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Ed forum

» Basic feasible solutions in geometric vs algebraic form (next slides)

 More efficient transformation methods from geometric to standard form when there is
structure? (Pre-processing + do not need to calculate all extreme points)

* Do equality constraints in geometric form correspond to two linearly dependent
inequalities?

* Equivalence proofs between corners (next slides)
* Definition of contain a line (Typo!)

 How do we start if initial solution is infeasible?

* Jupyter notebook: only pdf or also ipdb? Only pdf.

* Video/audio not in sync.






Standard form polyhedra

Definition Standard form polyhedron
Standard form LP P={x| Az =b, x > 0}
minimize clo L

subjectto Az =0
X Z 0 \
Assumption

A e R"™*" has full row rank m < n T

Interpretation
P lives in (n — m)-dimensional subspace



Transformation to standard form

minimize ¢!z

subjectto Az <b



Transformation to standard form
minimize ¢! (zt —27)

minimize ¢!z _ et

subjectto Ax <b — subjectto |A —A I| |z~ | =b

(xt,27,8) > 0



Transformation to standard form
minimize ¢! (zt —27)
minimize ¢’ _ NS minimize
subjectto Az <b —— subjectto |4 —A | |2~ | =b — subject to

Variables: n = 2n +m
(Equality) constraints: m = m
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Transformation to standard form

minimize ¢! (zt —27)

minimize Tz e minimize

subjectto Az <b —— subjectto |4 —A | |2~ | =b — subject to

Variables: n = 2n +m
(Equality) constraints: m = m

There are m active constraints
We need n — m = 2n inequalities active = z; = 0 (non basic)
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Transformation to standard form

minimize ¢! (zt —27)

minimize Tz e minimize

subjectto Az <b —— subjectto |4 —A | |2~ | =b — subject to

Variables: n = 2n +m
(Equality) constraints: m = m

There are m active constraints
We need n — m = 2n inequalities active = z; = 0 (non basic)

Which corresponds to m inequalities inactive = z; > 0 (basic)

:-\l>l ﬂ
=

=N

1\/ =L

o
-y



Extreme points

Definition

r € P Is said to be an extreme point of P If
Ay,ze P (y#x,z#x)and a € |[0,1| suchthat z = ay + (1 — a)z




Basic solutions
Standard form polyhedra

P={x|Ax=0b, z > 0} with A € R™*"™ has full row rank m < n

x 1S a basic solution if and only if

c Az =0
» There exist indices B(1),..., B(m) such that
— columns Ap(1),...,Apuy) are linearly independent

- x; =0fori £ B(1),..., B(m)

x 1S a basic feasible solution if x is a basic solution and =z > (



Constructing basic solution

Basis

matrix r

B =

1. Choose any m independent columns of A: Ag(y), ..

2. Letx;, =0forall i # B(1),..., B(m)

3. Solve Ax = b for the remaining z (1), . .

Ap)

Basis columns

AB(Z) Ce AB(m)

If t5 > 0, then z Is a basic feasible solution

Basic variables

LB(1)

cy L B(m)

EB(m)_

* ) AB(m)

—— 2 =DB""b



Equivalence

Theorem

Given a nonempty polyhedron P = {x | Ax < b}

Letz € P

r 1S a vertex <« x Is an extreme point «<— =z is a basic feasible solution



Equivalent theorem proof

Vertex —> Extreme point

If 2 is a vertex, dc such that ¢’ z < ¢' v,

Vy € Py #

10



Equivalent theorem proof

Vertex —> Extreme point

If x is avertex, 3csuchthatclz < cly, Vye Py #x

Let’s assume x is not an extreme point: Jy, z # z such that z = Ay + (1 — \)z
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Equivalent theorem proof

Vertex —> Extreme point

If x is avertex, 3csuchthatclz < cly, Vye Py #x

Let’s assume x is not an extreme point: Jy, z # z such that z = Ay + (1 — \)z

However, since zis a vertex, ¢!z < clyand cl'z < ¢!z
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Equivalent theorem proof

Vertex —> Extreme point

If x is avertex, 3csuchthatclz < cly, Vye Py #x

Let’s assume x is not an extreme point: Jy, z # z such that z = Ay + (1 — \)z

However, since zis a vertex, ¢!z < clyand cl'z < ¢!z

Therefore, c! o = Ac' y+ (1 =)' 2 > A 2+ (1 — Nl v = ¢! x: contradiction

B o



Equivalent theorem proof

Extreme point —> Basic feasible solution
Proof by contraposition

Suppose = € P is not basic feasible solution

11



Equivalent theorem proof

Extreme point —> Basic feasible solution
Proof by contraposition

Suppose = € P is not basic feasible solution

{a; | 1 € Z(x)} does not span R”
d € R™ perpendicular to all of them: a} d = 0,

Vi € I(x)

