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Ed forum

* The strong duality statement doesn't state that when the primal is not
feasible, the dual is unbounded (p=+0, d=+). Why it's not possible to have
p=+c and d is some finite value?

 Does the dual simplex index | refer to the basis matrix index? Or the full A?






General forms

Standard form LP

Primal Dual
minimize ¢!z maximize —bly
subjectto Az =b subjectto Aly4+c¢>0
xr > 0

Inequality form LP

Primal Dual
minimize ¢’z maximize —bly
subjectto Az < b subjectto Aly+4+c=0

y 2> 0



Today'’s lecture
[Chapter 5, Bertsimas and Tsitsiklis]

Sensitivity analysis in linear optimization
 Adding new constraints and variables

 Change problem data

» Differentiable optimization



Adding new constraints and
variables



Adding new variables

minimize ¢’z minimize  c'x + cpp1Tnid
subjectto Arxr=b — subjectto Ax+ A, 1Tn11 =0
xr > 0 Ly Ln+1 > 0

Solution x*, y*

Solution (z*,0), y* optimal for the new problem?



Adding new variables

Optimality conditions

minimize ¢z + cp12n41
subjectto Ax + A, 112,41 =b ——— Solution (z*,0) is still primal feasible
Ly L1 > 0

Is y* still dual feasible?

AZ+1?J* + Cny1 2= 0

Yes Otherwise

(x*,0) still optimal for new problem Primal simplex



Adding new variables

Example

minimize  —60x; — 3025 — 20x3 -profit

subjectto 8x; + 6x9 + x3 < 48 material

minimize
subject to

r* = (2,0,8,24,0,0),

dr1 + 229 + 1.523 <20  production
221 + 1.0z + 0.523 < 8  quality control

xr > 0
c = (—60, —30,—-20,0,0,0)
clx 8 6 1 1 0 0
Axr = b A=14 2 15 0 1 0
x > 0 2 15 05 0 0 1T

b = (48, 20, 8)

y* = (0,10,10), c'2z* = —280, basis {1,3,4}



T

minimize ¢ -+ cpi1Tna

SUbjeCt to Ax + An—l—lxn—l—l =%

Ly L1 > 0

Previous solution

r* = (2,0,8,24,0,0),

Adding new variables

Example: add new product?

¢ = (—60, —30, —20,0,0,0, —15)

8 6 1 1 0 0 1
A=1{4 2 15 0 1 0 1

2 15 05 0 0 1 1
b = (48, 20, 8)

Still optimal (do not add new p[oduct)

AZ 13/* T Cpt1 =

1

1

1

0
10
10

—10=952>0

y* = (0,10,10), cta* = —280, basis {1,3,4}
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Adding new constraints

minimize L minimize C" X

subjectto Az =0 — subjectto Ax =0
r 2> Ay 1T = by

. x>0
Solution z*, y*

Dual
maximize —bly
SUbjeCt to ATy T+ Am+1Ym+1 T C > ()

Solution z*, (y*, 0) optimal for the new problem?
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Adding new constraints

Optimality conditions

maximize —bly
subjectto A'y+ ami1yms1 +¢>0 ——» Solution (y*,0) is still dual feasible

Is x* still primal feasible?

Axr = b

T _

xr > 0

Yes Otherwise

™ still optimal for new problem Dual simplex
12



Adding new constraints

Example z* still feasible

x Add new constraint

.

™ Infeasible




Changing problem data



Information from primal-dual solution

Goal: extract information from x*,y* about their sensitivity with respect to
changes in problem data

Modified LP
minimize ¢!z
subjectto Az =0+ u

r >0

Optimal cost p* (u)
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Global sensitivity

Dual of modified LP
maximize —(b+u)'y
subjectto ATy +c¢ >0

Global lower bound

Given y* a dual optimal solution for u = 0, then

p*(u) > —(b+u)"y*
=p*(0) —u'y*

It holds for any u

(from weak duality and
dual feasibility)
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Global sensitivity

Example

Take u = td with d € R™ fixed
minimize iz
subjectto Ax =b+td

r > 0

p*(td) is the optimal value as a function of ¢

Sensitivity information (assuming d* y* > 0)

» ¢t < 0 the optimal value increases
« t > 0 the optimal value decreases (hot so much if ¢ is small)
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Optimal value function
p*(vw) =min{c' z | Az =b+u, x >0}

Assumption: p*(0) is finite

Properties
* p*(u) > —oo everywhere (from global lower bound)

» the domain {u | p*(u) < +o0} is a polyhedron

+ p*(u) is piecewise-linear on its domain
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Optimal value function is piecewise linear

