x^*)$

Therefore, we rewrite
$$f(x^{k+1}) \leq f(x^k) - \frac{t}{2} \|\nabla f(x^k)\|_2^2$$
 as

$$f(x^{k+1}) - f(x^*) \le \nabla f(x^k)^T (x^k - x^*) - \frac{t}{2} \|\nabla f(x^k)\|_2^2$$

$$= \frac{1}{2t} (\|x^k - x^*\|_2^2 - \|x^k - x^* - t\nabla f(x^k)\|_2^2)$$

$$= \frac{1}{2t} (\|x^k - x^*\|_2^2 - \|x^{k+1} - x^*\|_2^2)$$

Proof (continued)

Summing over the iterations with $i=1,\ldots,k$

$$\sum_{i=1}^{k} (f(x^{i}) - f(x^{*})) \leq \frac{1}{2t} \sum_{i=1}^{k} (\|x^{i-1} - x^{*}\|_{2}^{2} - \|x^{i} - x^{*}\|_{2}^{2})$$

$$= \frac{1}{2t} (\|x^{0} - x^{*}\|_{2}^{2} - \|x^{k} - x^{*}\|_{2}^{2})$$

$$\leq \frac{1}{2t} \|x^{0} - x^{*}\|_{2}^{2}$$

Proof (continued)

Summing over the iterations with $i=1,\ldots,k$

$$\sum_{i=1}^{k} (f(x^{i}) - f(x^{*})) \leq \frac{1}{2t} \sum_{i=1}^{k} (\|x^{i-1} - x^{*}\|_{2}^{2} - \|x^{i} - x^{*}\|_{2}^{2})$$

$$= \frac{1}{2t} (\|x^{0} - x^{*}\|_{2}^{2} - \|x^{k} - x^{*}\|_{2}^{2})$$

$$\leq \frac{1}{2t} \|x^{0} - x^{*}\|_{2}^{2}$$

Since $f(x^k)$ is non-increasing, we have

$$f(x^k) - f(x^*) \le \frac{1}{k} \sum_{i=1}^k (f(x^i) - f(x^*)) \le \frac{1}{2kt} ||x^0 - x^*||_2^2$$

Issues with computing the optimal step size

Quadratic programs

The rule $t = 2/(\lambda_{\max}(P) + \lambda_{\min}(P))$ can be **very expensive to compute** It relies on eigendecomposition of P (iterative factorizations...)

Issues with computing the optimal step size

Quadratic programs

The rule $t = 2/(\lambda_{\max}(P) + \lambda_{\min}(P))$ can be **very expensive to compute** It relies on eigendecomposition of P (iterative factorizations...)

Smooth and strongly convex functions

Very hard to estimate μ and L in general

Issues with computing the optimal step size

Quadratic programs

The rule $t = 2/(\lambda_{\max}(P) + \lambda_{\min}(P))$ can be **very expensive to compute** It relies on eigendecomposition of P (iterative factorizations...)

Smooth and strongly convex functions

Very hard to estimate μ and L in general

Can we select a good step-size as we go?

Line search

Exact line search

Choose the best step along the descent direction

$$t_k = \underset{t>0}{\operatorname{argmin}} f(x^k - t\nabla f(x^k))$$

Used when

- computational cost very low or
- there exist closed-form solutions

In general, impractical to perform exactly

Backtracking line search

Condition

Armijo condition: for some $0 \le \alpha \le 1$

$$f(x^k - t\nabla f(x^k)) < f(x^k) - \alpha t \|\nabla f(x^k)\|_2^2$$

Guarantees
sufficient decrease
in objective value

Backtracking line search

Iterations

initialization

 $t = 1, \quad 0 < \alpha \le 1/2, \quad 0 < \beta < 1$

while $f(x^k - t\nabla f(x^k)) > f(x^k) - \alpha t \|\nabla f(x^k)\|_2^2$ $t \leftarrow \beta t$

Backtracking line search

$$f(x) = (x_1^2 + 20x_2^2)/2$$

$$x^0 = (20, 1)$$

Backtracking line search

Converges in 31 iterations

Backtracking line search convergence

Theorem

Let f be L-smooth. If t < 1/L then gradient descent with backtracking line search satisfies

$$f(x^k) - f(x^*) \le \frac{\|x^0 - x^*\|_2^2}{2t_{\min}k}$$

where $t_{\min} = \min\{1, \beta/L\}$

Proof almost identical to fixed step case

Backtracking line search convergence

Theorem

Let f be L-smooth. If t < 1/L then gradient descent with backtracking line search satisfies

$$f(x^k) - f(x^*) \le \frac{\|x^0 - x^*\|_2^2}{2t_{\min}k}$$

where $t_{\min} = \min\{1, \beta/L\}$

Proof almost identical to fixed step case

Remarks

- If etapprox 1, similar to optimal step-size (eta/L vs 1/L)
- Still convergence rate $O(1/\epsilon)$ iterations (can be very slow!)

Gradient descent issues

Slow convergence

Very dependent on scaling

$$f(x) = (x_1^2 + 20x_2^2)/2$$

$$f(x) = (x_1^2 + 2x_2^2)/2$$

Faster

Non-differentiability

Wolfe's example

$$f(x) = \begin{cases} \sqrt{x_1^2 + \gamma x_2^2} & |x_2| \le x_1 \\ \frac{x_1 + \gamma |x_2|}{\sqrt{1 + \gamma}} & |x_2| > x_1 \end{cases}$$

Gradient descent with exact line search gets stuck at x = (0,0)

Non-differentiability

Wolfe's example

$$f(x) = \begin{cases} \sqrt{x_1^2 + \gamma x_2^2} & |x_2| \le x_1 \\ \frac{x_1 + \gamma |x_2|}{\sqrt{1 + \gamma}} & |x_2| > x_1 \end{cases}$$

Gradient descent with exact line search gets stuck at x = (0,0)

In general: gradient descent cannot handle non-differentiable functions and constraints

Gradient descent

Today, we learned to:

- Classify optimization algorithms (zero, first, second-order)
- Derive and recognize convergence rates
- Analyze gradient descent complexity under smoothness and strong convexity (linear convergence, fast!)
- Analyze gradient descent complexity under only smoothness (sublinear convergence, slow!)
- Apply line search to get better step size
- Understand issues of Gradient descent

Next lecture

Subgradient methods