ORF522 – Linear and Nonlinear Optimization

5. The simplex method

Ed forum

- What is the geometric picture of the standard form? Given a standard form P, can we always convert it back to the version defined by halfspaces? (next slides)
- Extent to which these methods are generalizable to infinite-dimensional restrictions e.g. linear difference equations when t goes to infinity.
- Efficient way to deal with inverses? (next lecture)
- How to pick index entering the basis? (this lecture)
- Adjacent solutions why defined that way? (Same active constraints except 1)
- Feasibility LP condition in no strong arbitrage from Arrow-Debreu theory (That's correct! We will discuss feasibility in duality lectures)

Recap

Standard form polyhedra

Definition

Standard form LP

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

Assumption

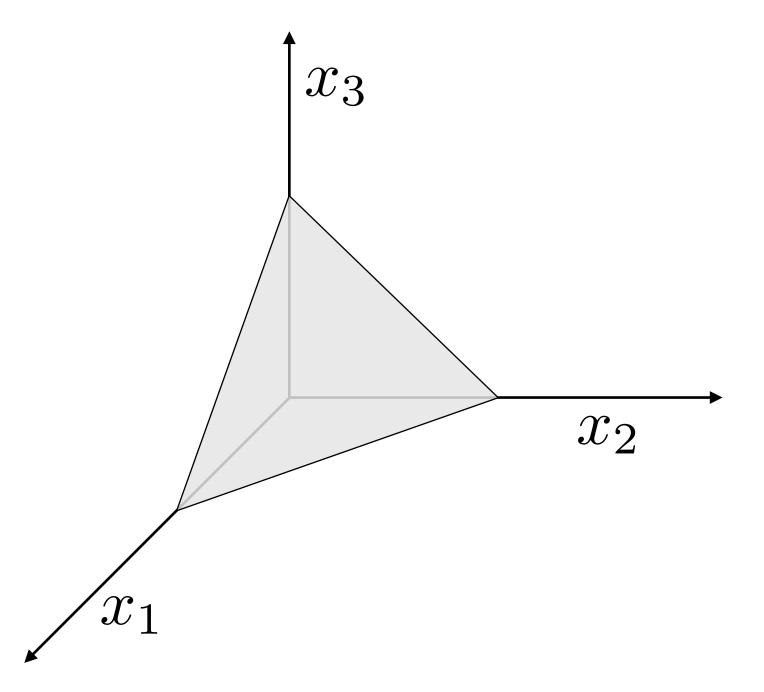
 $A \in \mathbf{R}^{m \times n}$ has full row rank $m \leq n$

Interpretation

P lives in (n-m)-dimensional subspace

Standard form polyhedron

$$P = \{x \mid Ax = b, \ x \ge 0\}$$



Standard form polyhedra

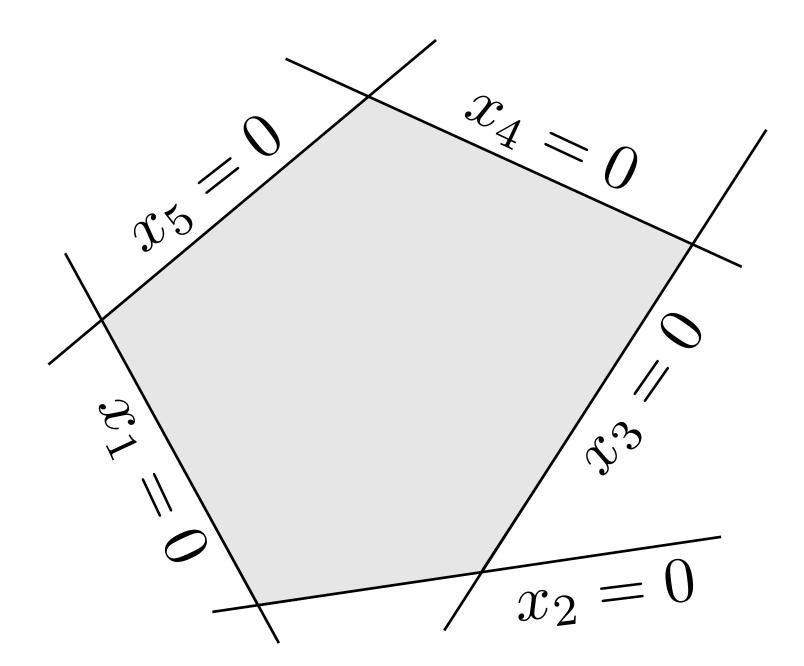
Visualization

$$P = \{x \mid Ax = b, \ x \ge 0\}, \quad n - m = 2$$

Three dimensions

x_1 x_2

Higher dimensions



Constructing basic solution

- 1. Choose any m independent columns of A: $A_{B(1)}, \ldots, A_{B(m)}$
- 2. Let $x_i = 0$ for all $i \neq B(1), ..., B(m)$
- 3. Solve Ax = b for the remaining $x_{B(1)}, \ldots, x_{B(m)}$

Constructing basic solution

- 1. Choose any m independent columns of A: $A_{B(1)}, \ldots, A_{B(m)}$
- 2. Let $x_i = 0$ for all $i \neq B(1), ..., B(m)$
- 3. Solve Ax = b for the remaining $x_{B(1)}, \ldots, x_{B(m)}$

Constructing basic solution

- 1. Choose any m independent columns of A: $A_{B(1)}, \ldots, A_{B(m)}$
- 2. Let $x_i = 0$ for all $i \neq B(1), ..., B(m)$
- 3. Solve Ax = b for the remaining $x_{B(1)}, \ldots, x_{B(m)}$

If $x_B \ge 0$, then x is a basic feasible solution

Conditions

$$P = \{x \mid Ax = b, \ x \ge 0\}$$

Given a basis matrix $B = \begin{bmatrix} A_{B(1)} & \dots & A_{B(m)} \end{bmatrix}$ we have basic feasible solution x:

