ORF522 - Linear and Nonlinear Optimization

8. Linear optimization duality

Bartolomeo Stellato — Fall 2020



Ed forum

* | am wondering is there a general intepretation of the practical meaning of the Dual Problem to its
Primal ?

* |s it always possible to find an interpretation of the dual problem?

* Also the dual of dual is primal, they should be mathematically related. Can you please explain this
if you remember?

* Can the strong duality be deduced at some point in the primal simplex algorithm or do we need
both primal and dual simplex to run to check the strong duality?

* |'m still not to sure why dual is important to LP problems compared to convex problems
* |f primal optimal solution x is unique, would we also have a unigue optimal solution y in the dual?

* When do we decide whether we want to solve the primal or the dual?






Relationship between primal and dual

p* = 400 p* finite p* = —00
I — 4 primal inf.
- dual unb.
. timal
I* finite optimal values
equal
Jr — _ . primal unb.
o0 exception dual inf

» Upper-right excluded by weak duality
* (1,1) and (3, 3) proven by weak duality
* (3,1) and (2, 2) proven by strong duality



Today’s agenda
Readings: [Chapter 4, Bertsimas, Tsitsiklis][Chapter 11, Vanderbei]

* [wO-person zero-sum games
 Farkas lemma
 Complementary slackness

e Dual simplex method



Two-person zero-sum games



Rock paper scissors

Rules
At count to three declare one of: Rock, Paper, or Scissors

Winners

|dentical selection is a draw, otherwise:
 Rock beats (“dulls”) scissors

e Scissors beats (“cuts”) paper
 Paper beats (“covers”) rock

Extremely popular: world RPS society, USA RPS league, etc.



Two-person zero-sum game

» Player 1 (P1) chooses a number i € {1,...,m} (one of m actions)
* Player 2 (P2) chooses a number j € {1,...,n} (one of n actions)

Two players make their choice independently



Two-person zero-sum game

» Player 1 (P1) chooses a number i € {1,...,m} (one of m actions)
* Player 2 (P2) chooses a number j € {1,...,n} (one of n actions)

Two players make their choice independently

Rule Rock, Paper, Scissors
R P S )
Player 1 pays A;; to player 2 0 +1 -1 | R

A= |-1 0O +1| P
+1 =1 O] S

A e R™*" is the payoff matrix




Mixed (randomized) strategies

Deterministic strategies can be systematically defeated



Mixed (randomized) strategies

Deterministic strategies can be systematically defeated

Randomized strategies
* P1 chooses randomly according to distribution x:

x; = probabllity that P1 selects action 2

» P2 chooses randomly according to distribution y:
Yy = probability that P2 selects action j



Mixed (randomized) strategies

Deterministic strategies can be systematically defeated

Randomized strategies
* P1 chooses randomly according to distribution x:

x; = probabllity that P1 selects action 2

» P2 chooses randomly according to distribution y:
yy = probabillity that P2 selects action j

Expected payoff (from P1 P2), if they use mixed-strategies x and v,

Z Z miyinj — QZ‘TAy

i=1 j=1



Mixed strategies and probability simplex

Probability simplex in R
P,={peR"[p>0, 17p=1}

Mixed strategy

For a game player, a mixed strategy is a distribution over all possible
deterministic strategies.

The set of all mixed strategies is the probability simplex — = € P,

y € Oy

10



Optimal mixed strategies

P1: optimal strategy =* Is the solution of

minimize  maxz’ Ay
ye Py,

subjectto z € P,

P2: optimal strategy y* is the solution of

maximize min =’ Ay
xeP,,

subjectto y € P,

11



Optimal mixed strategies

P1: optimal strategy =* Is the solution of

Ce T Ce
minimize  max x" Ay minimize  max (A" x);
subjectto x € P, subjectto x € P,

P2: optimal strategy y* is the solution of

. . T . .
maximize min x- Ay maximize min (Ay)z

xGPm ’l::]_,...,m
————

subjectto y € P, subjectto y € P,

11



Optimal mixed strategies

P1: optimal strategy =* Is the solution of

minimize  max x" Ay minimize  max (ATz),
ye Py - j=1,....,n
subjectto x € P, subjectto  z € P, "\

