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Ed forum

 What is the geometric picture of the standard form? Given a standard form P, can we
always convert it back to the version defined by halfspaces? (next slides)

« Extent to which these methods are generalizable to infinite-dimensional restrictions
e.g. linear difference equations when t goes to infinity.

« Efficient way to deal with inverses? (next lecture)
 How to pick index entering the basis? (this lecture)
e Adjacent solutions why defined that way? (Same active constraints except 1)

e Feasibility LP condition in no strong arbitrage from Arrow-Debreu theory (That’s
correct! We will discuss feasibility in duality lectures)






Standard form polyhedra

Definition Standard form polyhedron
Standard form LP P={x| Az =b, x > 0}
minimize clo L

subjectto Az =0
X Z 0 \
Assumption

A e R"™*" has full row rank m < n T

Interpretation
P lives in (n — m)-dimensional subspace



Standard form polyhedra

Visualization

P={x|Az=b, x >0}, n—m=2

Three dimensions Higher dimensions




Constructing basic solution

1. Choose any m independent columns of A: Ag(1y,..., Apm)
2. Letx;, =0forall i # B(1),..., B(m)
3. Solve Ax = b for the remaining (1), .., TB(m)



Constructing basic solution

Basis

matrix r

B =

1. Choose any m independent columns of A: Ag(y), ..

2. Letx;, =0forall i # B(1),..., B(m)

3. Solve Ax = b for the remaining z (1), . .

Ap)

Basis columns

Ap(2)

AB(m)

Basic variables

LB(1)

cy L B(m)

EB(m)_

* ) AB(m)

LB — B_lb



Constructing basic solution

Basis

matrix r

B =

1. Choose any m independent columns of A: Ag(y), ..

2. Letx;, =0forall i # B(1),..., B(m)

3. Solve Ax = b for the remaining z (1), . .

Ap)

Basis columns

AB(Z) Ce AB(m)

If t5 > 0, then z Is a basic feasible solution

Basic variables

LB(1)

cy L B(m)

EB(m)_

* ) AB(m)

—— 2 =DB""b



Feasible directions

Conditions

P=A{x| Az =0b, z > 0}

Given a basis matrix B = -AB(l) . AB(m)_

we have basic feasible solution z:

* Ip = B~ 1b
» x; =0, Vo # B(1),...,B(m)




Feasible directions

Conditions
Given a basis matrix B = _AB(1) . AB(m)_
P={z|Ar=0b, x>0} we have basic feasible solution z:
* B = B~

» x; =0, Vo # B(1),...,B(m)

Feasible direction d
* Alx +0d) =b—=—= Ad =0
e v+ 60d >0




Feasible directions

Computation

Nonbasic indices
* d; = 1 — Basic direction
* di =0, \V/k¢{]7B(1) 77777 B(m)}



Feasible directions

Computation

Nonbasic indices
* d; = 1 — Basic direction

Basic indices

Ad =0 = ZAzdz — Bdg —|—A] = 0= dp = —B_lAj
1=1



Feasible directions

Computation

Nonbasic indices
* d; = 1 — Basic direction

Basic indices

Ad =0 = ZAzdz — Bdg —|—A] = 0= dp = —B_lAj
1=1

Non-negativity (hon-degenerate assumption)

» Non-basic variables: x; = 0. Nonnegative direction d; > 0

« Basic variables: 5 > 0. Therefore -

0 >0suchthat xp + 08dg > 0



Stepsize

What happens if some ¢; < 0?7
We can decrease the cost by bringing z; into the basis
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We can decrease the cost by bringing z; into the basis

How far can we go?

f* = max{f |6 > 0and x + 6d > 0} d is the j-th basic direction



Stepsize

What happens if some ¢; < 0?7
We can decrease the cost by bringing z; into the basis

How far can we go?

f* = max{f |6 > 0and x + 6d > 0} d is the j-th basic direction

Unbounded
If d > 0, then 6 = oco. The LP I1s unbounded.



Stepsize

What happens if some ¢; < 0?7
We can decrease the cost by bringing z; into the basis

How far can we go?

