ORF522 – Linear and Nonlinear Optimization

8. Linear optimization duality

Ed forum

- I am wondering is there a general intepretation of the practical meaning of the Dual Problem to its Primal?
- Is it always possible to find an interpretation of the dual problem?
- Also the dual of dual is primal, they should be mathematically related. Can you please explain this
 if you remember?
- Can the strong duality be deduced at some point in the primal simplex algorithm or do we need both primal and dual simplex to run to check the strong duality?
- I'm still not to sure why dual is important to LP problems compared to convex problems
- If primal optimal solution x is unique, would we also have a unique optimal solution y in the dual?
- When do we decide whether we want to solve the primal or the dual?

Recap

Relationship between primal and dual

	$p^{\star} = +\infty$	p^\star finite	$p^{\star} = -\infty$
$d^{\star} = +\infty$	primal inf. dual unb.		
d^\star finite		optimal values equal	
$d^{\star} = -\infty$	exception		primal unb. dual inf

- Upper-right excluded by weak duality
- (1,1) and (3,3) proven by weak duality
- (3,1) and (2,2) proven by strong duality

Today's agenda

Readings: [Chapter 4, Bertsimas, Tsitsiklis][Chapter 11, Vanderbei]

- Two-person zero-sum games
- Farkas lemma
- Complementary slackness
- Dual simplex method

Two-person zero-sum games

Rock paper scissors

Rules

At count to three declare one of: Rock, Paper, or Scissors

Winners

Identical selection is a draw, otherwise:

- Rock beats ("dulls") scissors
- Scissors beats ("cuts") paper
- Paper beats ("covers") rock

Extremely popular: world RPS society, USA RPS league, etc.

Two-person zero-sum game

- Player 1 (P1) chooses a number $i \in \{1, \ldots, m\}$ (one of m actions)
- Player 2 (P2) chooses a number $j \in \{1, \dots, n\}$ (one of n actions)

Two players make their choice independently

Two-person zero-sum game

- Player 1 (P1) chooses a number $i \in \{1, \ldots, m\}$ (one of m actions)
- Player 2 (P2) chooses a number $j \in \{1, \dots, n\}$ (one of n actions)

Two players make their choice independently

Rule

Player 1 pays A_{ij} to player 2

 $A \in \mathbf{R}^{m \times n}$ is the payoff matrix

Rock, Paper, Scissors

Mixed (randomized) strategies

Deterministic strategies can be systematically defeated

Mixed (randomized) strategies

Deterministic strategies can be systematically defeated

Randomized strategies

- P1 chooses randomly according to distribution x: $x_i = \text{probability that P1 selects action } i$
- P2 chooses randomly according to distribution y: $y_{\overline{i}} = \text{probability that P2 selects action } j$

Mixed (randomized) strategies

Deterministic strategies can be systematically defeated

Randomized strategies

- P1 chooses randomly according to distribution x: $x_i = \text{probability that P1 selects action } i$
- P2 chooses randomly according to distribution y: y_{x} = probability that P2 selects action j

Expected payoff (from P1 P2), if they use mixed-strategies x and y,

$$\sum_{i=1}^{m} \sum_{j=1}^{n} x_i y_j A_{ij} = x^T A y$$

Mixed strategies and probability simplex

Probability simplex in \mathbf{R}^k

$$P_k = \{ p \in \mathbf{R}^k \mid p \ge 0, \quad \mathbf{1}^T p = 1 \}$$

Mixed strategy

For a game player, a mixed strategy is a distribution over all possible deterministic strategies.

The set of all mixed strategies is the probability simplex $\longrightarrow x \in P_m$, $y \in P_n$

P1: optimal strategy x^* is the solution of

minimize
$$\max_{y \in P_n} x^T A y$$

subject to $x \in P_m$

P2: optimal strategy y^* is the solution of

$$\begin{array}{ll}
\text{maximize} & \min_{x \in P_m} x^T A y \\
\end{array}$$

subject to
$$y \in P_n$$

P1: optimal strategy x^* is the solution of

minimize
$$\max_{y \in P_n} x^T A y$$
 minimize $\max_{j=1,...,n} (A^T x)_j$ subject to $x \in P_m$

P2: optimal strategy y^* is the solution of

$$\begin{array}{lll} \text{maximize} & \min_{x \in P_m} x^T A y \\ \text{subject to} & y \in P_n \end{array} \qquad \begin{array}{ll} \text{maximize} & \min_{i=1,\dots,m} (Ay)_i \\ \text{subject to} & y \in P_n \end{array}$$

P1: optimal strategy x^* is the solution of

minimize

subject to $x \in P_m$

 $\max_{j=1,\dots,n} (A^T x)_j$ $x \in P_m$

P2: optimal strategy y^* is the solution of

$$\begin{array}{ll} \text{maximize} & \min\limits_{x \in P_m} x^T A y \\ \text{subject to} & y \in P_n \end{array}$$

maximize

subject to

Inner problem over

deterministic

strategies (vertices)

