ORF522 - Linear and Nonlinear Optimization

6. Numerical linear algebra and simplex implementation

Bartolomeo Stellato — Fall 2020

Ed forum

 Can we use a random pivot rule?
Yes! Sometimes quadratic convergence. Not used in modern solvers though.

 How does the basis of the perturbed problem relate to the basis of the original problem?
We cannot go easily back to the original problem basis! However, the solution will be very likely close.

* Do certain pivot rules not only avoid cycling but also have nice properties such as polynomial amortized time or some other sort of nice property in a
"average" sense?
Yes, Bland’s rule enjoys these properties in the average case.

 What happens with the perturbation approach if the matrix is ill-conditioned?
Bad things... it could definitely give us a completely wrong solution.

* Any rule to pick M for the big-M method?
If you keep the data symbolic, a simple rule is to consider M larger than any other number appearing in the algorithm. In this case, whenever it is compared
to any number, it is larger. In general, simplex-like methods always work in two-phases and avoid the big-M “tuning” problem.

« Can you just remove the redundant constraints in case of degeneracy?
Degeneracy for sure depends on the way the polyhedron is represented but it might not be always that easy. It does not only happen in case of redundant
constraints (the ones that can be removed without changing the shape of the polytope).

* |s there already some work done on the distribution of complexity for some class of linear programs, say, if we are searching on a probability simplex?
Yes, there is interesting work about small perturbations and simplex complexity.

* Will the solver always go down the same route in its iterations for a given problem, or will it involve a random seed such that each execution is different?
For a given problem, will we encounter cases such that one execution finishes very fast, while a repeated execution may exceed max iterations?
If the solver is deterministic, it is always the same route. It is usually the case in common solvers.

[Gartner, B., Henk, M., & Ziegler, G. M. (1998). Randomized simplex algorithms on Klee-Minty cubes. Combinatorica, 18(3), 349-372.]
[Kelner, J. A., & Spielman, D. A. (2006). A randomized polynomial-time simplex algorithm for linear programming. In Proc. of ACM symposium on Theory of computing]

2

An iteration of the simplex method
First part

We start with a basic feasible solution x and a basis matrix B = _AB(l) . ,AB(m)-

1. Compute the reduced costs ¢; = c¢; — cgB 1A, forj € N
2. If ¢; > 0, x optimal. break

3. Choose j such that ¢; < 0

An iteration of the simplex method

Second part

4. Compute search direction components dg = —B~ ' A;

5. It dg > 0, the problem is unbounded and the optimal value is —oc. break

:E.
6. Compute step length 6* = ' -
P P 1eng {igéﬂiz?@}(di>

/. Define y such that y = x + 6*d

Today’s agenda

[Chapter 3, Bertsimas and Tsitsiklis]
[Chapter 13, Nocedal and Wright]
[Chapter 8, Vanderbei]

 Numerical linear algebra
* Realistic simplex implementation
 Example

 Empirical complexity

Numerical linear algebra

Deeper look at complexity

Flop count

floating-point operations: one addition, subtraction, multiplication, division

Estimate complexity of an algorithm

» Express number of flops as a function of problem dimensions
- Simplify and keep only leading terms

Remarks

* Not accurate in modern computers (multicore, GPU, etc.)
- Still rough and widely-used estimate of complexity

Complexity

Basic examples

Vector operations (z,y € R")

- Inner product z* y: 2n — 1 flops
« Sum x + y or scalar multiplication ax: n flops

Matrix-vector product (y = Ax with A € R™”*")

* m(2n — 1) flops
» 2N If A is sparse with NV nonzero elements

Matrix-matrix product (C' = AB with A € R™*", B € R"*P)

» pm(2n — 1) flops
» Less if A and/or B are sparse

Complexity

Solving linear system

Execution time (cost) of solving Ax = b with A € R™"*"

General case O(n°)

Much less if A structured (sparse, banded, Toepliz, etc.)

You (almost) never compute A~ explicitly!

* Numerically unstable (divisions)
* You lose structure

10

Easy linear systems

Diagonal matrices (a;; = 0 if i # j): O(n) flops
r=A""b=(bi/ai1,...,bp/ann)

Lower-triangular (a;; = 0 if j > i): O(n?) flops (forward substitution)
L1 = 51/6111

Lo =— (bz — &21$1)/OJ22

Ln = (bn — Anp1dl1 — Gp22dLy — - — an,n—lxn—l)/ann

Upper-triangular (a;; = 0 if j < 4): O(n?) flops (backward substitution) 11

Other easy linear systems

Orthogonal matrices (A~! = A')
O(n?) flops to compute x = A’ b for general A

Permutation matrices

a. . — L y=m where © = (mq,...,m,) IS a permutation of (1,2,...,n)
19 :
0 otherwise
» interpretation: Az = (x,,,..., 2,)

- Satisfies A=! = A', hence 0 flops

Sparse matrices

Most real-world problems are sparse

A matrix A is sparse if the majority of its elements is 0

typically < 15% nonzeros

Efficient representations
» Triplet format: (i, j, z;;)
- Compressed Sparse Column format: (¢, z;,;) and p;
- Compressed Sparse Row format: (j,z;;) and p;