Inner problem over
deterministic
strategies (vertices)

P2: optimal strategy y* is the solution of /
maximize xfg]ijﬂ r' Ay maximize _min (Ay);

—_—mm

subjectto y € P, subjectto y € P,
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Optimal mixed strategies

P1: optimal strategy =* Is the solution of

minimize  max x" Ay minimize  max (ATz),
ye Py - j=1,....,n
subjectto x € P, subjectto  z € P, "\

Inner problem over
deterministic
strategies (vertices)

P2: optimal strategy y* is the solution of /
maximize xfg]ijﬂ r' Ay maximize min (Ay);
| ™m 1=1,....m

subjectto y € P, subjectto y € P,

Optimal strategies x* and y* can be computed using linear optimization ..



Minmax theorem

Theorem

max min ' Ay = min max z’ Ay
ye P, xeP,, ze P, ye P,

12



Minmax theorem

Theorem

max min ' Ay = min max z’ Ay
ye P, xeP,, ze P, ye P,

Proof
The optimal x* is the solution of

minimize ¢
subjectto A'z <t1
11 =1

r > 0

12



Minmax theorem

Theorem

max min ' Ay = min max z’ Ay

ye P, xeP,,

Proof
The optimal x* is the solution of

minimize ¢
subjectto A'z <t1
11 =1

r > 0

ze P, ye P,

The optimal y* is the solution of
maximize w
subjectto Ay > wl
11y =1
y >0

12



Minmax theorem

Theorem
max min ' Ay = min max z’ Ay
ye P, xeP,, ze P, ye P,
Proof
The optimal =* is the solution of The optimal y* is the solution of
minimize t maximize w
subjectto Alz <t1 subjectto Ay > wl
11 =1 11y =1
x>0 y > 0

The two LPs are duals and by strong duality the equality follows. [l 12



Nash equilibrium

Theorem

max min ' Ay = min max z’ Ay
ye P, xeP,, ze P, ye P,

Consequence

The pair of mixed strategies (z*, y*) attains the Nash equilibrium of the two-
person matrix game, i.e.,

vt Ayt >t Ayt > o Ay, Vz e P, Vye P,

13



minmax A4;; = 3 > —2 = maxmin 4,

v J

4
—2
—2

2
—4
—3

0
—3
4

J

1

14



42 0 =3
A=|-2 —4 -3 3
-2 -3 4 1

minmax A4;; = 3 > —2 = maxmin 4,
() 9 9 ()

Optimal mixed strategies
r* = (0.37,0.33,0.3), y* = (0.4,0,0.13,0.47)

Expected payoff
o Ayt = 0.2



Farkas lemma



Feasibility of polyhedra

P={x|Ax=0b, x>0} @

16



Feasibility of polyhedra

P={x|Ax=0b, x>0}

How to show that P is feasible?
Easy: we just need to provide an x € P, I.e., a certificate

16



Feasibility of polyhedra

P={x|Ax=0b, x>0}

How to show that P is feasible?
Easy: we just need to provide an x € P, I.e., a certificate

How to show that P is infeasible?

16



Farkas lemma

Theorem
Given A and b, exactly one of the following statements is true:

1. There existsan x with Ax = b, x > 0

2. There exists a y with ATy > 0, b''y < 0

17



Farkas lemma

Geometric interpretation

1. First alternative

n
b:ZLEZAZ, xi>0,i:1,...,n
1=1

b Is In the cone generated by the
columns of A

18



Farkas lemma

Geometric interpretation

1. First alternative

n
b:ZLEZAZ, xi>0,i:1,...,n
1=1

b Is In the cone generated by the
columns of A

2. Second alternative
yl A, >0, i=1,.... I, ylb <0

The hyperplane y! z = 0
separates b from Aq,..., A,

18



Farkas lemma

Proof

1 and 2 cannot be both true (easy)
r>0, Ar=bandy!A >0 —

ylb=y' Az >0

19



Farkas lemma

Proof

1 and 2 cannot be both true (easy)
r>0, Ar=bandy!A >0 —

1 and 2 cannot be both false (duality)
Primal

ylb=y' Az >0

Dual

minimize 0 maximize —bly
subjectto Az =1b subjectto A'y > 0

xr > 0

19



Farkas lemma

Proof

1 and 2 cannot be both true (easy)
>0, Ar=bandy’A>0 — gylb=y' Az >0

1 and 2 cannot be both false (duality)