P1: optimal strategy x^* is the solution of

$$\begin{array}{lll} \text{minimize} & \max_{y \in P_n} x^T A y & & & \\ \text{subject to} & x \in P_m & & & \\ \text{subject} & & & \\ \end{array}$$

minimize $\max_{j=1,...,n} (A^T x)_j$ subject to $x \in P_m$

P2: optimal strategy y^* is the solution of

$$\begin{array}{ll} \text{maximize} & \min\limits_{x \in P_m} x^T A y \\ \text{subject to} & y \in P_n \end{array}$$

maximize

subject to

 $\min_{i=1,\dots,m} (Ay)_i$ $y \in P_n$

Optimal strategies x^* and y^* can be computed using linear optimization

Inner problem over

deterministic

strategies (vertices)

Theorem

$$\max_{y \in P_n} \min_{x \in P_m} x^T A y = \min_{x \in P_m} \max_{y \in P_n} x^T A y$$

Theorem

$$\max_{y \in P_n} \min_{x \in P_m} x^T A y = \min_{x \in P_m} \max_{y \in P_n} x^T A y$$

Proof

The optimal x^* is the solution of

```
minimize t subject to A^Tx \leq t\mathbf{1} \mathbf{1}^Tx = 1 x \geq 0
```

Theorem

$$\max_{y \in P_n} \min_{x \in P_m} x^T A y = \min_{x \in P_m} \max_{y \in P_n} x^T A y$$

Proof

The optimal x^* is the solution of

minimize t subject to $A^Tx \leq t\mathbf{1}$ $\mathbf{1}^Tx = 1$ $x \geq 0$

The optimal y^* is the solution of maximize w subject to $Ay \geq w\mathbf{1}$ $\mathbf{1}^T y = 1$ $y \geq 0$

Theorem

$$\max_{y \in P_n} \min_{x \in P_m} x^T A y = \min_{x \in P_m} \max_{y \in P_n} x^T A y$$

Proof

The optimal x^* is the solution of

minimize t subject to $A^Tx \leq t\mathbf{1}$ $\mathbf{1}^Tx = 1$ $x \geq 0$

The optimal y^* is the solution of maximize w subject to $Ay \geq w\mathbf{1}$ $\mathbf{1}^T y = 1$ $y \geq 0$

The two LPs are duals and by strong duality the equality follows.

Nash equilibrium

Theorem

$$\max_{y \in P_n} \min_{x \in P_m} x^T A y = \min_{x \in P_m} \max_{y \in P_n} x^T A y$$

Consequence

The pair of mixed strategies (x^*, y^*) attains the **Nash equilibrium** of the two-person matrix game, i.e.,

$$x^T A y^* \ge x^{*T} A y^* \ge x^{*T} A y, \quad \forall x \in P_m, \ \forall y \in P_n$$

Example

$$A = \begin{bmatrix} 4 & 2 & 0 & -3 \\ -2 & -4 & -3 & 3 \\ -2 & -3 & 4 & 1 \end{bmatrix}$$

$$\min_{i} \max_{j} A_{ij} = 3 > -2 = \max_{j} \min_{i} A_{ij}$$

Example

$$A = \begin{bmatrix} 4 & 2 & 0 & -3 \\ -2 & -4 & -3 & 3 \\ -2 & -3 & 4 & 1 \end{bmatrix}$$

$$\min_{i} \max_{j} A_{ij} = 3 > -2 = \max_{j} \min_{i} A_{ij}$$

Optimal mixed strategies

$$x^* = (0.37, 0.33, 0.3), \quad y^* = (0.4, 0, 0.13, 0.47)$$

Expected payoff

$$x^{\star T}Ay^{\star} = 0.2$$

Feasibility of polyhedra

$$P = \{x \mid Ax = b, \quad x \ge 0\}$$

Feasibility of polyhedra

$$P = \{x \mid Ax = b, \quad x \ge 0\}$$

How to show that P is **feasible**?

Easy: we just need to provide an $x \in P$, i.e., a certificate

Feasibility of polyhedra

$$P = \{x \mid Ax = b, \quad x \ge 0\}$$

How to show that P is **feasible**?

Easy: we just need to provide an $x \in P$, i.e., a certificate

How to show that P is **infeasible**?