•
$$x_B = B^{-1}b$$

•
$$x_i = 0, \ \forall i \neq B(1), \dots, B(m)$$

Conditions

$$P = \{x \mid Ax = b, \ x \ge 0\}$$

Given a basis matrix $B = \begin{bmatrix} A_{B(1)} & \dots & A_{B(m)} \end{bmatrix}$ we have basic feasible solution x:

•
$$x_B = B^{-1}b$$

•
$$x_i = 0, \ \forall i \neq B(1), \dots, B(m)$$

Feasible direction d

•
$$A(x + \theta d) = b \Longrightarrow Ad = 0$$

•
$$x + \theta d \ge 0$$

Computation

Nonbasic indices

- $d_j = 1$ Basic direction
- $d_k = 0, \ \forall k \notin \{j, B(1), \dots, B(m)\}$

Computation

Nonbasic indices

- $d_j = 1$ Basic direction
- $d_k = 0, \ \forall k \notin \{j, B(1), \dots, B(m)\}$

Basic indices

$$Ad = 0 = \sum_{i=1}^{n} A_i d_i = Bd_B + A_j = 0 \Longrightarrow d_B = -B^{-1}A_j$$

Computation

Nonbasic indices

- $d_j = 1$ ——— Basic direction
- $d_k = 0, \ \forall k \notin \{j, B(1), \dots, B(m)\}$

Basic indices

$$Ad = 0 = \sum_{i=1}^{n} A_i d_i = Bd_B + A_j = 0 \Longrightarrow d_B = -B^{-1}A_j$$

Non-negativity (non-degenerate assumption)

- Non-basic variables: $x_i = 0$. Nonnegative direction $d_i \ge 0$
- Basic variables: $x_B > 0$. Therefore $\exists \theta > 0$ such that $x_B + \theta d_B \ge 0$

What happens if some $\bar{c}_j <$ 0? We can decrease the cost by bringing x_j into the basis

What happens if some $\bar{c}_j < 0$?

We can decrease the cost by bringing x_j into the basis

How far can we go?

$$\theta^* = \max\{\theta \mid \theta \ge 0 \text{ and } x + \theta d \ge 0\}$$

d is the j-th basic direction

What happens if some $\bar{c}_j < 0$?

We can decrease the cost by bringing x_j into the basis

How far can we go?

$$\theta^* = \max\{\theta \mid \theta \ge 0 \text{ and } x + \theta d \ge 0\}$$

d is the j-th basic direction

Unbounded

If $d \geq 0$, then $\theta^* = \infty$. The LP is unbounded.

What happens if some $\bar{c}_i < 0$?

We can decrease the cost by bringing x_i into the basis

How far can we go?

$$\theta^* = \max\{\theta \mid \theta \ge 0 \text{ and } x + \theta d \ge 0\}$$

d is the j-th basic direction

Unbounded

If d > 0, then $\theta^* = \infty$. The LP is unbounded.

Bounded

If
$$d_i < 0$$
 for some i , then

If
$$d_i < 0$$
 for some i , then
$$\theta^\star = \min_{\{i \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right) = \min_{\{i \in B \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$$

(Since
$$d_i \geq 0, i \in N$$
)

Next feasible solution

$$x + \theta^{\star} d$$

Next feasible solution

$$x + \theta^{\star} d$$

Let
$$B(\ell)\in\{B(1),\dots,B(m)\}$$
 be the index such that $\theta^\star=-\frac{x_{B(\ell)}}{d_{B(\ell)}}.$ Then, $x_{B(\ell)}+\theta^\star d_{B(\ell)}=0$

Next feasible solution

$$x + \theta^* d$$

Let
$$B(\ell)\in\{B(1),\dots,B(m)\}$$
 be the index such that $\theta^\star=-\frac{x_{B(\ell)}}{d_{B(\ell)}}.$ Then, $x_{B(\ell)}+\theta^\star d_{B(\ell)}=0$

New solution

- $x_{B(\ell)}$ becomes 0 (exits)
- x_j becomes θ^* (enters)

Next feasible solution

$$x + \theta^{\star} d$$

Let
$$B(\ell)\in\{B(1),\dots,B(m)\}$$
 be the index such that $\theta^\star=-\frac{x_{B(\ell)}}{d_{B(\ell)}}.$ Then, $x_{B(\ell)}+\theta^\star d_{B(\ell)}=0$

New solution

- $x_{B(\ell)}$ becomes 0 (exits)
- x_j becomes θ^* (enters)

New basis

$$\bar{B} = \begin{bmatrix} A_{B(1)} & \dots & A_{B(\ell-1)} & A_j & A_{B(\ell+1)} & \dots & A_{B(m)} \end{bmatrix}$$

An iteration of the simplex method First part

We start with a basic feasible solution x and a basis matrix $B = \begin{bmatrix} A_{B(1)} & \dots, A_{B(m)} \end{bmatrix}$

An iteration of the simplex method First part

We start with a basic feasible solution x and a basis matrix $B = \begin{bmatrix} A_{B(1)} & \dots, A_{B(m)} \end{bmatrix}$

- 1. Compute the reduced costs $\bar{c}_j = c_j c_B^T B^{-1} A_j$ for $j \in N$
- 2. If $\bar{c_j} \geq 0$, x optimal. break
- 3. Choose j such that $\bar{c}_i < 0$

An iteration of the simplex method Second part

- 4. Compute search direction components $d_B = -B^{-1}A_j$
- 5. If $d_B \ge 0$, the problem is **unbounded** and the optimal value is $-\infty$. **break**