Primal Dual
minimize 0 maximize —b"y y = 0 always feasible
subjectto Az =1b subjectto A’y >0 d* #+ —oc0, p*=d*

r >0

19



Farkas lemma

Proof

1 and 2 cannot be both true (easy)
>0, Ar=bandy’A>0 — gylb=y' Az >0

1 and 2 cannot be both false (duality)

Primal Dual
minimize 0 maximize —b"y y = 0 always feasible
subjectto Az =1b subjectto A’y >0 d* #+ —oc0, p*=d*
xr > 0

Alternative 1: primal feasible p* = d* =0
by > 0 for all y such that ALy > 0

19



Farkas lemma

Proof

1 and 2 cannot be both true (easy)
>0, Ar=bandy’A>0 — gylb=y' Az >0

1 and 2 cannot be both false (duality)

Primal Dual
minimize 0 maximize —b"y y = 0 always feasible
subjectto Az =1b subjectto A’y >0 d* #+ —oc0, p*=d*
xr > 0

Alternative 1: primal feasible p* = d* =0
by > 0 for all y such that ALy > 0

Alternative 2: primal infeasible p* = d* = +¢

There exists y such that Ay > 0and b''y < 0 .



Farkas lemma

Proof

1 and 2 cannot be both true (easy)
>0, Ar=bandy’A>0 — gylb=y' Az >0

1 and 2 cannot be both false (duality)

Primal Dual
minimize 0 maximize —b'y y = 0 always feasible
subjectto Az =b  subjectto ATy >0 —  d* #—oco, p*=d*
r >0
Alternative 1: primal feasible p* = d* =0
by > 0 for all y such that ALy > 0
Alternative 2: primal infeasible p* = d* = +o0 y is an
There exists y such that Ay > 0and b’y < 0 infeasibility .,

certificate



Complementary slackness



Optimality conditions
Primal
minimize ¢!z
subjectto Az <b

Dual
maximize —bly
subjectto A'y+c=0

y >0

21



Optimality conditions

Primal Dual
minimize ¢’z maximize —b"y
subjectto  Ax < b subjectto A’y +c=0
y > 0

r and y are primal and dual optimal if and only if
- x Is primal feasible: Ax < b

- ¢y is dual feasible: A"y +c=0and y > 0

- The duality gap is zero: ¢!z +bly =0

21



Optimality conditions

Primal Dual
minimize ¢’z maximize —b"y
subjectto  Ax < b subjectto A’y +c=0
y > 0

r and y are primal and dual optimal if and only if
- x Is primal feasible: Ax < b

- ¢y is dual feasible: A"y +c=0and y > 0

- The duality gap is zero: ¢!z +bly =0

Can we relate x and y (not only the objective)?

21



Complementary slackness

Primal Dual
minimize ¢’z maximize —b"y
subjectto  Ax < b subjectto A’y +c=0
y > 0

Theorem
Primal,dual feasible x, y are optimal if and only if

yi(bj —a; ) =0, i=1,...,m
l.e., at optimum, b — Az and y have a complementary sparsity pattern:

Yy, >0 = CLTZE:bZ

(/

CL?ZL‘<bi = y; = 0

22



Complementary slackness

Primal Dual
minimize ¢’z maximize —b"y
subjectto  Ax < b subjectto A’y +c=0
y > 0

Proof
The duality gap at primal feasible x and dual feasible y can be written as

crrx+by=(—Ay) ' x+by=(b—-Az)' y = Z yi(b; —a; ) =0
i=1

23



Complementary slackness

Primal Dual
minimize ¢’z maximize —b"y
subjectto  Ax < b subjectto A’y +c=0
y > 0

Proof
The duality gap at primal feasible x and dual feasible y can be written as

crrx+by=(—Ay) ' x+by=(b—-Az)' y = Z yi(b; —a; ) =0
i=1

Since all the elements of the sum are nonnegative, they must all be 0

23



Complementary slackness

Primal Dual
minimize ¢’z maximize —b"y
subjectto  Ax < b subjectto A’y +c=0
y > 0