Theorem

Given A and b, exactly one of the following statements is true:

- 1. There exists an x with Ax = b, $x \ge 0$
- 2. There exists a y with $A^Ty \ge 0$, $b^Ty < 0$

Geometric interpretation

1. First alternative

$$b = \sum_{i=1}^{n} x_i A_i, \quad x_i \ge 0, \ i = 1, \dots, n$$

b is in the cone generated by the columns of A

Geometric interpretation

1. First alternative

$$b = \sum_{i=1}^{n} x_i A_i, \quad x_i \ge 0, \ i = 1, \dots, n$$

b is in the cone generated by the columns of $\cal A$

2. Second alternative

$$y^T A_i \ge 0, \quad i = 1, \dots, m, \quad y^T b < 0$$

The hyperplane $y^Tz=0$ separates b from A_1,\ldots,A_n

Proof

1 and 2 cannot be both true (easy)

$$x \ge 0$$
, $Ax = b$ and $y^T A \ge 0$ \longrightarrow $y^T b = y^T Ax \ge 0$

Proof

1 and 2 cannot be both true (easy)

$$x \ge 0$$
, $Ax = b$ and $y^T A \ge 0$ \longrightarrow $y^T b = y^T Ax \ge 0$

1 and 2 cannot be both false (duality)

$\begin{array}{cccc} & \textbf{Primal} & \textbf{Dual} \\ \text{minimize} & 0 & \text{maximize} & -b^T y \\ \text{subject to} & Ax = b & \text{subject to} & A^T y \geq 0 \\ & & & & & & & \end{array}$

Proof

1 and 2 cannot be both true (easy)

$$x \ge 0$$
, $Ax = b$ and $y^T A \ge 0$ \longrightarrow $y^T b = y^T Ax \ge 0$

$$y^T b = y^T A x > 0$$

1 and 2 cannot be both false (duality)

Primal

minimize

subject to Ax = b

$$x \ge 0$$

Dual

maximize
$$-b^Ty$$
 \longrightarrow $y=0$ always feasible subject to $A^Ty\geq 0$ $d^\star\neq -\infty, \quad p^\star=d^\star$

Proof

1 and 2 cannot be both true (easy)

$$x \ge 0$$
, $Ax = b$ and $y^T A \ge 0$ \longrightarrow $y^T b = y^T Ax \ge 0$

$$y^T b = y^T A x > 0$$

1 and 2 cannot be both false (duality)

Primal

Dual

minimize 0

minimize 0 maximize $-b^Ty$ \longrightarrow y=0 always feasible subject to Ax=b subject to $A^Ty\geq 0$ $d^\star\neq -\infty, \quad p^\star=d^\star$ y=0 always feasible

Alternative 1: primal feasible $p^* = d^* = 0$

 $b^T y > 0$ for all y such that $A^T y > 0$

x > 0

Proof

1 and 2 cannot be both true (easy)

$$x \ge 0$$
, $Ax = b$ and $y^T A \ge 0$ \longrightarrow $y^T b = y^T Ax \ge 0$

1 and 2 cannot be both false (duality)

Alternative 1: primal feasible $p^* = d^* = 0$ $b^T y \ge 0$ for all y such that $A^T y \ge 0$

Alternative 2: primal infeasible $p^* = d^* = +\infty$ There exists y such that $A^Ty \ge 0$ and $b^Ty < 0$

Farkas lemma

Proof

1 and 2 cannot be both true (easy)

$$x \ge 0$$
, $Ax = b$ and $y^T A \ge 0$ \longrightarrow $y^T b = y^T Ax \ge 0$

$$y^T b = y^T A x > 0$$

1 and 2 cannot be both false (duality)

Primal

Dual

minimize 0

y=0 always feasible

minimize
$$0$$
 maximize $-b^Ty$ \longrightarrow $y=0$ always feasible subject to $Ax=b$ subject to $A^Ty\geq 0$ $d^\star\neq -\infty, \quad p^\star=d^\star$

Alternative 1: primal feasible $p^* = d^* = 0$

$$b^Ty \geq 0 \text{ for all } y \text{ such that } A^Ty \geq 0$$

x > 0

Alternative 2: primal infeasible $p^* = d^* = +\infty$

There exists y such that $A^Ty > 0$ and $b^Ty < 0$

y is an infeasibility certificate

Primal

minimize $c^T x$

subject to $Ax \leq b$

Dual

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \end{array}$$

$$y \ge 0$$

Primal

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$

Dual

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$$

x and y are primal and dual optimal if and only if

- x is primal feasible: $Ax \leq b$
- y is dual feasible: $A^Ty + c = 0$ and $y \ge 0$
- The duality gap is zero: $c^T x + b^T y = 0$

Primal

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$

Dual

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$$

x and y are primal and dual optimal if and only if

- x is primal feasible: $Ax \leq b$
- y is dual feasible: $A^Ty + c = 0$ and $y \ge 0$
- The duality gap is zero: $c^T x + b^T y = 0$

Can we relate x and y (not only the objective)?