0* = max{0 |60 > 0and x + 6d > 0} d is the j-th basic direction
Unbounded
If d > 0, then 6 = oco. The LP I1s unbounded.
Bounded
If d; < 0 for some 7, then 0* = min ( ) —  min ( )
{i|d; <0} d; {i€B|d; <0} d;

(Since d; > 0, + € N)



Moving to a new basis

Next feasible solution
x + 0°d

10



Moving to a new basis

Next feasible solution
x + 0°d

Let B(¢) € {B(1), ..., B(m)} be the index such that 6* — le“). Then,
B(£)

CEB(g) + H*dB(g) = (
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Moving to a new basis

Next feasible solution
x + 0°d

Let B(¢) € {B(1), ..., B(m)} be the index such that 6* — le“). Then,
B(£)

CEB(g) + H*dB(g) = (

New solution
* Tp(r) becomes 0 (exits)
- x,; becomes 6* (enters)



Moving to a new basis

Next feasible solution
x + 0°d

L B (£)
dp(e)

Let B(¢) € {B(1),...,B(m)} be the index such that §* = . Then,

CEB(g) + H*dB(g) = (

New solution
* Tp(r) becomes 0 (exits)
- x,; becomes 6* (enters)

L New basis _
B = _AB(l) c e AB(K_l) Aj AB(E—Fl) Pt AB(m)_




An iteration of the simplex method
First part

We start with a basic feasible solution 2 and a basis matrix B =

_AB(l) Ce 7AB(m)_

11



An iteration of the simplex method
First part

We start with a basic feasible solution x and a basis matrix B = _AB(l) . ,AB(m)-

1. Compute the reduced costs ¢; = c¢; — cgB 1A, forj € N
2. If ¢; > 0, x optimal. break

3. Choose j such that ¢; < 0

11



An iteration of the simplex method

Second part

4. Compute search direction components dg = —B~ ' A;

5. It dg > 0, the problem is unbounded and the optimal value is —oc. break

:E.
6. Compute step length 6* = ' -
P P 1eng {igéﬂiz?@}( di>

/. Define y such that y = x + 6*d

12



Today’s agenda

 Find initial feasible solution
 Degeneracy

o Complexity

13



Find an initial point in simplex
method




Initial basic feasible solution

minimize ¢!z
subjectto Az =10
xr > 0

How do we get an initial basic feasible solution =z and a basis B ?

Does it exist?

15



Finding an Initial basic feasible solution

minimize c¢lx
subjectto Az =0
r > 0

16



Finding an Initial basic feasible solution

Auxiliary problem

minimize ¢’z minimize 1%y
subjectto Ax =10 —— > subjectto Az +y=0>

16



Finding an Initial basic feasible solution

Auxiliary problem Minimize
minimize ¢’z minimize 11y ~— violations
subjectto Ax =10 —— > subjectto Az +y=0>

r > 0 r >0,y >0
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Finding an Initial basic feasible solution

Auxiliary problem

Minimize
minimize ¢’z minimize 11y ~— violations
subjectto Ax =0 ——>  subjectto Ax+y=0>

Assumption b > 0 w.l.o.g. (if not multiply constraint by —1)
Trivial basic feasible solution: =0,y = b

16



Finding an Initial basic feasible solution

Auxiliary problem

Minimize
minimize ¢’z minimize 11y ~— violations
subjectto Ax =10 —— > subjectto Az +y=0>

Assumption b > 0 w.l.o.g. (if not multiply constraint by —1)
Trivial basic feasible solution: =0,y = b

Possible outcomes

 Feasible problem (cost = 0): v* = 0 and z* is a basic feasible solution

» Infeasible problem (cost > 0): y* > 0 are the violations .



Two-phase simplex method

Phase |

1. Construct auxiliary problem such that b > 0
2. Solve auxiliary problem using simplex method starting from (z, y) = (0, b)
3. If the optimal value is greater than 0, problem infeasible. break.

Phase II

1. Recover original problem (drop variables y and restore original cost)
2. Solve original problem starting from the solution = asek-of the auxiliary
problem and its basis B.

é/

17



Big-M method

minimize
subject to

ctoe 4+ M1ty
Axr +y =0
r >0,y >0
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Big-M method

minimize
subject to

Very large
/ constant
cte4+ M1y
Axr +y =0

r >0,y >0

18



Blg'M method Very large
/ constant

minimize c¢lax+ M1ty
subjectto Ax+y =0
r >0,y >0

Incorporate penalty in the cost

» We can still use y = b > 0 as initial basic feasible solution
» |f the problem is feasible, y will not be in the basis.

18



Blg'M method Very large
/ constant

minimize c¢lax+ M1ty
subjectto Ax+y =0
r >0,y >0

Incorporate penalty in the cost

» We can still use y = b > 0 as initial basic feasible solution
» |f the problem is feasible, y will not be in the basis.