6. Compute step length
$$\theta^{\star} = \min_{\{i \in B \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$$

7. Define y such that $y = x + \theta^* d$

Today's agenda

- Find initial feasible solution
- Degeneracy
- Complexity

Find an initial point in simplex method

Initial basic feasible solution

minimize
$$c^Tx$$
 subject to $Ax = b$
$$x \ge 0$$

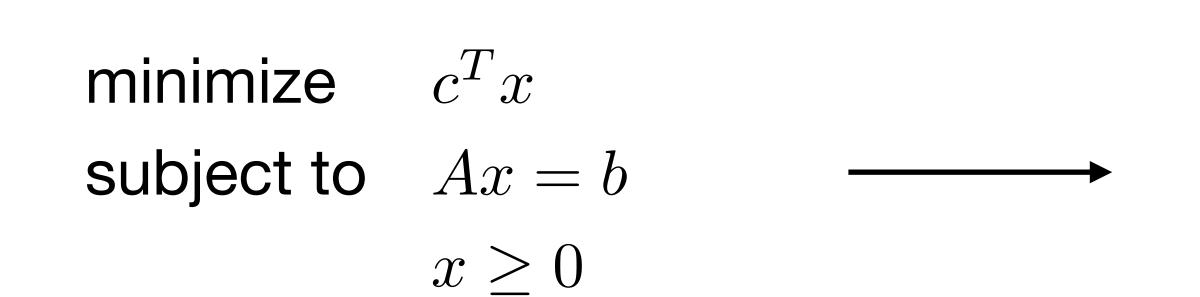
How do we get an initial basic feasible solution x and a basis B?

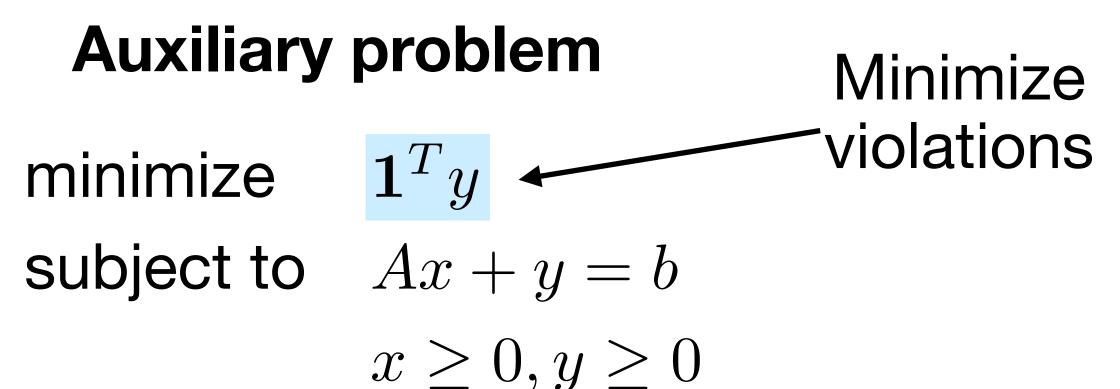
Does it exist?

```
\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}
```

Auxiliary problem

minimize
$$c^Tx$$
 minimize $\mathbf{1}^Ty$ subject to $Ax = b$ subject to $Ax + y = b$ $x \ge 0$ $x \ge 0, y \ge 0$





Assumption $b \ge 0$ w.l.o.g. (if not multiply constraint by -1) **Trivial** basic feasible solution: x = 0, y = b

minimize c^Tx minimize 1^Ty violations subject to Ax = b subject to Ax + y = b $x \ge 0, y \ge 0$

Assumption $b \ge 0$ w.l.o.g. (if not multiply constraint by -1) **Trivial** basic feasible solution: x = 0, y = b

Possible outcomes

- Feasible problem (cost = 0): $y^* = 0$ and x^* is a basic feasible solution
- Infeasible problem (cost > 0): $y^* > 0$ are the violations

Two-phase simplex method

Phase I

- 1. Construct auxiliary problem such that $b \ge 0$
- 2. Solve auxiliary problem using simplex method starting from (x, y) = (0, b)
- 3. If the optimal value is greater than 0, problem infeasible. break.

Phase II

- 1. Recover original problem (drop variables y and restore original cost)
- 2. Solve original problem starting from the solution x and its basis B.

Big-M method

minimize
$$c^Tx + M\mathbf{1}^Ty$$
 subject to $Ax + y = b$
$$x \geq 0, y \geq 0$$

Big-M method

Very large constant

minimize
$$c^Tx+M\mathbf{1}^Ty$$
 subject to $Ax+y=b$
$$x\geq 0, y\geq 0$$

Big-M method

Very large constant minimize $c^Tx+\mathbf{M}\mathbf{1}^Ty$ subject to Ax+y=b $x\geq 0, y\geq 0$

Incorporate penalty in the cost

- We can still use $y = b \ge 0$ as initial basic feasible solution
- If the problem is feasible, y will not be in the basis.

Big-M method

Incorporate penalty in the cost

- We can still use $y = b \ge 0$ as initial basic feasible solution
- If the problem is **feasible**, y will not be in the basis.