11



Equivalent theorem proof

Extreme point —> Basic feasible solution
Proof by contraposition

Suppose = € P is not basic feasible solution

{a; | 1 € Z(x)} does not span R”
d € R" perpendicular to all of them: a! d =0, Vi € Z(x)

Lete >0and definey =x +edand z =z — ed
Fori € Z(x) we have a; y = b; and a; z = b;
Fori ¢ Z(r) we havea; x <b; = a!(r+ed) <b;anda’ (x—ed) <b;

11



Equivalent theorem proof

Extreme point —> Basic feasible solution
Proof by contraposition

Suppose = € P is not basic feasible solution

{a; | 1 € Z(x)} does not span R”
d € R" perpendicular to all of them: a! d =0, Vi € Z(x)

Lete >0and definey =x +edand z =z — ed
Fori € Z(x) we have a; y = b; and a; z = b;
Fori ¢ Z(r) we havea; x <b; = a!(r+ed) <b;anda’ (x—ed) <b;

Hence, y,z € Pand x = Ay + (1 — A\)z with A = 0.5.
z 1S not an extreme point - R




Equivalent theorem proof

Extreme point —> Basic feasible solution
Proof by contraposition

Suppose = € P is not basic feasible solution

d
i | 1€ 1(x)}

Hence, y,z € Pand x = Ay + (1 — \)z with A = 0.5.
r 1S not an extreme point

12



Equivalent theorem proof

Basic feasible solution —> Vertex

| eft as exercise

Hint
Define ¢ =} .7, @i

13



Optimality of extreme points

minimize clx
subjectto Ax <b

i P has at least one extreme point
» There exists an optimal solution =*

Then, there exists an optimal solution which is an extreme point of P

We only need to search between extreme points

14



Conceptual algorithm

e Start at corner

* Visit neighboring corner that
Improves the objective

15



Today’s agenda
Readings: [Chapter 3, Bertsimas and Tsitsiklis]

Simplex method

- [terate between neighboring basic solutions
- Optimality conditions

- Simplex iterations

16



The simplex method
Top 10 algorithms of the 20th century

1946: Metropolis algorithm

1947: Simplex method

1950: Krylov subspace method

1951: The decompositional approach to matrix computations
1957: The Fortran optimizing compiler

1959: QR algorithm

1962: Quicksort

1965: Fast Fourier transform

1977 Integer relation detection

1987: Fast multipole method

[SIAM News (2000)]

17



The simplex method

George Dantzig
Top 10 algorithms of the 20th century = .

v B z

1946: Metropolis algorithm
1947: Simplex method
1950: Krylov subspace method

1951: The decompositional approach to matrix computations
1957: The Fortran optimizing compiler

1959: QR algorithm

1962: Quicksort

1965: Fast Fourier transform

1977 Integer relation detection

1987: Fast multipole method

[SIAM News (2000)] 17



Neighboring basic solutions



Feasible directions and neighboring solutions

Definition

Let x € P, avector d Is a feasible direction at =
if 30 > 0 for which z + 0d € P

Two basic solutions are neighboring if their
basic indices differ by exactly one variable

pad

19



Feasible directions

Conditions

P=A{x|Ax=0b, >0}
ACﬁQ&)xb

294

Given a basis matrix B = -AB(l)

20




Feasible directions

Conditions
Given a basis matrix B = :AB(l) . AB(m):
P={z|Ar=0b, x>0} we have basic feasible solution z:
* B = B~

» x; =0, Vo # B(1),...,B(m)

Feasible direction d
* Alx +0d) =b—=—= Ad =0
e v+ 60d >0

20




Feasible directions

Computation

Nonbasic indices
* d; = 1 — Basic direction
* di =0, \V/k¢{]7B(1) 77777 B(m)}

21



Feasible directions

Computation

Nonbasic indices
* d; = 1 — Basic direction

Basic indices

Ad =0 = ZAzdz — Bdg —|—A] = 0= dp = —B_lAj
1=1

21



Feasible directions

Computation

Nonbasic indices
* d; = 1 — Basic direction

Basic indices

Ad =0 = ZAzdz — Bdg —|—A] = 0= dp = —B_lAj
1=1

Non-negativity (hon-degenerate assumption)

» Non-basic variables: x; = 0. Nonnegative direction d; > 0

« Basic variables: 5 > 0. Therefore -

0 >0suchthat xp + 08dg > 0

21



Feasible directions

Example

P=Ax|xz1+204+23=2, x>0}

r = (2,0,0) B::l]%

22



Feasible directions

Example

22



How does the cost change?