13

The factor-solve method for solving Ax = b

Direct method
1. Factor A as a product of simple matrices:

A=AjAy--- Ay,

(A; diagonal, upper/lower triangular, etc)
2. Compute z = A~'b = A; ' -.- A{'b by solving k “easy” equations

Al.fEl — bl, AQZEQ — X1, C e ey Akﬂj — Lk—-1,

(cost of factorization usually dominates cost of solve)

Multiple righthand sides Az = b6;, Ax =0b5, ..., Az = b,
cost: one factorization + m solves 14

(Sparse) LU factorization

Every nonsingular matrix A can be factored as
A=P.LUP, —— PlAP' =LU
P,., P. permutation, L lower triangular, U upper triangular

Permutations

» Reorder rows P, and columns P. of A to (heuristically) get sparser L, U
» P.. P. depend on sparsity pattern and values of A

Cost

- If A dense, typically O(n?) but usually much less
» |t depends on the number of nonzeros in A, sparsity pattern, etc.

15

(Sparse) LU solution

Az =b, = P.LUP.xz =Db

Iterations

1. Permutation: Solve P,.z; = b (0 flops)

2. Forward substitution: Solve Lzy = 21 (O (n2) flops)
3. Backward substitution: Solve Uz = z (O(n?) flops)
4. Permutation: Solve P.x = z5 (0 flops)

Cost
Factor + Solve ~ O(n?)
Just solve (prefactored) ~ O(n?)

16

(Sparse) Cholesky factorization

Every positive definite matrix A can be factored as
A=PLL"P* — P'AP=LL"

P permutation, L lower triangular

Permutations

» Reorder rows/cols of A with P to (heuristically) get sparser L
» P depends only on sparsity pattern of A (unlike LU factorization)
* |f Aisdense, wecanset P =1

Cost
- If A dense, typically O(n?°) but usually much less
» |t depends on the number of nonzeros in A, sparsity pattern, etc.
» Typically 50% faster than LU (need to find only one matrix)

17

(Sparse) Cholesky solution

Ar=b, = PLL'P'x=10

Iterations

1. Permutation: Solve Pz; = b (0 flops)

2. Forward substitution: Solve Lzy = 21 (O(n?) flops)
3. Backward substitution: Solve L* x = 2z, (O(n?) flops)
4. Permutation: Solve P!z = z, (0 flops)

Cost
Factor + Solve ~ O(n?)
Just solve (prefactored) ~ O(n?)

18

“Realistic” simplex
Implementation

Computational bottlenecks in the simplex method

Solving linear systems

1. Compute the reduced costs ¢; = ¢; —cg B 'A; forj e N
4. Compute search direction components dgp = —B~ ' A;

Equivalent forms
1. Solve p* =czB ' = B'p=cp. Thené¢, =c¢; —p' A,.
4. Solve Bdg = —Aj

Same matrix to factor
BTp — CPB, BdB — —Aj

B not symmetric positive definite = use LU factorization B = LU

(we here ignore P,, P. for simplicity)
20

Basis update

Rank-1 update
B — B -+ (A] — Az)eér

Forrest-Tomlin update O(n?)

+ Compute B = LRU (same L, lower triangular 12, upper triangular U)
+ LT'B=U+ (L 'A; —Uey)e] =U

. LU factorization of U into RU via elimination (cheap)

Remarks

» Implemented in modern sparse solvers

» Accumulates errors (we need to refactor B from scratch once in a while)
- Many more algorithms: Block-LU, Bartels-Golub-Reid, etc.

21

Realistic (revised) simplex method

Initialization

1. Given basic feasible solution z]
2. Factor basis matrix B = (Ag1)y ..., Apm)
Iterations

1. Solve Blp = cp, (O(m?))
2. Compute the reduced costs. c =c— Al p
3. If ¢ > 0, x optimal. break

4. Choose j such thatc; < 0

22

Realistic (revised) simplex method

Iterations (continued)

. Compute search direction. d; = 1 and solve Bdg = —A; (O(m?))

. It dg > 0, the problem is unbounded and the optimal value is —oco. break

Lg

di

. Compute step length 6 = min (

) and pick : exiting the basis
{1€B|d; <0}

. Compute new point y = x + 0*d

. Get new basis B = B+ (A; — A;)e; and perform rank-1 factor update. (O(m?))

Per-iteration cost O(m?)