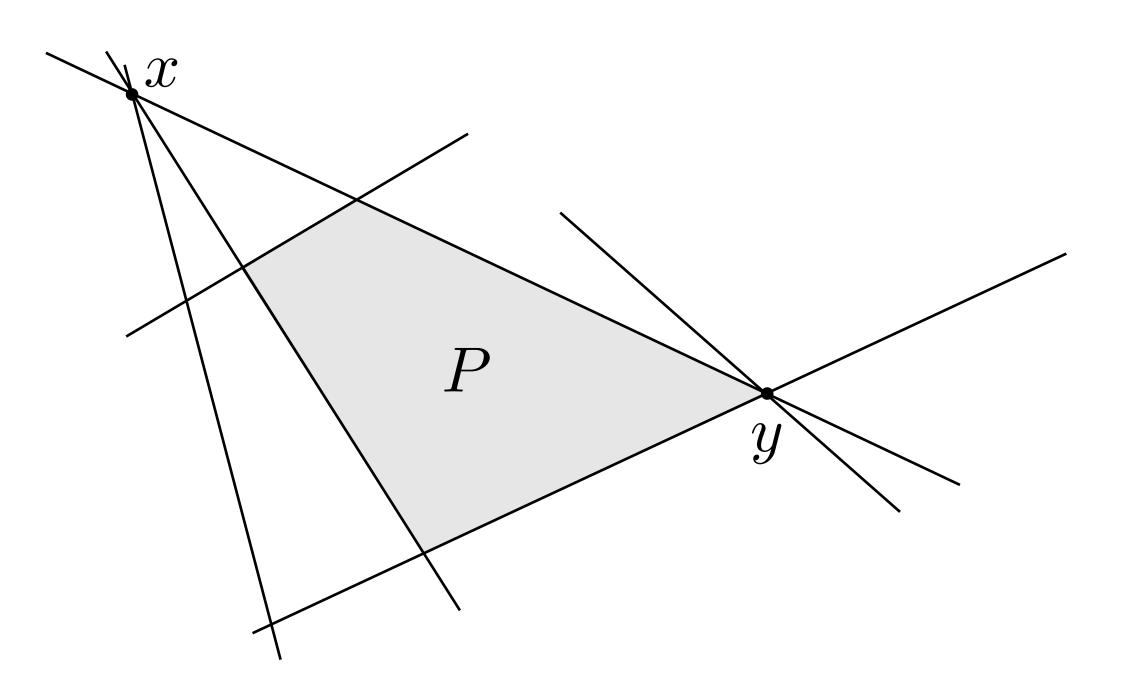
Remarks

- Pro: need to solve only one LP
- ullet Con: it is not easy to pick M and it makes the problem badly scaled

Degeneracy

Degenerate basic feasible solutions

A solution \bar{x} is degenerate if $|\mathcal{I}(\bar{x})| > n$



Degenerate basic feasible solutions Definition

Given a basis matrix $B = \begin{bmatrix} A_{B(1)} & \dots & A_{B(m)} \end{bmatrix}$ we have basic feasible solution x:

- $x_B = B^{-1}b$
- $x_i = 0, \ \forall i \neq B(1), \dots, B(m)$

Degenerate basic feasible solutions

Definition

Given a basis matrix $B = \begin{bmatrix} A_{B(1)} & \dots & A_{B(m)} \end{bmatrix}$ we have basic feasible solution x:

- $x_B = B^{-1}b$
- $x_i = 0, \ \forall i \neq B(1), \dots, B(m)$

If some of the $x_B=0$, then it is a degenerate solution

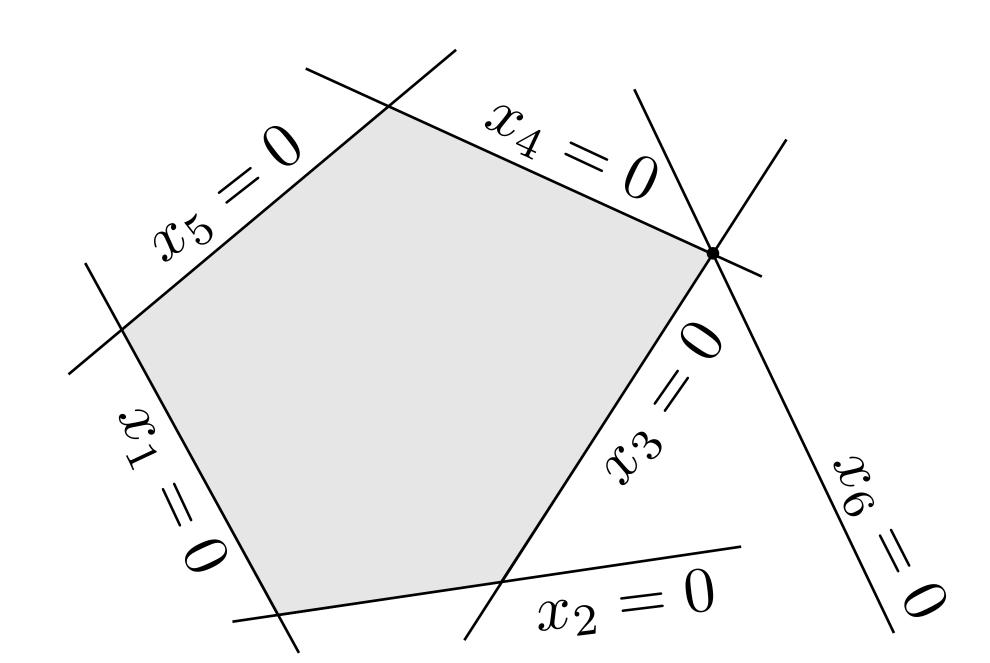
Degenerate basic feasible solutions

Definition

Given a basis matrix $B = \begin{bmatrix} A_{B(1)} & \dots & A_{B(m)} \end{bmatrix}$ we have basic feasible solution x:

- $x_B = B^{-1}b$
- $x_i = 0, \ \forall i \neq B(1), \dots, B(m)$

If some of the $x_B=0$, then it is a degenerate solution



Degenerate basic feasible solutions Example

$$x_1 + x_2 + x_3 = 1$$

$$-x_1 + x_2 - x_3 = 1$$

$$x_1, x_2, x_3 \ge 0$$

Degenerate basic feasible solutions Example

$$x_1 + x_2 + x_3 = 1$$

$$-x_1 + x_2 - x_3 = 1$$

$$x_1, x_2, x_3 \ge 0$$

Degenerate solutions

Basis
$$B = \{1, 2\}$$
 \longrightarrow $x = (0, 1, 0)$

Degenerate basic feasible solutions Example

$$x_1 + x_2 + x_3 = 1$$

$$-x_1 + x_2 - x_3 = 1$$

$$x_1, x_2, x_3 \ge 0$$

Degenerate solutions

Basis
$$B=\{1,2\}$$
 \longrightarrow $x=(0,1,0)$ Basis $B=\{2,3\}$ \longrightarrow $y=(0,1,0)$

Stepsize

$$\theta^* = \min_{\{i \in B | d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$$

Stepsize

$$\theta^* = \min_{\{i \in B \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right) \longrightarrow \begin{array}{c} \text{If } i \in B, \, d_i < 0 \text{ and } x_i = 0 \text{ (degenerate)} \\ \theta^* = 0 \end{array}$$

Stepsize

$$\theta^* = \min_{\{i \in B \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right) \longrightarrow \begin{array}{c} \text{If } i \in B, \, d_i < 0 \text{ and } x_i = 0 \text{ (degenerate)} \\ \theta^* = 0 \end{array}$$

Therefore
$$y = x + \theta^* x = x$$
 and $B = \overline{B}$

Same solution and cost **Different** basis

Stepsize

$$\theta^* = \min_{\{i \in B \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right) \longrightarrow \text{If } i \in B, d_i < 0 \text{ and } x_i = 0 \text{ (degenerate)}$$

$$\theta^* = 0$$

Therefore
$$y=x+\theta^{\star}x=x$$
 and $\tilde{B}=\bar{B}$

Same solution and cost Different basis

Finite termination no longer guaranteed!