Proof
Dual feasible set

p*(u) = min{c'z | Az =b+u, x> 0} D={y|A'y+c>0}

Assumption: p*(0) is finite

If p*(u) finite

X () — (b — Ty — T — T
pr(u) =max—(b—u)'y = max —yiu-—>by

v1,...,Y, are the extreme points of D
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Local sensitivity

uw In neighborhood of the origin

Original LP Optimal solution
" . . T
mln!mlze c'x % = B
subjectto Az =0 ——m X .
. Z 0 Y = —B CRB
Modified LP Modified dual
minimize ¢’z maximize —(b+u)"y
subjectto Az =0+ u subjectto ATy +c >0
xr > 0

Modified optimal solution
v%5(u) = B Hb+u) =25 + B lu
y (u) =y

Optimal basis
does not change
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Derivative of the optimal value function

Optimal value function

p*(u) = ¢’ z*(u)

= c'z* + cxp B tu

= p*(0) — y* u (affine for small w)

Local derivative

P &iu) — —y~ (y* are the shadow prices)
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Sensitivity example

minimize  —60x; — 3022 — 20x3 -profit
subjectto 8z + 6x2 + x3 < 48 material
dr1 + 220 + 1.023 <20  production

221 + L.oxo + 0.023 <8 quality control
xr > 0

r* =(2,0,8,24,0,0), v*=(0,10,10), cla*= —280, basis{1,3,4}
What does y; = 10 mean?

Let’s increase the quality control budget by 1, i.e., u = (0,0, 1)
p*(10) = p*(0) — y* 'u = —280 — 10 = —290
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Differentiable optimization



Training a neural network

Single layer model
| o Training
Datapoints (z*, y") minimize L£(0) =>_.", (=", y")

Xz Z
—_—p Vg —

Gradient descent (more on this later)

2 = f(2:0) 6 < 6 — tVoL(0)

Sensitivity

!

oL\ " or 9z\" 92\
vie= () =(5:a0) = () v

Can f be an optimization layer?
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Optimization layers

z=z" = argmin ¢’ x Parameters: 6 = {c, A, b}

subjectto Az < b Solution z*(0)

Features

 Add domain knowledge and hard constraints
 End-to-end training and optimization

* Nice theory and algorithms for general convex optimization
* Applications in RL, control, meta-learning, game theory, etc.

Goal
ox*

C t
ompute —
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Implicit function theorem

Given 0 and x(0) satisfying
r(6,z(0)) =0 (z(0) is implicitly defined by r)

Then, under mild assumptions (non-singularity),

ox(0) (87“(6’,:6(6’)))1 or(0, z(0))
00 ox 00

[Theorem 1. B.1, Dontchev and Rockafellar 2009] 206



Optimality conditions

minimize L r Parameters: 6 = {c, A, b}
subjectto Ax <b Solution x* ()

Solve and obtain primal-dual pair z*, y* (forward-pass)

Optimality conditions

Aty+c=0
diag(y)(Axz — b) =0
y>0,0—Ax >0

Mapping (6, z(6)) = 0
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Computing derivatives

Take differentials
At y* + ¢ = dATy* + Atdy =0
diag(y™)(Azxz — b) = diag(Ax — b)dy + diag(y™)(dAx™ + Adx — db) = 0

Linear system
0 At | [dx _ dAty* + dc

diag(y*)A diag(Axz* —b)| |dy diag(y*)(dAz™ —db)

Example: How does = change with b;?

Set db = e;,dA = 0,dc = 0 and solve the linear system.

The solution da will correspond to % 28



Is it always differentiable?

The linear system matrix must be invertible

(the problem must have unique solution) Remember: implicit function theorem

dz] Oz(0) or (0, z(0))\ " ar6, z(0))
M| =71 00 :_( D ) 00

If not, least squares (subdifferential)

dz ’
minimize ||M du + g

2
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Example
Learning to play Sudoku

Sudoku constraint satisfaction problem
minimize 0

subjectto Az =10 10

r e 7

1072 :

SE

Linear optimization layer (parameters 6 = {A,b}) *

1073 :

*

z =x = argmin 0

subjectto Az =0
r > 0

[OptNet: Differentiable Optimization as a Layer in Neural Networks, B. Amos and J. Z. Kolter ICML 2017]

.

104 :




Sensitivity analysis in linear optimization

Today, we learned to:
 Use the most appropriate primal/dual simplex algorithm when variables and/
or constraints are added

* Analyze sensitivity of the cost with respect to change in the data

* Apply sensitivity analysis to differentiable linear optimization layers

31



Next lecture

 Barrier methods for linear optimization
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