Proof
The duality gap at primal feasible x and dual feasible y can be written as

crrx+by=(—Ay) ' x+by=(b—-Az)' y = Z yi(b; —a; ) =0
i=1

Since all the elements of the sum are nonnegative, they must all be 0

For feasible x and y complementary slackness = zero duality gap

23



Geometric interpretation

Example in R? @, —c

Two active constraints at optimum: aipaz* = by, agx* = by



Geometric interpretation

Example in R? @, —c

Two active constraints at optimum: aipaz* = by, agx* = by

Optimal dual solution y satisfies:
ATy—|—Cz()7 y > 0, yZ:OfOrZ#{l,Q}
In other words, —c = a1y + a2ys With y1, 92 > 0

24



Geometric mterpretatlon

Example in R? \ 5 —C

|
%
|
Two active constraints at optimum: aipaz* = by, agx* = by

Optimal dual solution y satisfies:
ATy—|—C:()7 y > 0, yZ:OfOrZ#{l,Q}
In other words, —c = a1y + a2ys With y1, 92 > 0

Geometric interpretation: —c lies in the cone generated by a; and as

24



Example

minimize  —4x1 — 5x-
1 0"
. 2 1
subject to
0 -1
1 2

Let’s show that feasible x = (1, 1) is optimal

VA
w O W O

25



Example

minimize

subject to

—4%1 — 52132

1

Let’s show that feasible x = (1, 1) is optimal

VA
w O W O

FoOLYHA . .
Second and 1&1 constraints are activeatz — y = (0,¥2,0, y4)

Aty = —c

—

4
O

and

yZZov

ys = 0

25



Example

minimize

subject to

—4x1 — dxo
—1 0
2 1
0 -1
1 2

Let’s show that feasible x = (1, 1) is optimal

Second and third constraints are active at «

2 1| [

Aly=— =
_1 2_ Ya

4
O

VA
w O W O

— Y = (Ovy2707y4)

and

yZZov

ys = 0

y = (0, 1,0, 2) satisfies these conditions and proves that z is optimal



Example

minimize

subject to

—4x1 — dxo
—1 0
2 1
0 -1
1 2

Let’s show that feasible x = (1, 1) is optimal

Second and third constraints are active at «

2 1| [

Aly=— =
_1 2_ Ya

4
O

VA
w O W O

— Y = (Ovy2707y4)

and

yZZov

ys = 0

y = (0, 1,0, 2) satisfies these conditions and proves that z is optimal

Complementary slackness is useful to recover y* from z*



The dual simplex




Optimality conditions
Primal problem
minimize ¢’z
subjectto Az =0
r > 0

Dual problem

maximize —bly
subjectto ATy +c¢ >0

27



Optimality conditions

Primal problem Dual problem
minimize clx maximize —bTy
subjectto Az = subjectto ATy + ¢ >0

r > 0

r and y are primal and dual optimal if and only if

- x Is primal feasible: Ax =band x > 0

- ¢y is dual feasible: A’y +c¢ >0

- The duality gap is zero: ¢!z + bl'y = 0

27



Primal and dual basic feasible solutions

Primal problem Dual problem
minimize clx maximize —bTy
subjectto Az = subjectto ATy + ¢ >0

r > 0

Given a basis matrix B

Primal feasible: Az =b, >0 = 2x5=B"'%>0

28



Primal and dual basic feasible solutions

Primal problem Dual problem
minimize clx maximize —bTy
subjectto Az = subjectto ATy + ¢ >0

r > 0

Given a basis matrix B

Primal feasible: Az =b, >0 = 2x5=B"'%>0

Dual feasible: A’y + ¢ > 0.