How can we fix it?

Stepsize

$$\theta^* = \min_{\{i \in B \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right) \longrightarrow \text{If } i \in B, d_i < 0 \text{ and } x_i = 0 \text{ (degenerate)}$$

$$\theta^* = 0$$

Therefore
$$y=x+\theta^{\star}x=x$$
 and $\bar{B}=\bar{B}$

Same solution and cost Different basis

Finite termination no longer guaranteed!

How can we fix it?

Pivoting rules

Choose the index entering the basis

Simplex iterations

3. Choose j such that $\bar{c}_j < 0$

Choose the index entering the basis

Simplex iterations

3. Choose j such that $\bar{c}_j < 0$ ——— Which j?

Choose the index entering the basis

Simplex iterations

3. Choose j such that $\bar{c}_i < 0$ ——— Which j?

Possible rules

- Smallest subscript: smallest j such that $\bar{c}_j < 0$
- Most negative: choose j with the most negative \overline{c}_j
- Largest cost decrement: choose j with the largest $\theta^{\star}|\bar{c}_{j}|$

Choose index exiting the basis

Simplex iterations

6. Compute step length
$$\theta^* = \min_{\{i \in B | d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$$

Choose index exiting the basis

Simplex iterations

We can have more than one i for which $x_i = 0$ (next solution is degenerate)

Which i?

Choose index exiting the basis

Simplex iterations

6. Compute step length
$$\theta^* = \min_{\{i \in B | d_i < 0\}} \left(-\frac{x_i}{d_i} \right) \longrightarrow$$

We can have more than one i for which $x_i = 0$ (next solution is degenerate)

Which i?

Smallest index rule

Smallest
$$i$$
 such that $\theta^{\star} = -\frac{x_i}{d_i}$

Bland's rule to avoid cycles

Theorem

If we use the **smallest index rule** for choosing both the j entering the basis and the i leaving the basis, then **no cycling will occur**.

Bland's rule to avoid cycles

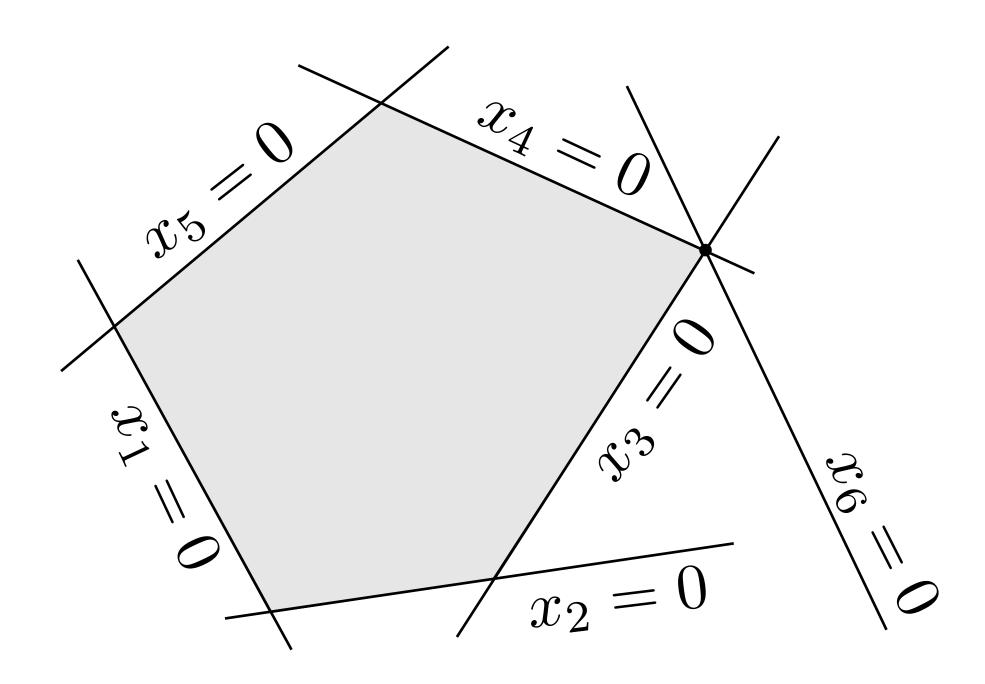
Theorem

If we use the **smallest index rule** for choosing both the j entering the basis and the i leaving the basis, then **no cycling will occur**.