Primal

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$

Dual

maximize $-b^Ty$ subject to $A^Ty+c=0$ $y\geq 0$

Theorem

Primal, dual feasible x, y are optimal if and only if

$$y_i(b_i - a_i^T x) = 0, \quad i = 1, \dots, m$$

i.e., at optimum, b - Ax and y have a complementary sparsity pattern:

$$y_i > 0 \implies a_i^T x = b_i$$

$$a_i^T x < b_i \implies y_i = 0$$

Primal

minimize $c^T x$ subject to $Ax \leq b$

Dual

 $\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$

Proof

The duality gap at primal feasible x and dual feasible y can be written as

$$c^{T}x + b^{T}y = (-A^{T}y)^{T}x + b^{T}y = (b - Ax)^{T}y = \sum_{i=1}^{n} y_{i}(b_{i} - a_{i}^{T}x) = 0$$

Primal

minimize $c^T x$ subject to $Ax \leq b$

Dual

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$$

Proof

The duality gap at primal feasible x and dual feasible y can be written as

$$c^{T}x + b^{T}y = (-A^{T}y)^{T}x + b^{T}y = (b - Ax)^{T}y = \sum_{i=1}^{T} y_{i}(b_{i} - a_{i}^{T}x) = 0$$

Since all the elements of the sum are nonnegative, they must all be 0

Primal

minimize $c^T x$ subject to $Ax \leq b$

Dual

maximize
$$-b^Ty$$
 subject to $A^Ty+c=0$ $y\geq 0$

Proof

The duality gap at primal feasible x and dual feasible y can be written as

$$c^{T}x + b^{T}y = (-A^{T}y)^{T}x + b^{T}y = (b - Ax)^{T}y = \sum_{i=1}^{T} y_{i}(b_{i} - a_{i}^{T}x) = 0$$

Since all the elements of the sum are nonnegative, they must all be 0

Geometric interpretation

Example in ${f R}^2$

Two active constraints at optimum: $a_1^T x^* = b_1, \quad a_2^T x^* = b_2$

Geometric interpretation

Example in ${f R}^2$

Two active constraints at optimum: $a_1^T x^* = b_1, \quad a_2^T x^* = b_2$

Optimal dual solution *y* satisfies:

$$A^T y + c = 0, \quad y \ge 0, \quad y_i = 0 \text{ for } i \ne \{1, 2\}$$

In other words, $-c = a_1y_1 + a_2y_2$ with $y_1, y_2 \ge 0$

Geometric interpretation

Example in ${f R}^2$

Two active constraints at optimum: $a_1^T x^* = b_1$, $a_2^T x^* = b_2$

Optimal dual solution *y* satisfies:

$$A^T y + c = 0, \quad y \ge 0, \quad y_i = 0 \text{ for } i \ne \{1, 2\}$$

In other words, $-c = a_1y_1 + a_2y_2$ with $y_1, y_2 \ge 0$

Geometric interpretation: -c lies in the cone generated by a_1 and a_2

minimize
$$-4x_1 - 5x_2$$
 subject to
$$\begin{bmatrix} -1 & 0 \\ 2 & 1 \\ 0 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 0 \\ 3 \\ 0 \\ 3 \end{bmatrix}$$

Let's **show** that feasible x = (1, 1) is optimal

minimize
$$-4x_1 - 5x_2$$

subject to
$$\begin{bmatrix} -1 & 0 \\ 2 & 1 \\ 0 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 0 \\ 3 \\ 0 \\ 3 \end{bmatrix}$$

Let's show that feasible x=(1,1) is optimal

Second and this constraints are active at $x \longrightarrow y = (0, y_2, 0, y_4)$

$$A^Ty=-c \quad \Rightarrow \quad \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} y_2 \\ y_4 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix} \qquad \text{and} \qquad \quad y_2 \geq 0, \quad y_4 \geq 0$$

minimize
$$-4x_1 - 5x_2$$

subject to
$$\begin{bmatrix} -1 & 0 \\ 2 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix}$$

Let's **show** that feasible x = (1, 1) is optimal

Second and third constraints are active at $x \longrightarrow y = (0, y_2, 0, y_4)$

$$A^Ty=-c \quad \Rightarrow \quad \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} y_2 \\ y_4 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix} \qquad \text{and} \qquad \quad y_2 \geq 0, \quad y_4 \geq 0$$

y=(0,1,0,2) satisfies these conditions and proves that x is optimal

minimize
$$-4x_1 - 5x_2$$

subject to
$$\begin{bmatrix} -1 & 0 \\ 2 & 1 \\ 0 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 0 \\ 3 \\ 0 \\ 3 \end{bmatrix}$$