28



Primal and dual basic feasible solutions

Primal problem Dual problem
minimize clx maximize —bTy
subjectto Az = subjectto ATy + ¢ >0

r > 0

Given a basis matrix B

Primal feasible: Az =b, >0 = 2x5=B"'%>0

Dual feasible: A’y 4+ ¢ > 0. fy=—-B'cg = c—A'B 1cg>0

28



Primal and dual basic feasible solutions

Primal problem Dual problem
minimize clx maximize —bTy
subjectto Az = subjectto ATy + ¢ >0

r > 0

Given a basis matrix B

Primal feasible: Ax =0, >0 = 25=B"'5>0 Reduced costs

/

Dual feasible: A’y 4+ ¢ > 0. fy=—-B*'cg = c—A'B tcg>0

28



Primal and dual basic feasible solutions

Primal problem Dual problem
minimize clx maximize —bTy
subjectto Az = subjectto ATy + ¢ >0

r > 0

Given a basis matrix B

Primal feasible: Ax =0, >0 = 25=B"'5>0 Reduced costs

/

Dual feasible: A’y 4+ ¢ > 0. fy=—-B*'cg = c—A'B tcg>0

Zero dualitygap: ¢!z +b'y=cprp —b' B 'cp =cprp — c:gB_lb =0

28



Primal and dual basic feasible solutions

Primal problem Dual problem
minimize clx maximize —bTy
subjectto Az = subjectto ATy + ¢ >0

r > 0

Given a basis matrix B

Primal feasible: Ax =0, >0 = 25=B"'5>0 Reduced costs

/

Dual feasible: A’y 4+ ¢ > 0. fy=—-B'cg = c—A"B'cg>0

Zero dualitygap: ¢!z +b'y=cprp —b' B 'cp =cprp — c:gB_lb =0

T

(by construction) >



The primal (dual) simplex method

Primal problem
minimize ¢’z
subjectto Az =0

r > 0

Primal simplex

* Primal feasiblility
e Zero duality gap

Dual feasibility

Dual problem

maximize —bly
subjectto Aly+c¢>0

Dual simplex

» Dual feasibility
e Zero duality gap

Primal feasibility

29



Feasible dual directions

Conditions

Given a basis matrix B = -AB(l)
P={y| ATy +¢>0} we have dual feasible solution y:

c=Aly+c¢>0

30




Feasible dual directions

Conditions

Given a basis matrix B = -AB(l)
P={y| ATy +¢>0} we have dual feasible solution y:

c=Aly+c¢>0

Feasible direction d
y + 0d

30




Feasible dual directions

Conditions

Given a basis matrix B = -AB(l)
P={y| ATy +¢>0} we have dual feasible solution y:

c=Aly+c¢>0

Feasible direction d
y + 0d

Reduced cost change
c—I—AT(y—I—Hd) >0 = «¢+60z>0

A" d = z (subspace restriction)

30




Feasible directions

Computation

Subspace restriction

ATd=72 ——

31



Feasible directions

Computation

Subspace restriction

Ald=2z —

Basic indices
zp = € — B({) = j exits the basis
Get d by solving B* d = ¢;

31



Feasible directions

Computation

Subspace restriction

Ald=2z —

Basic indices
zp = € — B({) = j exits the basis
Get d by solving B* d = ¢;

Nonbasic indices
v = NTd= NTB_Tej

31



Feasible directions

Computation

Ald=2z —

Basic indices
zp = € — B({) = j exits the basis
Get d by solving B* d = ¢;

Nonbasic indices
v =Ntd= NTB_Tej

Subspace restriction

Non-negativity of reduced costs (hon-degenerate assumption)
» Basic variables: cg = 0. Nonnegative direction zgp > 0.

 Nonbasic variables: ¢y > 0. Therefore -

0 >0suchthatcy +0zny >0

31



Stepsize

How far can we go?

f* =max{f |0 >0and c+ 6z > 0}

32



Stepsize

How far can we go?

f* =max{f |0 >0and c+ 6z > 0}

Unbounded
If z > 0, then 6* = oo. The dual problem is unbounded (primal infeasible).

32



Stepsize

How far can we go?

f* =max{f |0 >0and c+ 6z > 0}

Unbounded
If z > 0, then 6* = oo. The dual problem is unbounded (primal infeasible).