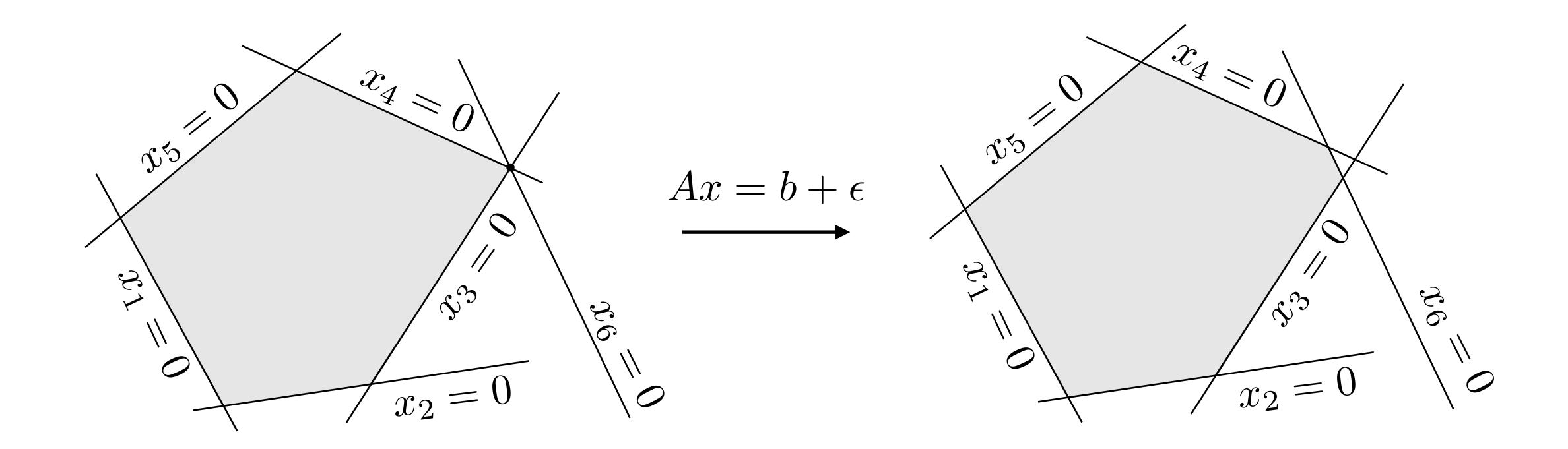
Proof idea (left as exercise)

- Assume that Bland's rule is applied and there exists a cycle with different bases.
- Obtain same basis.

Perturbation approach to avoid cycles



Perturbation approach to avoid cycles



Basic operation: one simplex iteration

Estimate complexity of an algorithm

- Write number of basic operations as a function of problem dimensions
- Simplify and keep only leading terms

Notation

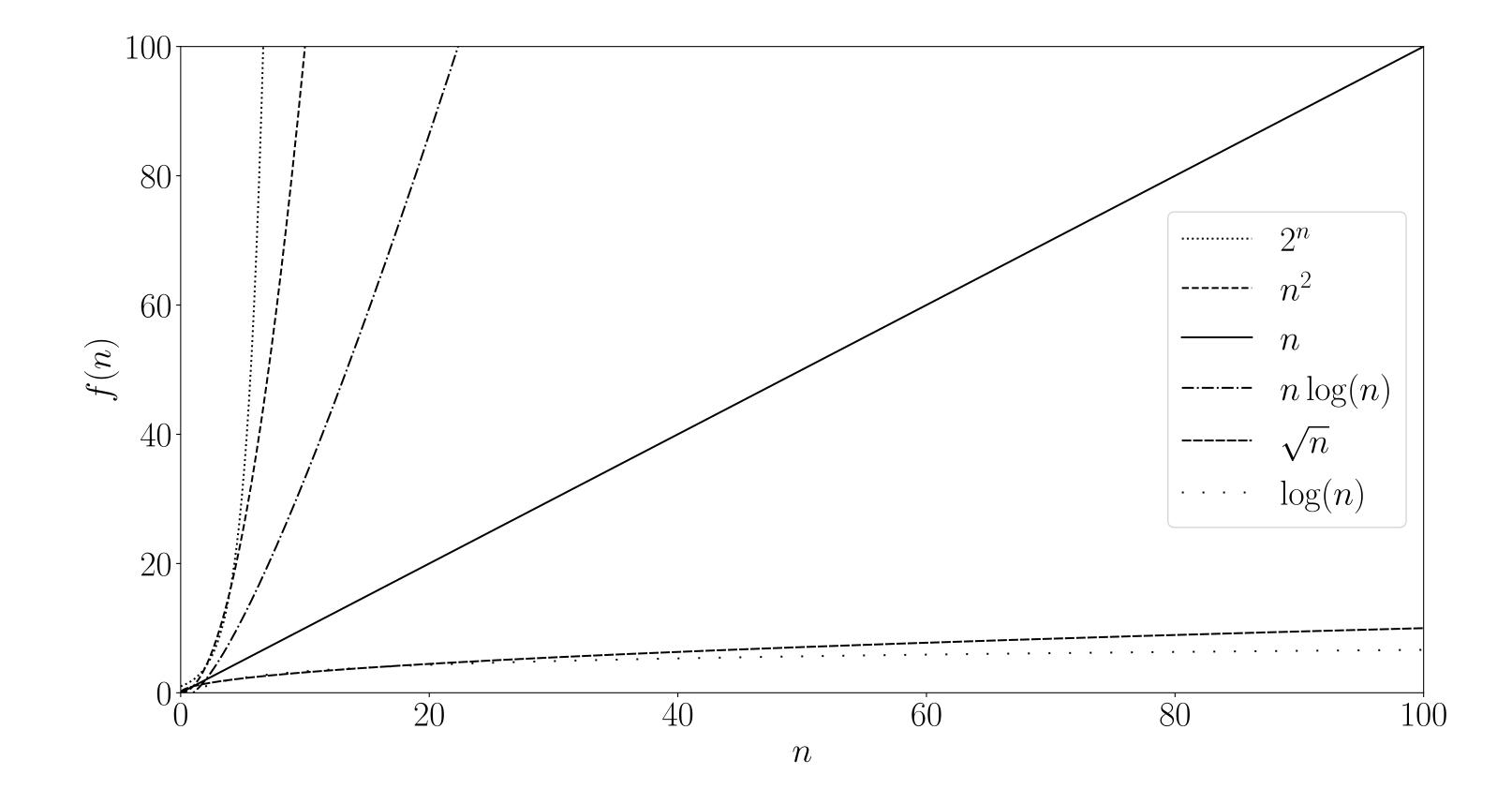
We write $g(x) \sim O(f(x))$ if and only if there exist c > 0 and an x_0 such that

$$|g(x)| \le cf(x), \quad \forall x \ge x_0$$

Notation

We write $g(x) \sim O(f(x))$ if and only if there exist c > 0 and an x_0 such that

$$|g(x)| \le cf(x), \quad \forall x \ge x_0$$



Polynomial Practical

Exponential Impractical!