Let's **show** that feasible x = (1, 1) is optimal

Second and third constraints are active at $x \longrightarrow y = (0, y_2, 0, y_4)$

$$A^Ty=-c \quad \Rightarrow \quad egin{bmatrix} 2 & 1 \ 1 & 2 \end{bmatrix} egin{bmatrix} y_2 \ y_4 \end{bmatrix} = egin{bmatrix} 4 \ 5 \end{bmatrix} \qquad \text{and} \qquad y_2 \geq 0, \quad y_4 \geq 0$$

y=(0,1,0,2) satisfies these conditions and proves that x is optimal

Complementary slackness is useful to recover y^* from x^*

The dual simplex

Primal problem

minimize
$$c^T x$$

subject to
$$Ax = b$$

$$x \ge 0$$

Dual problem

maximize
$$-b^T y$$

subject to
$$A^Ty + c \ge 0$$

Primal problem

Dual problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

 \boldsymbol{x} and \boldsymbol{y} are **primal** and **dual** optimal if and only if

- x is primal feasible: Ax = b and $x \ge 0$
- y is dual feasible: $A^Ty + c \ge 0$
- The duality gap is zero: $c^T x + b^T y = 0$

Primal problem

Dual problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Given a **basis** matrix B

Primal feasible:
$$Ax = b, x \ge 0 \implies x_B = B^{-1}b \ge 0$$

Primal problem

Dual problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Given a **basis** matrix B

Primal feasible: $Ax = b, x \ge 0 \implies x_B = B^{-1}b \ge 0$

Dual feasible: $A^Ty + c \ge 0$.

Primal problem

Dual problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Given a **basis** matrix B

Primal feasible:
$$Ax = b, x \ge 0 \implies x_B = B^{-1}b \ge 0$$

Dual feasible:
$$A^Ty + c \ge 0$$
. If $y = -B^{-T}c_B \implies c - A^TB^{-T}c_B \ge 0$

Primal problem

Dual problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Given a **basis** matrix B

Primal feasible: $Ax = b, x \ge 0 \implies x_B = B^{-1}b > 0$

Dual feasible: $A^Ty + c \ge 0$. If $y = -B^{-T}c_B \implies c - A^TB^{-T}c_B > 0$

If
$$y = -B^{-T}c_B$$
 \Rightarrow

Primal problem

Dual problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Given a **basis** matrix B

Primal feasible: $Ax = b, x \ge 0 \implies x_B = B^{-1}b \ge 0$

Reduced costs

Dual feasible: $A^Ty + c \ge 0$. If $y = -B^{-T}c_B \implies c - A^TB^{-T}c_B \ge 0$

If
$$y = -B^{-T}c_B$$
 \Rightarrow

$$c - A^T B^{-T} c_B \ge 0$$

Zero duality gap: $c^Tx + b^Ty = c_Bx_B - b^TB^{-T}c_B = c_Bx_B - c_B^TB^{-1}b = 0$

Primal problem

Dual problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Given a **basis** matrix B

Primal feasible: $Ax = b, x \ge 0 \implies x_B = B^{-1}b \ge 0$

Reduced costs

Dual feasible:
$$A^Ty + c \ge 0$$
. If $y = -B^{-T}c_B \implies c - A^TB^{-T}c_B \ge 0$

If
$$y = -B^{-T}c_B \implies$$

$$c - A^T B^{-T} c_B \ge 0$$

Zero duality gap: $c^T x + b^T y = c_B x_B - b^T B^{-T} c_B = c_B x_B - c_B^T B^{-1} b = 0$

(by construction)

The primal (dual) simplex method

Primal problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

Primal simplex

- Primal feasibility
- Zero duality gap

Dual problem

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Dual simplex

- Dual feasibility
- Zero duality gap

Feasible dual directions

Conditions

$$P = \{ y \mid A^T y + c \ge 0 \}$$

Given a basis matrix $B = \begin{bmatrix} A_{B(1)} & \dots & A_{B(m)} \end{bmatrix}$ we have dual feasible solution y:

$$\bar{c} = A^T y + c \ge 0$$

Feasible dual directions

Conditions

$$P = \{ y \mid A^T y + c \ge 0 \}$$

Given a basis matrix $B = \begin{bmatrix} A_{B(1)} & \dots & A_{B(m)} \end{bmatrix}$ we have dual feasible solution y:

$$\bar{c} = A^T y + c \ge 0$$

Feasible direction d

$$y + \theta d$$

Feasible dual directions

Conditions

$$P = \{ y \mid A^T y + c \ge 0 \}$$

Given a basis matrix
$$B = \begin{bmatrix} A_{B(1)} & \dots & A_{B(m)} \end{bmatrix}$$
 we have dual feasible solution y :

$$\bar{c} = A^T y + c \ge 0$$

Feasible direction d

$$y + \theta d$$

Reduced cost change

$$c + A^T(y + \theta d) \ge 0 \quad \Rightarrow \quad \bar{c} + \theta z \ge 0$$

$$A^T d = z \text{ (subspace restriction)}$$

Computation

Subspace restriction

$$A^T d = z \qquad \longrightarrow \qquad \begin{array}{c} B^T d = z_B \\ N^T d = z_N \end{array}$$