Bounded ) )
If z;, < 0 for some 1z, then 0* = min ( ) —  min ( CZ)

{7]2: <0} {i€N|z;<0} 2

(Since z; > 0, i € B) 30



Moving to a new basis

Next reduced cost
c+ 0%z

Leti ¢ {B(1),..., B(m)} be the index such that §* = —=*. Then,

<

Ez’ —I—Q*ZZ — ()



Moving to a new basis

Next reduced cost
c+ 0%z

Let: ¢ {B(1),...,B(m)} be the index such that 6~

Ap(1)

Ez’ —+- (9*27; — ()
New basis
Apu—1y Ai Apps

C?.Then,

<

AB(m)

33



Moving to a new basis

Let: ¢ {B(1),...,B(m)} be the index such that 6~

Ap(1)

Next reduced cost
c+ 0%z

Ez’ —I—Q*ZZ — ()

New basis
Apu—1y Ai Apps

New sc_>|ution
r = B~ b

C?.Then,

<

AB(m)

33



Dual simplex method

Initialization

1. Given basic dual feasible solution y, i.e., ATy + ¢ > 0
2. Factor basis matrix B = |Agny ..., Apm)

Iterations
1. Solve Bz =b, (O(m?))

2. Get x from zp (x; =0, ¢ ¢ basis)
3. If x > 0, x feasible. break

4. Choose j such that z; < 0

34



Dual simplex method

Iterations (continued)
5. Search direction: z; = 1, solve B*d = e¢; and compute zy = N*d  (O(m?))
6. If zy > 0, the dual problem is unbounded and the optimal value is +oco. break

C;

/. Compute step length 6* =  min ( ) and pick 7 entering the basis

{1t€N|z;<0} 23
8. Compute new point y + 6*d

9. Get new basis B = B + (A; — A;)e; and perform rank-1 factor update.  (O(m?))

35



Dual simplex method

Iterations (continued)
5. Search direction: z; = 1, solve B*d = e¢; and compute zy = N*d  (O(m?))
6. If zy > 0, the dual problem is unbounded and the optimal value is +oco. break

C;

/. Compute step length 6* =  min (

) and pick : entering the basis
{1t€N|z;<0}

Z
8. Compute new point y + 6*d
9. Get new basis B = B + (A; — A;)e; and perform rank-1 factor update.  (O(m?))

Remark: reduced costs nonnegative — dual objective non-decreasing
35



minimize
subject to

Tr1 + ITo
r1 + 229 > 2
$1>1

L1, L2 Z 0

36



Primal

minimize
subject to

CTLIZ‘

Axr =0
xr > 0

minimize x1 + o
subjectto z; + 2x9 > 2
L1 > 1

L1y L2 Z O
Dual

maximize —bly
subjectto Ay +c¢>0

c=(1,1,0,0)
1 -2 1
A —
1 0 0

h=(—2,—1)

36




Primal

minimize
subject to

CTLIZ‘

Axr =0
xr > 0

minimize x1 + o
subjectto z; + 2x9 > 2
L1 > 1

L1y L2 Z O
Dual

maximize —bly
subjectto Ay +c¢>0

Initialize
y = (0,0) Basis {3,4}

c=(1,1,0,0)
1 -2 1
A —
1 0 0
b= (—2,—1)

36




y = (0, 0) c=(1,1,0,0)

_bTy — () . _

Example c=c+ A y=(1,2,0,0) A = -2 10

Ilteration 1 Basis {3,4} -1 0 01
10 b= (—2,—1)

B =

0 1

37



y = (0,0) c=(1,1,0,0)
T _ _
by =0 1 -2 1 0

Example c=ct ATy=(1,2000 A=|
Iteration 1 Basis {3,4} : :
P b= (—2,—1)
B_ 1 O
_O 1_

Primal solution * = (0,0, —2, —1)
Solve Brp=b = = (—2, —1)

37



y = (0, 0) c=(1,1,0,0)
T _ _
—bTy=0 1 —9 1 0

Example c=c+ A y=(1,2,0,0) A = 10 o0 1
Iteration 1 Basis {3,4} i ]
T b= (—2,—1)
B_ 1 0O
_O 1_

Primal solution * = (0,0, —2, —1)
Solve Brp=b = = (—2, —1)

Direction z=(—-1,-2,1,0), 5 =3
Solve Bld=e¢; = d=(1,0)
Get zy = N'd = (-1, -2)