Remarks
* Pro: need to solve only one LP

» Con: it is not easy to pick M and it makes the problem badly scaled 3



Degeneracy




Degenerate basic feasible solutions

A solution z is degenerate if |Z(Z)| > n

X

o>

20



Degenerate basic feasible solutions

Definition

Given a basis matrix B = _AB(l) . AB(m)_

we have basic feasible solution z:



Degenerate basic feasible solutions

Definition
Given a basis matrix B = _AB(l) - AB(m)_
we have basic feasible solution z: _ If some of the x5 = 0, then
e it Is a degenerate solution

» x; =0, Vi # B(1),...,B(m)

21



Degenerate basic feasible solutions

Definition
Given a basis matrix B = _AB(l) - AB(m)_
we have basic feasible solution z: _ If some of the x5 = 0, then

—_—

It Is a degenerate solution

\ 21




Degenerate basic feasible solutions

Example

r1+ a9 +2x3 =1
—x1+2x9 — 23 =1

L1,L2,L3 2 0

22



Degenerate basic feasible solutions

Example

r1+x9+2x3 =1
—x1+2x9 — 23 =1

L1,L2,L3 2 0

Degenerate solutions

Basis B = {1,2}, ——» 2 =(0,1,0)
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Degenerate basic feasible solutions

Example

r1+x9+2x3 =1
—x1+2x9 — 23 =1

L1,L2,L3 2 0

Degenerate solutions
Basis B = {1,2}, ——» 2 =(0,1,0)
Basis B={2,3}, — y=(0,1,0)

22



Cycling

Stepsize

" =  min
{1€B|d; <0}

23



Cycling
Stepsize
. , ( xz) If i € B, d; < 0and z; = 0 (degenerate)
f* = min -
{1€B|d; <0} 0* = ()
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Cycling
Stepsize
. , ( xz) If i € B, d; < 0and z; = 0 (degenerate)
0 = min —
{ieB|d;<0} d; 0* = ()

Same solution and cost

Therefore y = x + 6*z = x and{B)= |5 Different basis

23



Cycling

Stepsize

0 = min

( xz) If i € B, d; < 0and z; = 0 (degenerate)
{1€B|d; <0}

d; O* = 0

Same solution and cost

Thereforey =+ 60*xr =xrand B =B Different basis

Finite termination no longer guaranteed!

How can we fix it?
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Cycling

Stepsize

0 = min

( xz) If i € B, d; < 0and z; = 0 (degenerate)
{1€B|d; <0}

d; O* = 0

Same solution and cost

Thereforey =+ 60*xr =xrand B =B Different basis

Finite termination no longer guaranteed!
How can we fix it?

Pivoting rules

23



Pivoting rules

Choose the index entering the basis

Simplex iterations
3. Choose j such that ¢, < 0

24



Pivoting rules

Choose the index entering the basis

Simplex iterations
3. Choose j suchthatc; <0  —  Which ;?
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Pivoting rules

Choose the index entering the basis

Simplex iterations
3. Choose j suchthatc; <0  —  Which ;?

Possible rules

- Smallest subscript: smallest ; such that c; < 0
* Most negative: choose j with the most negative c;
- Largest cost decrement: choose ; with the largest 0*|c;]

24



Pivoting rules

Choose index exiting the basis
Simplex iterations

6. Compute step length 6* =  min
{1€B|d; <0}

(

Lg

di

)

25



Pivoting rules

Choose index exiting the basis
We can have more than

Simplex iterations one ¢ for which z; =0
(next solution is degenerate)

6. Compute step length 6 =  min ( mz) —_—

11€B]d; <0} Which i?

25



Pivoting rules

Choose index exiting the basis
We can have more than

Simplex iterations one ¢ for which z; =0
(next solution is degenerate)

:1’/‘.
6. Compute step lenagth 6* = ' P e
P P TS {iegil?@} ( )

Which ;?

Smallest index rule
L g

Smallest 7 such that 6* = -

25



Bland’s rule to avoid cycles

Theorem

If we use the smallest index rule for choosing both the ; entering the basis
and the 1 leaving the basis, then no cycling will occur.

20



Bland’s rule to avoid cycles

Theorem

If we use the smallest index rule for choosing both the ; entering the basis
and the 1 leaving the basis, then no cycling will occur.

Proof idea (left as exercise)

 Assume that Bland’s rule is applied and there exists a cycle with different
bases.