23

minimize —10x1 — 1225 — 125

subjectto x1 + 229 + 223 < 20
201 + 1o + x3 < 20
201 + 229 + 3 < 20

L1,L2,L3 2 0

Standard form

minimize —10x7 — 1225 — 125
.
— — fL‘2 — —
1 2 2 1 0 0 20
: L3
subjectto (2 1 2 0 1 O = |20
XL
2 2 10 0 1] | 20
i 1|, Y
6 o5

Example

c=(—10,-12,-12,0,0,0)

Start minimize clx 1 2 2 1 0 0

subjectto Ax =10 A=12 1 2 0 1 0

r >0 _2 2 1 0 0 1_

b = (20, 20, 20)
L3

Initialize 1 0 0
r = (0,0,0,20,20,200 B=10 1 0

0 0 1 L2

20

Current point

x = (0.0, 0,20, 20, 20

IItExa_mple T (: 0)
eration 1 Basis: {4,5,6}
1 0 0
B=10 1 0
00 1

Reduced costs ¢ = ¢
Solve Blp=cp = p=cg=0
c=c—Alp=c

Direction d = (1,0,0,—-1,-2,-2), j=1
Solve Bdp = —Aj = dp = (—1, —2, —2)

Step 6* =10, =5

9* = min (—z;/d;) = min{20,10, 10
{ifﬁliIO}(z;/d;) = min{ }

New z < x + 6*d = (10,0, 0, 10,0, 0)

c=(—10,—12,-12,0,0,0)

1 2 2 1 0 0
A=12 1 2 0 1 0
2 2 10 0 1
b = (20,20, 20)
L3
L1

27

Current point

Example o L0 1000
| T — 100
Iteration 2 Basis: {4,1,6}
1 1 0
B=10 2 0
02 1
)

Solve BTp — CB = P = (O, —9,
c=c—A'p=(0,-7,-2,0,5,0)

Direction d = (—-0.5,1,0,—1.5,0,—1), j =2
Solve Bdp = —A; = dp=(-1.5,-0.5,—1)

Step 0" =0, =6

0* = min (—=;/d;) = min{6.66, 20,0
in (—w/d;) = ming ;

New z < x + 6*d = (10,0, 0, 10,0, 0)

c=(—10,—12,-12,0,0,0)

A =

1 2 2 1 0 0
21 2 0 1 0
2 2 10 0 1

b = (20, 20, 20)

28

Current point c = (-10,-12,-12,0,0,0)

C" T = —
Ilteration . —
eration 3 Basis: {4, 1,2} A b2 010
19 2210 0 1
B=10 2 1 b = (20, 20, 20)
0 2 2
Reduced costs ¢ = (0,0,—9,0, —2,7)

Solve BTp =Cp = Dp= (O, 2, —7) L3
c=c—A'p=1(0,0,-9,0,—2,7)

Direction d = (—1.5,1,1,—-2.5,0,0), 45 =3
Solve Bdg = —A; = dp=(-2.5,-1.5,1)
Step 0" =4, i=14 L2
9* — min — Xy dz — min 4, 0.67
min | (~;/d;) = min{4, 6.67) }

New x < = + 60*d = (4,4,4,0,0,0) T1

Current point

Example v = (4,4,4,0,0,0)
Iteration 4 o =13
Basis: {3,1,2}
2 1 2
B=12 2 1
12 2
Reduced costs ¢ = (0,0,0,3.6,1.6,1.6)

Solve Bp=cg = p=(-3.6,—1.6,—1.6)
c=c—A"p=(0,0,0,3.6,1.6,1.6)

Optimal
— ¥ =(4,4,4,0,0,0)

Ol
[V
-

c=(—10,—12,-12,0,0,0)

1 2 2

A=12 1 2

2 2 1

b = (20, 20, 20)
L3

1 0 0
0 1 0

0 0 1

30

Simplex tableau implementation

Can we solve LPs by hand?

Minus
cost

Basic
variables

—+ —ChIB C1 ¢, <+—— Reduced costs
(1) \ \

— E B~ 14, B~ lA,
zp(1) \ \

People did it before computers were invented!

Nobody does it anymore...

31

Empirical complexity

Example with real solver
GLPK (open-source)

Code

numpy as np
CVXpPYy as Ccp

Output

.array([-10, -12, -12])
.array([[1l, 2
[2, 1

[2, 2
2

r 21,
r 21,
r 111)
0, 207)

GLPK Simplex Optimizer, v4.65
6 rows, 3 columns, 12 non-zeros

s 0: obj = 0.000000000e+00 1inf

& 3: obj = -1.360000000e+02 1inf
OPTIMAL LP SOLUTION FOUND

np.array([20,
len(c)

cp.Variable(n)
problem = cp.Problem(cp.Minimize(c @ x),
[A @ x <= b, x >= 0])
problem.solve(solver=cp.GLPK, verbose=True)

0.000e+00
0.000e+00

33

(3)
(0)

Average simplex complexity

Random LPs

Iterations: O(n)

minimize
subject to

C X

Ax < b

30001

2000

DO
-
-
-

15001

10001

Number of iterations

5001

200

400

n variables
3n constraints

Time: O(nn?) = O(n”)

34

Numerical linear algebra and simplex implementation

Today, we learned to:

* ldentify the pros and cons of different methods to solve a linear system
* Derive the computational complexity of the factor-solve method
 Implement a “realistic” version of the simplex method

 Empirically analyze the average complexity of the simplex method

35

Next lecture

* |Linear optimization duality

36