Computation

Subspace restriction

$$A^T d = z \qquad \longrightarrow \qquad \begin{array}{c} B^T d = z_B \\ N^T d = z_N \end{array}$$

Basic indices

$$z_B = e_j \longrightarrow B(\ell) = j$$
 exits the basis Get d by solving $B^T d = e_j$

Computation

Subspace restriction

$$A^T d = z \qquad \longrightarrow \qquad B^T d = z_B$$

$$N^T d = z_N$$

Basic indices

$$z_B = e_j \longrightarrow B(\ell) = j$$
 exits the basis Get d by solving $B^T d = e_j$

Nonbasic indices

$$z_N = N^T d = N^T B^{-T} e_j$$

Computation

Subspace restriction

$$A^T d = z \qquad \longrightarrow \qquad B^T d = z_B$$

$$N^T d = z_N$$

Basic indices

$$z_B = e_j \longrightarrow B(\ell) = j$$
 exits the basis Get d by solving $B^T d = e_j$

Nonbasic indices

$$z_N = N^T d = N^T B^{-T} e_j$$

Non-negativity of reduced costs (non-degenerate assumption)

- Basic variables: $\bar{c}_B = 0$. Nonnegative direction $z_B \geq 0$.
- Nonbasic variables: $\bar{c}_N > 0$. Therefore $\exists \theta > 0$ such that $\bar{c}_N + \theta z_N \geq 0$

Stepsize

How far can we go?

$$\theta^* = \max\{\theta \mid \theta \ge 0 \text{ and } \bar{c} + \theta z \ge 0\}$$

Stepsize

How far can we go?

$$\theta^* = \max\{\theta \mid \theta \ge 0 \text{ and } \bar{c} + \theta z \ge 0\}$$

Unbounded

If $z \ge 0$, then $\theta^* = \infty$. The dual problem is unbounded (primal infeasible).

Stepsize

How far can we go?

$$\theta^* = \max\{\theta \mid \theta \ge 0 \text{ and } \bar{c} + \theta z \ge 0\}$$

Unbounded

If $z \geq 0$, then $\theta^* = \infty$. The dual problem is unbounded (primal infeasible).

Bounded

If
$$z_i < 0$$
 for some i , then

If
$$z_i < 0$$
 for some i , then
$$\theta^\star = \min_{\{i \mid z_i < 0\}} \left(-\frac{\bar{c}_i}{z_i} \right) = \min_{\{i \in N \mid z_i < 0\}} \left(-\frac{\bar{c}_i}{z_i} \right)$$

(Since
$$z_i \geq 0, i \in B$$
)

Moving to a new basis

Next reduced cost

$$\bar{c} + \theta^* z$$

Let
$$i \notin \{B(1),\dots,B(m)\}$$
 be the index such that $\theta^\star=-\frac{\overline{c}_i}{z_i}$. Then, $\overline{c}_i+\theta^\star z_i=0$

Moving to a new basis

Next reduced cost

$$\bar{c} + \theta^{\star} z$$

Let
$$i \notin \{B(1),\dots,B(m)\}$$
 be the index such that $\theta^\star = -\frac{\overline{c_i}}{z_i}$. Then, $\overline{c_i} + \theta^\star z_i = 0$

New basis

$$\bar{B} = \begin{bmatrix} A_{B(1)} & \dots & A_{B(\ell-1)} & A_i & A_{B(\ell+1)} & \dots & A_{B(m)} \end{bmatrix}$$

Moving to a new basis

Next reduced cost

$$\bar{c} + \theta^* z$$

Let
$$i \notin \{B(1), \dots, B(m)\}$$
 be the index such that $\theta^* = -\frac{\overline{c_i}}{z_i}$. Then, $\overline{c_i} + \theta^* z_i = 0$

New basis

$$\bar{B} = \begin{bmatrix} A_{B(1)} & \dots & A_{B(\ell-1)} & A_i & A_{B(\ell+1)} & \dots & A_{B(m)} \end{bmatrix}$$

New solution

$$x = \bar{B}^{-1}b$$

Dual simplex method

Initialization

- 1. Given basic dual feasible solution y, i.e., $A^Ty+c\geq 0$ 2. Factor basis matrix $B=\begin{bmatrix}A_{B(1)}&\dots,A_{B(m)}\end{bmatrix}$

Iterations

- 1. Solve $Bx_B = b$, $(O(m^2))$
- 2. Get x from x_B ($x_i = 0$, $i \notin basis$)
- 3. If $x \ge 0$, x feasible. break
- 4. Choose j such that $x_i < 0$

Dual simplex method

Iterations (continued)