* Obtain same basig

20



Perturbation approach to avoid cycles

27



Perturbation approach to avoid cycles

27



Complexity



Complexity

Basic operation: one simplex iteration

Estimate complexity of an algorithm

» Write number of basic operations as a function of problem dimensions
» Simplify and keep only leading terms

29



Complexity

Notation
We write g(x) ~ O(f(x)) if and only if there exist ¢ > 0 and an z( such that

g(z)| < cf(x), V> x0

30



Complexity

Notation
We write g(x) ~ O(f(x)) if and only if there exist ¢ > 0 and an z( such that

00— ;
P /
/
- /
- // ............... oM
I N - ng Polynomial
1 » / _
- — Practical
= | | 7 -=== nlog(n)
o oS _
1@0 Exponential
o/ Impractical
. 1/
I
00 20 40 60 30 100



P and NP

Complexity class P
There exists a polyno-
mial time algorithm to
solve It.

31



P and NP

Complexity class P
There exists a polyno-
mial time algorithm to
solve It.

Complexity class NP
Given a candidate solu-
tion, there exists a poly-
nomial time algorithm to
verify It.

31



P and NP

Complexity class P Complexity class N'P Complexity class NP-hard
There exists a polyno- leen a candlldate solu- The problem is at least as
mial time algorithm to  tion, there exists a poly-  hard as thechardest prob@
't. nomial time algorithm to in NP.
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P and NP

Complexity class P
There exists a polyno-
mial time algorithm to
solve It.

Complexity class NP
Given a candidate solu-
tion, there exists a poly-
nomial time algorithm to
verify It.

Complexity class NP-hard
The problem Is at least as
hard as the hardest problem

in N'P.
l

We don’t know any
polynomial time
algorithm

31



P and NP

Complexity class P Complexity class N'P Complexity class NP-hard
There exists a polyno- Given a candidate solu- The problem is at least as
mial time algorithm to 1lon, there exists a poly- hard as the hardest problem
solve it. nomial time algorithm to in NP.

verify It.

l

We don’t know any
polynomial time
algorithm

Million dollar problem: P = N'P?

- We know that P c NP
» Does it exist a polynomial time algorithm for A/P-hard problems? 31



Complexity of the simplex method

Example of worst-case behavior -
Innocent-looking problem /'
minimize —z, 2" vertices

. 2™ /2 vertices: cost =1
subjectto 0 <z <1 2" /2 vertices: cost = 0

32



Complexity of the simplex method

Example of worst-case behavior

Innocent-looking problem
minimize  —x,,
subjectto 0<z <1

2" vertices

2™ /2 vertices: cost =1
2™ /2 vertices: cost = 0

Perturb unit cube
minimize  —x,
subjectto e<z; <1

€xi—1 <x; <1 —ex;_q,

Pi=2. ...

, TV

32



Complexity of the simplex method

Example of worst-case behavior
minimize  —x,,
subjectto e<z; <1

€$i_1§$i<1—€$i_1, iZZ,...,?’L
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Complexity of the simplex method ..

Example of worst-case behavior /
minimize  —x,,
subjectto e<z; <1

€$i_1§$i<1—€$i_1, iZZ,...,?’L

L1
Theorem
» The vertices can be ordered so that each one Is adjacent to and has a
lower cost than the previous one
» There exists a pivoting rule under which the simplex method terminates
after 2"_ 4 iterations Q( ij

33



Complexity of the simplex method ..

Example of worst-case behavior /
minimize  —x,,
subjectto e<z; <1

€$i_1§$i<1—€$i_1, iZZ,...,?’L

L1
Theorem
» The vertices can be ordered so that each one Is adjacent to and has a
lower cost than the previous one
» There exists a pivoting rule under which the simplex method terminates
after 2"_4 iterations  O(9")

Remark
A different pivot rule would have converged in one iteration.

» We have a bad example for every pivot rule.

33



Complexity of the simplex method

We do not know any polynomial
version of the simplex method,
no matter which pivoting rule we
picKk.

——  Still open research question!
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Complexity of the simplex method

We do not know any polynomial

version of the simplex method, —» Still open research question!
no matter which pivoting rule we

picKk.

Worst-case
There are problem instances where the simplex method will run an exponential

number of iterations in terms of the dimensions n and m: O(2")
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Complexity of the simplex method

We do not know any polynomial
version of the simplex method,
no matter which pivoting rule we
picKk.

——  Still open research question!

Worst-case
There are problem instances where the simplex method will run an exponential

number of iterations in terms of the dimensions n and m: O(2")

Good news: average-case

Practical performance is very good. On average, it stops in O(n) iterations.
34



The simplex method

Today, we learned to:
 Formulate auxiliary problem to find starting simplex solutions
* Apply pivoting rules to avoid cycling in degenerate linear programs

 Analyze complexity of the simplex method

35



Next lecture

 Numerical linear algebra
 “Realistic” simplex implementation

« Examples

36