Complexity class \mathcal{P}

There exists a polynomial time algorithm to solve it.

Complexity class \mathcal{P}

There exists a polynomial time algorithm to solve it.

Complexity class \mathcal{NP}

Given a candidate solution, there exists a polynomial time algorithm to verify it.

Complexity class \mathcal{P}

There exists a polynomial time algorithm to solve it.

Complexity class \mathcal{NP} Given a candidate solution, there exists a polynomial time algorithm to

Complexity class \mathcal{NP} -hard The problem is at least as hard as the hardest problem in \mathcal{NP} .

Complexity class \mathcal{P}

There exists a polynomial time algorithm to solve it.

Complexity class \mathcal{NP}

Given a candidate solution, there exists a polynomial time algorithm to verify it.

Complexity class \mathcal{NP} -hard

The problem is at least as hard as the hardest problem in \mathcal{NP} .

We don't know any polynomial time algorithm

Complexity class \mathcal{P}

There exists a polynomial time algorithm to solve it.

Complexity class \mathcal{NP}

Given a candidate solution, there exists a polynomial time algorithm to verify it.

Complexity class \mathcal{NP} -hard

The problem is at least as hard as the hardest problem in \mathcal{NP} .

•

We don't know any polynomial time algorithm

Million dollar problem: $P = \mathcal{NP}$?

- We know that $\mathcal{P} \subset \mathcal{NP}$
- Does it exist a polynomial time algorithm for \mathcal{NP} -hard problems?