- 5. Search direction: $z_j = 1$, solve $B^T d = e_j$ and compute $z_N = N^T d$ ($O(m^2)$)
- 6. If $z_N \ge 0$, the dual problem is **unbounded** and the optimal value is $+\infty$. **break**
- 7. Compute step length $\theta^* = \min_{\{i \in N | z_i < 0\}} \left(-\frac{\overline{c_i}}{z_i} \right)$ and pick i entering the basis
- 8. Compute new point $y + \theta^* d$
- 9. Get new basis $\bar{B}=B+(A_i-A_j)e_j^T$ and perform rank-1 factor update. ($O(m^2)$)

Dual simplex method

Iterations (continued)

- 5. Search direction: $z_j = 1$, solve $B^T d = e_j$ and compute $z_N = N^T d$ ($O(m^2)$)
- 6. If $z_N \ge 0$, the dual problem is **unbounded** and the optimal value is $+\infty$. **break**
- 7. Compute step length $\theta^* = \min_{\{i \in N | z_i < 0\}} \left(-\frac{\overline{c_i}}{z_i} \right)$ and pick i entering the basis
- 8. Compute new point $y + \theta^* d$
- 9. Get new basis $\bar{B}=B+(A_i-A_j)e_j^T$ and perform rank-1 factor update. ($O(m^2)$)

Remark: reduced costs nonnegative ——— dual objective non-decreasing

minimize
$$x_1+x_2$$
 subject to $x_1+2x_2\geq 2$ $x_1\geq 1$ $x_1,x_2\geq 0$

minimize
$$x_1+x_2$$
 subject to $x_1+2x_2\geq 2$ $x_1\geq 1$ $x_1,x_2\geq 0$

Primal

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array}$

Dual

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

$$c = (1, 1, 0, 0)$$

$$A = \begin{bmatrix} -1 & -2 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (-2, -1)$$

minimize
$$x_1+x_2$$
 subject to $x_1+2x_2\geq 2$ $x_1\geq 1$ $x_1,x_2\geq 0$

Primal

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array}$

Dual

 $\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$

$$c = (1, 1, 0, 0)$$

$$A = \begin{bmatrix} -1 & -2 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix}$$
$$b = (-2, -1)$$

Initialize

$$y = (0,0)$$
 Basis $\{3,4\}$

Iteration 1

$$\begin{split} y &= (0,0) & c &= (1,1,0,0) \\ -b^T y &= 0 \\ \bar{c} &= c + A^T y = (1,2,0,0) & A = \begin{bmatrix} -1 & -2 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} \\ \text{Basis } \{3,4\} & b &= (-2,-1) \end{split}$$

Iteration 1

$$y = (0,0) \qquad c = (1,1,0,0) \\ -b^T y = 0 \\ \bar{c} = c + A^T y = (1,2,0,0) \qquad A = \begin{bmatrix} -1 & -2 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix}$$
 Basis $\{3,4\}$

$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Primal solution
$$x = (0, 0, -2, -1)$$

Solve
$$Bx_B = b \Rightarrow x_B = (-2, -1)$$

$$c = (1, 1, 0, 0)$$

$$A = \begin{bmatrix} -1 & -2 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (-2, -1)$$

Iteration 1

$$y = (0,0) \qquad c = (1,1,0,0) \\ -b^T y = 0 \\ \bar{c} = c + A^T y = (1,2,0,0) \qquad A = \begin{bmatrix} -1 & -2 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix}$$
 Basis $\{3,4\}$

$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Primal solution
$$x = (0, 0, -2, -1)$$

Solve
$$Bx_B = b \Rightarrow x_B = (-2, -1)$$

Direction
$$z = (-1, -2, 1, 0), j = 3$$

Solve
$$B^T d = e_j \implies d = (1,0)$$

Get
$$z_N = N^T d = (-1, -2)$$

$$c = (1, 1, 0, 0)$$

$$A = \begin{bmatrix} -1 & -2 & 1 \\ -1 & 0 & 0 \end{bmatrix}$$

$$b = (-2, -1)$$

Iteration 1

$$y = (0,0) \qquad c = (1,1,0,0) \\ -b^T y = 0 \\ \bar{c} = c + A^T y = (1,2,0,0) \qquad A = \begin{bmatrix} -1 & -2 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix}$$
 Basis $\{3,4\}$

$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Primal solution
$$x = (0, 0, -2, -1)$$

Solve
$$Bx_B = b \Rightarrow x_B = (-2, -1)$$

Direction z = (-1, -2, 1, 0), j = 3

Solve
$$B^T d = e_j \implies d = (1,0)$$

Get
$$z_N = N^T d = (-1, -2)$$

Step
$$\theta^* = 0.5$$
, $i = 2$
 $\theta^* = \min_{\{i|z_i < 0\}} (-\bar{c}_i/z_i) = \{1, 0.5\}$