The new cost is ¢! (z + 0d)

The cost improvement is ¢! (z + 0d) — ¢’ v = 6c' d

We call ¢; the reduced cost of (introducing) variable x;

n
C; =c d= E cid; =cj+cgdp =c; —cgB™ " A;
i=1

23



Reduced costs
Meaning

Change in objective/marginal cost of adding z; to the basis

~ -_— . e T _1 .
ci =c; —cgB A,

24



Reduced costs
Meaning

Change in objective/marginal cost of adding z; to the basis

~ -_— . e T _1 .
ci =c;j —cgB A,

/

Cost per-unit increase
of variable z ;

24



Reduced costs
Meaning

Change in objective/marginal cost of adding z; to the basis

ci =c; —cgB A,

/ \

Cost per-unit increase Cost to change other variables

- compensating for x;
ot vanaole z; to enF:‘orce Axg = b j
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Reduced costs
Meaning

Change in objective/marginal cost of adding z; to the basis

_ — . —_— T _1 .
ci =c; —cgB A,

/ \

Cost per-unit increase Cost to change other variables

- compensating for x
of variable z; to enF:‘orce Axg = b :

* ¢; > 0: adding z; will increase the objective (bad)
* ¢; < 0: adding x; will decrease the objective (good)
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Reduced costs
Meaning

Change in objective/marginal cost of adding z; to the basis

~ — . —_— T _1 .
ci =c; —cgB A,

/ \

Cost per-unit increase Cost to change other variables

- compensating for x
of variable z; to enF:‘orce Axg = b :

* ¢; > 0: adding z; will increase the objective (bad)
* ¢; < 0: adding x; will decrease the objective (good)

BB=L

Reduced costs for basic variables is 0

CB(i) = CB(i) — CEB_lAB(z’) — CB(i) — Cg%@)z CB(i) — CB(i) = 0 24



Optimality conditions




Optimality conditions

Theorem

Let £ be a basic feasible solution associated with basis matrix B
Let ¢ be the vector of reduced costs.

If ¢ > 0, then z Is optimal

20



Optimality conditions

Theorem

Let £ be a basic feasible solution associated with basis matrix B
Let ¢ be the vector of reduced costs.

If ¢ > 0, then z Is optimal

Remark

This is a stopping criterion for the simplex algorithm.

If the neighboring solutions do not improve the cost, we are done (because of

convexity).
26



Optimality conditions
Proof
For a basic feasible solution x with basis matrix B the reduced costs are ¢ > 0.

27



Optimality conditions
Proof

For a basic feasible solution x with basis matrix B the reduced costs are ¢ > 0.
Consider any feasible solution y and defined =y — «
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Optimality conditions
Proof

For a basic feasible solution x with basis matrix B the reduced costs are ¢ > 0.
Consider any feasible solution y and defined =y — «

Since = and y are feasible, then Ax = Ay = b and Ad = 0

Ad:BdB—FZAZd@ =0 = dp= _ZB_lAz’di N are the_ _
N N nonbasic indices
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Optimality conditions
Proof

For a basic feasible solution x with basis matrix B the reduced costs are ¢ > 0.
Consider any feasible solution y and defined =y — «

Since = and y are feasible, then Ax = Ay = b and Ad = 0

Ad:BdB"‘ZAzdz =0 = @: —ZB_lAidi N are the |
N N nonbasic indices

¢
CTd — ngB% Z Cidi — Z(Cz — C%B_lAi)di — Z E,,;d,,;
iEN TeT ) — iEN

The change in objective |

27



Optimality conditions
Proof

For a basic feasible solution x with basis matrix B the reduced costs are ¢ > 0.
Consider any feasible solution y and defined =y — «

Since = and y are feasible, then Ax = Ay = b and Ad = 0

Ad:BdB—FZAZd@ =0 = dp= _ZB_lAz’di N are the_ _
N N nonbasic indices

The change in objective is

CTd — ngB -+ Z Cidi — Z(Cz — C%B_lAi)di — Z E,,;d,,;
iEN iEN i€N
Sincey>0andx; =0, 1€ N,thend;, =y, —x; > 0,1 € N

crd=c'(y—2)>0 = cly>c B )



Simplex iterations



Stepsize

What happens if some ¢; < 0?7
We can decrease the cost by bringing z; into the basis

29



Stepsize

What happens if some ¢; < 0?7

We can decrease the cost by bringing z; into the basis

How far can we go?

0" =max{f |0 >0and x + 0d > 0}

d 1s the 7-th basic direction

29



Stepsize

What happens if some ¢; < 0?7

We can decrease the cost by bringing z; into the basis

How far can we go?