37



y = (0, 0) c=(1,1,0,0)
T _ _
—bTy=0 1 —9 1 0

Example c=c+ A y=(1,2,0,0) A = 10 o0 1
Iteration 1 Basis {3,4} i ]
T b= (—2,—1)
B_ 1 0O
_O 1_

Primal solution * = (0,0, —2, —1)
Solve Brp=b = = (—2, —1)

Direction z=(—-1,-2,1,0), 5 =3
Solve Bld=e¢; = d=(1,0)

Get zy = N'd = (-1, -2)

Step 0* = 0.5, i=2

6)* — min —C;/Z2;) = 1,05
oo (=6i/zi) = 11,05

New y < y + 6*d = (0.5, 0) 37



Example

Iteration 2

y = (0.5,0) c=(1,1,0,0)

T, _ i i
—y=1_ 1 -2 1 0
c=c+A y=(0.5,0,0.50) A= 0 01
Basis {2,4} - i

92 0 b= (—2,—1
o (~2,-1)

0 1
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y = (0.5,0) c=(1,1,0,0)
T - _
by =1 1 -2 1 0

Example c=c+ ATy=(05,0,050) A=| |
Iteration 2 Basis 12,4} : :
_ b= (—2,—1
s |20 ( )
0 1

Primal solution * = (0,1,0, —1)
Solve Brp=b = = (1, —1)

38



y = (0.5,0) c=(1,1,0,0)
T - _
by =1 1 -2 1 0

Example c=c+ ATy=(05,0,050) A=| |
Iteration 2 Basis 12,4} : :
_ b= (—2,—1
s |20 ( )
0 1

Primal solution * = (0,1,0, —1)
Solve Brp=b = = (1, —1)

Direction z=(-1,0,0,1), j=4
Solve Bld=e¢; = d=(0,1)
Get 2y = NTd = (—1, O)

38



y = (0.5,0) c=(1,1,0,0)
T - _
by =1 1 -2 1 0

Example c=c+ ATy=(05,0,050) A=| |
Iteration 2 Basis 12,4} : :
_ b= (—2,—1
s |20 ( )
0 1

Primal solution * = (0,1,0, —1)
Solve Brp=b = = (1, —1)

Direction z=(-1,0,0,1), j=4
Solve Bld=e¢; = d=(0,1)
Get 2y = NTd = (—1, O)

Step 0* =0.5, i=1

9* — min —C;/%2;) = 0.5
min (=e/z) = {0.5)

New y < y + 6*d = (0.5,0.5) 38



y = (0.5,0.5) c=(1,1,0,0)
—b'y=1.5 " -
-1 -2 1 0
Example c=c+ ATy =(0,0,0505) A=|
Iteration 3 Basis {1,2} : :
1 b= (—2,—1
H_ |71 -2 ( )
—1 0

Primal solution £ = (1, 1.5, 0, 0)
Solve Brg=0 = x5= (1, 15)
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y = (0.5,0.5) c=(1,1,0,0)
—b'y=1.5 " -
-1 -2 1 0
Example c=c+ ATy =(0,0,0505) A=|
Iteration 3 Basis {1,2} : :
1 b= (—2,—1
H_ |71 -2 ( )
—1 0

Primal solution £ = (1, 1.5, 0, 0)
Solve Brg=0 = x5= (1, 15)

Optimal solution
r* = (1,1.5,0,0)

39



Equivalence and symmetry

The dual simplex is equivalent to the primal simplex applied to the dual problem.

Dual problem Symmetrized dual
. minimize  b!
maximize —bTy hingt 4 ATy N
, — subject to —
subjectto Aly+4+c¢>0 | >y() e
w =

w > 0 are the reduced costs
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Dual simplex efficiency

Seqguence of problems with varying feasible region

previous vy still dual feasible —— warm-start

41



Dual simplex efficiency

Seqguence of problems with varying feasible region

3
previouill dual feasible —— warm-start

A

Often applied in mixed-integer optimization to solve subproblems
(more later in the course...)
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Linear optimization duality

Today, we learned to:

* Interpret linear optimization duality using game theory

* Prove Farkas lemma using duality

 Geometrically link primal and dual solutions with complementary slackness

 Implement the dual simplex method
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Next lecture

e Sensitivity analysis
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