New
$$y \leftarrow y + \theta^* d = (0.5, 0)$$

$$c = (1, 1, 0, 0)$$

$$A = \begin{bmatrix} -1 & -2 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (-2, -1)$$

ExampleIteration 2

$$\begin{split} y &= (0.5,0) & c &= (1,1,0,0) \\ -b^T y &= 1 \\ \bar{c} &= c + A^T y = (0.5,0,0.5,0) & A = \begin{bmatrix} -1 & -2 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} \\ Basis & \{2,4\} & b &= (-2,-1) \\ B &= \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix} \end{split}$$

Iteration 2

$$\begin{split} y &= (0.5,0) & c &= (1,1,0,0) \\ -b^T y &= 1 \\ \bar{c} &= c + A^T y = (0.5,0,0.5,0) \quad A = \begin{bmatrix} -1 & -2 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} \\ \text{Basis } \{2,4\} & b &= (-2,-1) \\ B &= \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix} \end{split}$$

Primal solution x = (0, 1, 0, -1)

Solve
$$Bx_B = b \Rightarrow x_B = (1, -1)$$

Iteration 2

$$\begin{split} y &= (0.5,0) & c &= (1,1,0,0) \\ -b^T y &= 1 \\ \bar{c} &= c + A^T y = (0.5,0,0.5,0) \quad A = \begin{bmatrix} -1 & -2 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} \\ Basis & \{2,4\} & b &= (-2,-1) \\ B &= \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix} \end{split}$$

Primal solution x = (0, 1, 0, -1)

Solve
$$Bx_B = b \Rightarrow x_B = (1, -1)$$

Direction
$$z=(-1,0,0,1), \quad j=4$$

Solve $B^Td=e_j \Rightarrow d=(0,1)$
Get $z_N=N^Td=(-1,0)$

Iteration 2

$$\begin{split} y &= (0.5,0) & c &= (1,1,0,0) \\ -b^T y &= 1 \\ \bar{c} &= c + A^T y = (0.5,0,0.5,0) \quad A = \begin{bmatrix} -1 & -2 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} \\ Basis & \{2,4\} & b &= (-2,-1) \\ B &= \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix} \end{split}$$

Primal solution
$$x = (0, 1, 0, -1)$$

Solve
$$Bx_B = b \Rightarrow x_B = (1, -1)$$

Direction z = (-1, 0, 0, 1), j = 4

Solve
$$B^T d = e_j \implies d = (0, 1)$$

Get
$$z_N = N^T d = (-1, 0)$$

Step
$$\theta^* = 0.5$$
, $i = 1$
 $\theta^* = \min_{\{i|z_i < 0\}} (-\bar{c}_i/z_i) = \{0.5\}$

New
$$y \leftarrow y + \theta^* d = (0.5, 0.5)$$

ExampleIteration 3

$$y = (0.5, 0.5) \qquad c = (1, 1, 0, 0)$$

$$-b^T y = 1.5$$

$$\bar{c} = c + A^T y = (0, 0, 0.5, 0.5) \quad A = \begin{bmatrix} -1 & -2 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} -1 & -2 \\ -1 & 0 \end{bmatrix} \qquad b = (-2, -1)$$

Primal solution
$$x = (1, 1.5, 0, 0)$$

Solve
$$Bx_B = b \Rightarrow x_B = (1, 1.5)$$

Iteration 3

$$y = (0.5, 0.5) \qquad c = (1, 1, 0, 0)$$

$$-b^T y = 1.5$$

$$\bar{c} = c + A^T y = (0, 0, 0.5, 0.5) \quad A = \begin{bmatrix} -1 & -2 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix}$$

$$Basis \{1, 2\} \qquad b = (-2, -1)$$

$$B = \begin{bmatrix} -1 & -2 \\ -1 & 0 \end{bmatrix}$$

Primal solution
$$x = (1, 1.5, 0, 0)$$

Solve
$$Bx_B = b \Rightarrow x_B = (1, 1.5)$$

Optimal solution

$$x^* = (1, 1.5, 0, 0)$$

Equivalence and symmetry

The dual simplex is equivalent to the primal simplex applied to the dual problem.

Dual problem

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Symmetrized dual

minimize
$$b^Ty$$
 subject to $A^Ty+c=w$ $w>0$

 $w \geq 0$ are the reduced costs

Dual simplex efficiency

Sequence of problems with varying feasible region

previous y still dual feasible ——— warm-start

Dual simplex efficiency

Sequence of problems with varying feasible region

previous (y) till dual feasible \longrightarrow warm-start

Often applied in mixed-integer optimization to solve subproblems (more later in the course...)

Linear optimization duality

Today, we learned to:

- Interpret linear optimization duality using game theory
- Prove Farkas lemma using duality
- Geometrically link primal and dual solutions with complementary slackness
- Implement the dual simplex method

Next lecture

Sensitivity analysis