0" =max{f |0 >0and x + 0d > 0}

Unbounded
If d > 0, then 6 = oco. The LP I1s unbounded.

d 1s the 7-th basic direction

29



Stepsize & 9%- %
What happens if some ¢; < 0?7 \t el <D
We can decrease the cost by bringing z; into the basis I

How far can we go?

f* = max{f |6 > 0and x + 6d > 0} d is the j-th basic direction

>N = O S=X,,
Unbounded P02, =D T
If d > 0, then 6 = oco. The LP I1s unbounded.
Bounded
. " : L : L g
If d; < 0 for some 7, then 0" = min ( ) —  min (
{i|d; <0} d; {i€B|d; <0} d;

(Since d; > 0, ¢ € N) 29



Moving to a new basis

Next feasible solution
x + 0°d

30



Moving to a new basis

Next feasible solution
x + 0°d

Let B(¢) € {B(1), ..., B(m)} be the index such that 6* — le“). Then,
B(£)

CEB(g) + H*dB(g) = (

30



Moving to a new basis

Next feasible solution
x + 0°d

Let B(¢) € {B(1), ..., B(m)} be the index such that 6* — le“). Then,
B(£)

CEB(g) + H*dB(g) = (

New solution
* Tp(r) becomes 0 (exits)
- x,; becomes 6* (enters)



Moving to a new basis

Next feasible solution
x + 0°d

L B (£)
dp(e)

Let B(¢) € {B(1),...,B(m)} be the index such that §* = . Then,

CEB(g) + H*dB(g) = (

New solution
* Tp(r) becomes 0 (exits)
- x,; becomes 6* (enters)

L New basis _
B = _AB(l) c e AB(K_l) Aj AB(E—Fl) Pt AB(m)_




Example

P={z| x4+ x5

r=(2,0,0)

Basicindex j =3 —— d=(-1,0,1)

4 =1
dp = —B_lAj

31



Example

P={x|x14+x2+2x3=2, x>0}

r=(2,0,0) B= 1} %}

Basicindex j =3 —— d=(-1,0,1)
d; =1

dp = —B_lAj

Stepsize 0~ = "1 _ 9
dq

31



Example

P={x|x14+x2+2x3=2, x>0}

r=(2,0,0) B= Q%

Basicindex j =3 —— d=(-1,0,1)

4 =1
dp = —B_lAj

Stepsize 0~ = "1 _ 9
dq

New solution y =z + 6*d = (0,0, 2) 6: CZ}

31



An iteration of the simplex method
First part

We start with a basic feasible solution 2 and a basis matrix B =

_AB(l) Ce 7AB(m)_

32



An iteration of the simplex method
First part

We start with a basic feasible solution x and a basis matrix B = _AB(l) . ,AB(m)-

1. Compute the reduced costs ¢; = c¢; — cgB 1A, forj € N
2. If ¢; > 0, x optimal. break

3. Choose j such that ¢; < 0

32



An iteration of the simplex method

Second part

4. Compute search direction components dg = —B~ ' A;

5. It dg > 0, the problem is unbounded and the optimal value is —oc. break

:E.
6. Compute step length 6* = ' -
P P 1eng {igéﬂiz?@}( di>

/. Define y such that y = x + 6*d

33



Finite convergence

Assume that

» P={x| Az =b,x > 0} not empty
» Every basic feasible solution non degenerate

34



Finite convergence

Assume that

» P={x| Az =b,x > 0} not empty
» Every basic feasible solution non degenerate

Then

' The simplex method terminates after a finite number of iterations
At termination we either have one of the following

- an optimal basis B
- adirection d such that Ad =0, d > 0, ¢’ d < 0 and the optimal cost is —cc

34



Finite convergence
Proof sketch

At each Iteration the algorithm improves

by a positive amount 6*
- along the direction d such that ¢! d < 0
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Finite convergence
Proof sketch

At each Iteration the algorithm improves

by a positive amount 6*
- along the direction d such that ¢! d < 0

Therefore
» The cost strictly decreases

 No basic feasible solution can be visited twice
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Finite convergence
Proof sketch

At each Iteration the algorithm improves

by a positive amount 6*
- along the direction d such that ¢! d < 0

Therefore
» The cost strictly decreases

 No basic feasible solution can be visited twice

(m

B 35

Since there is a finite number of basic feasible solutions
The algorithm must eventually terminate



The simplex method

Today, we learned to:

» |terate between basic feasible solutions

e Verify optimality and unboundedness conditions
* Apply a single iteration of the simplex method

* Prove finite convergence of the simplex method in the non-degenerate case

36



Next lecture

* Finding initial basic feasible solution
 Degeneracy

o Complexity
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