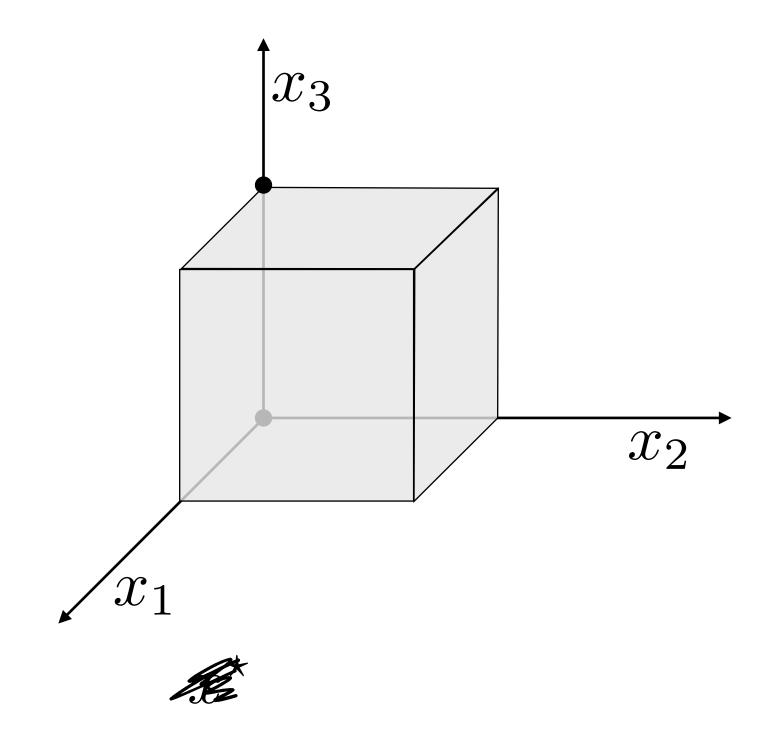
Example of worst-case behavior

Innocent-looking problem

minimize $-x_n$ subject to $0 \le x \le 1$

2^n vertices

 $2^n/2$ vertices: cost = 1 $2^n/2$ vertices: cost = 0



Example of worst-case behavior

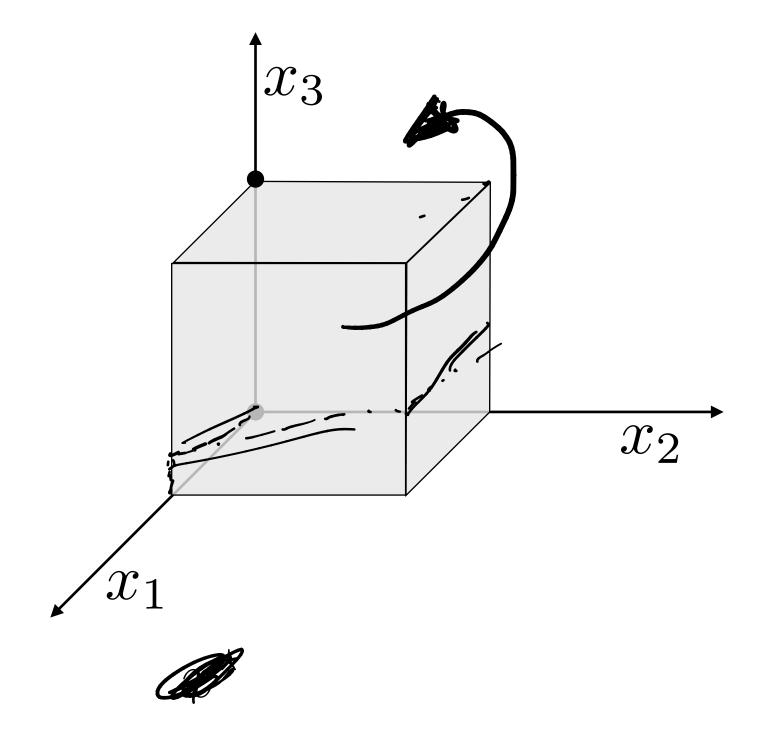
Innocent-looking problem

minimize

subject to 0 < x < 1

 2^n vertices

 $2^n/2$ vertices: $\cos t = 1$ $2^n/2$ vertices: $\cos t = 0$



Perturb unit cube

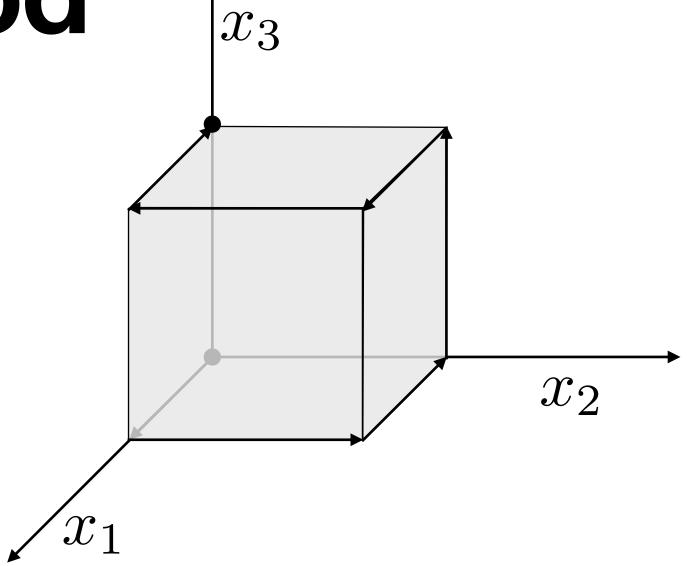
minimize

subject to $\epsilon < x_1 < 1$

$$\epsilon x_{i-1} \le x_i \le 1 - \epsilon x_{i-1}, \quad i = 2, \dots, n$$

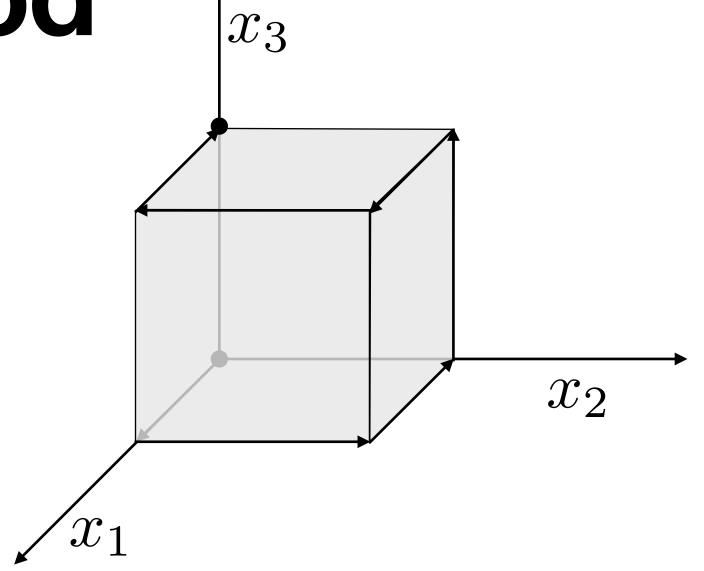
Example of worst-case behavior

```
minimize -x_n subject to \epsilon \le x_1 \le 1 \epsilon x_{i-1} \le x_i \le 1 - \epsilon x_{i-1}, \quad i=2,\dots,n
```



Example of worst-case behavior

minimize
$$-x_n$$
 subject to $\epsilon \le x_1 \le 1$
$$\epsilon x_{i-1} \le x_i \le 1 - \epsilon x_{i-1}, \quad i=2,\dots,n$$

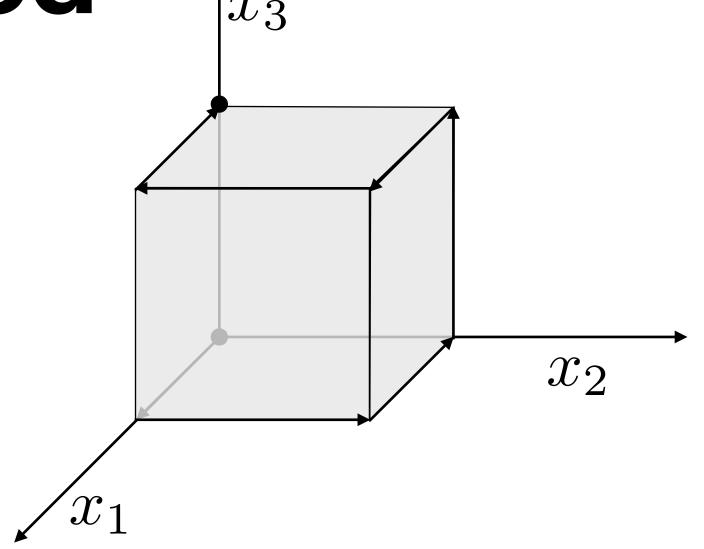


Theorem

- The vertices can be ordered so that each one is adjacent to and has a lower cost than the previous one
- There exists a pivoting rule under which the simplex method terminates after 2^n iterations $O(2^n)$

Example of worst-case behavior

minimize
$$-x_n$$
 subject to $\epsilon \le x_1 \le 1$
$$\epsilon x_{i-1} \le x_i \le 1 - \epsilon x_{i-1}, \quad i=2,\dots,n$$



Theorem

- The vertices can be ordered so that each one is adjacent to and has a lower cost than the previous one
- There exists a pivoting rule under which the simplex method terminates after 2^n iterations $O(2^n)$

Remark

- A different pivot rule would have converged in one iteration.
- We have a bad example for every pivot rule.

We do not know any polynomial version of the simplex method, no matter which pivoting rule we pick.

→ Still open research question!

We do not know any polynomial version of the simplex method, no matter which pivoting rule we pick.

Still open research question!

Worst-case

There are problem instances where the simplex method will run an **exponential number of iterations** in terms of the dimensions n and m: $O(2^n)$

We do not know any polynomial version of the simplex method, no matter which pivoting rule we pick.

Still open research question!

Worst-case

There are problem instances where the simplex method will run an **exponential number of iterations** in terms of the dimensions n and m: $O(2^n)$

Good news: average-case

Practical performance is very good. On average, it stops in O(n) iterations.

The simplex method

Today, we learned to:

- Formulate auxiliary problem to find starting simplex solutions
- Apply pivoting rules to avoid cycling in degenerate linear programs
- Analyze complexity of the simplex method

Next lecture

- Numerical linear algebra
- "Realistic" simplex implementation
- Examples