ORF522 – Linear and Nonlinear Optimization

4. The simplex method

Ed forum

- Basic feasible solutions in geometric vs algebraic form (next slides)
- More efficient transformation methods from geometric to standard form when there is structure? (Pre-processing + do not need to calculate all extreme points)
- Do equality constraints in geometric form correspond to two linearly dependent inequalities?
- Equivalence proofs between corners (next slides)
- Definition of contain a line (Typo!)
- How do we start if initial solution is infeasible?
- Jupyter notebook: only pdf or also ipdb? Only pdf.
- Video/audio not in sync.

Recap

Standard form polyhedra

Definition

Standard form LP

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

Assumption

 $A \in \mathbf{R}^{m \times n}$ has full row rank $m \leq n$

Interpretation

P lives in (n-m)-dimensional subspace

Standard form polyhedron

$$P = \{x \mid Ax = b, \ x \ge 0\}$$

Transformation to standard form

minimize $c^T x$ subject to $Ax \leq b \longrightarrow \text{subject to} \quad \begin{bmatrix} A & -A & I \end{bmatrix} \begin{bmatrix} x^+ \\ x^- \\ s \end{bmatrix} = b \longrightarrow \text{subject to} \quad \tilde{A}\tilde{x} = b$ $\tilde{x} \geq 0$ $(x^+, x^-, s) \geq 0$

Variables: $\tilde{n} = 2n + m$

(Equality) constraints: $\tilde{m} = m$

There are \tilde{m} active constraints We need $\tilde{n}-\tilde{m}=2n$ inequalities active $\Rightarrow \tilde{x}_i=0$ (non basic)

Which corresponds to m inequalities inactive $\Rightarrow \tilde{x}_i > 0$ (basic)

Extreme points

Definition

 $x \in P$ is said to be an **extreme point** of P if

 $\exists y, z \in P \ (y \neq x, z \neq x) \text{ and } \alpha \in [0, 1] \text{ such that } x = \alpha y + (1 - \alpha)z$

Basic solutions

Standard form polyhedra

$$P = \{x \mid Ax = b, x \ge 0\}$$

with

 $A \in \mathbf{R}^{m \times n}$ has full row rank $m \leq n$

x is a **basic solution** if and only if

- Ax = b
- There exist indices $B(1), \ldots, B(m)$ such that
 - columns $A_{B(1)}, \ldots, A_{B(m)}$ are linearly independent
 - $x_i = 0$ for $i \neq B(1), \dots, B(m)$

x is a basic feasible solution if x is a basic solution and $x \ge 0$

Constructing basic solution

- 1. Choose any m independent columns of A: $A_{B(1)}, \ldots, A_{B(m)}$
- 2. Let $x_i = 0$ for all $i \neq B(1), ..., B(m)$
- 3. Solve Ax = b for the remaining $x_{B(1)}, \ldots, x_{B(m)}$

If $x_B \ge 0$, then x is a basic feasible solution

Equivalence

Theorem

Given a nonempty polyhedron $P = \{x \mid Ax \leq b\}$

Let $x \in P$

x is a vertex $\iff x$ is an extreme point $\iff x$ is a basic feasible solution

Vertex —> Extreme point

If x is a vertex, $\exists c$ such that $c^T x < c^T y$, $\forall y \in P, y \neq x$

Let's assume x is not an extreme point: $\exists y, z \neq x$ such that $x = \lambda y + (1 - \lambda)z$

However, since x is a vertex, $c^Tx < c^Ty$ and $c^Tx < c^Tz$

Therefore, $c^Tx = \lambda c^Ty + (1-\lambda)c^Tz > \lambda c^Tx + (1-\lambda)c^Tx = c^Tx$: contradiction

Extreme point —> Basic feasible solution

Proof by contraposition

Suppose $x \in P$ is not basic feasible solution

 $\{a_i \mid i \in \mathcal{I}(x)\}$ does not span \mathbf{R}^n

 $\exists d \in \mathbf{R}^n$ perpendicular to all of them: $a_i^T d = 0$, $\forall i \in \mathcal{I}(x)$

Let $\epsilon > 0$ and define $y = x + \epsilon d$ and $z = x - \epsilon d$

For $i \in \mathcal{I}(x)$ we have $a_i^T y = b_i$ and $a_i^T z = b_i$

For $i \notin \mathcal{I}(x)$ we have $a_i^T x < b_i \implies a_i^T (x + \epsilon d) < b_i$ and $a_i^T (x - \epsilon d) < b_i$

Hence, $y, z \in P$ and $x = \lambda y + (1 - \lambda)z$ with $\lambda = 0.5$. $x \in P$ and $x = x \in P$ and x = x

Extreme point —> Basic feasible solution

Proof by contraposition

Suppose $x \in P$ is not basic feasible solution

Hence, $y, z \in P$ and $x = \lambda y + (1 - \lambda)z$ with $\lambda = 0.5$. $x \in P$ is not an extreme point

Basic feasible solution —> Vertex

Left as exercise

Hint

Define
$$c = \sum_{i \in \mathcal{I}(x)} a_i$$

Optimality of extreme points

minimize $c^T x$ subject to $Ax \leq b$

- P has at least one extreme point There exists an optimal solution x^\star

Then, there exists an optimal solution which is an **extreme point** of P

We only need to search between extreme points

Conceptual algorithm

- Start at corner
- Visit neighboring corner that improves the objective

Today's agenda

Readings: [Chapter 3, Bertsimas and Tsitsiklis]

Simplex method

- Iterate between neighboring basic solutions
- Optimality conditions
- Simplex iterations

The simplex method

Top 10 algorithms of the 20th century

1946: Metropolis algorithm

1947: Simplex method

1950: Krylov subspace method

1951: The decompositional approach to matrix computations

1957: The Fortran optimizing compiler

1959: QR algorithm

1962: Quicksort

1965: Fast Fourier transform

1977: Integer relation detection

1987: Fast multipole method

George Dantzig

Neighboring basic solutions

Feasible directions and neighboring solutions

Definition

Let $x \in P$, a vector d is a feasible direction at x if $\exists \theta > 0$ for which $x + \theta d \in P$

Two basic solutions are **neighboring** if their basic indices differ by exactly one variable

Feasible directions

Conditions

$$P = \{x \mid Ax = b, \ x \ge 0\}$$

Given a basis matrix $B = \begin{bmatrix} A_{B(1)} & \dots & A_{B(m)} \end{bmatrix}$ we have basic feasible solution x:

•
$$x_B = B^{-1}b$$

•
$$x_i = 0, \ \forall i \neq B(1), \dots, B(m)$$

Feasible direction d

•
$$A(x + \theta d) = b \Longrightarrow Ad = 0$$

•
$$x + \theta d \ge 0$$

Feasible directions

Computation

Nonbasic indices

- $d_j = 1$ ——— Basic direction
- $d_k = 0, \ \forall k \notin \{j, B(1), \dots, B(m)\}$

Basic indices

$$Ad = 0 = \sum_{i=1}^{n} A_i d_i = Bd_B + A_j = 0 \Longrightarrow d_B = -B^{-1}A_j$$

Non-negativity (non-degenerate assumption)

- Non-basic variables: $x_i = 0$. Nonnegative direction $d_i \ge 0$
- Basic variables: $x_B > 0$. Therefore $\exists \theta > 0$ such that $x_B + \theta d_B \ge 0$

Feasible directions

Example

$$P = \{x \mid x_1 + x_2 + x_3 = 2, \quad x \ge 0\}$$

$$x = (2, 0, 0)$$
 $B = \{1\}$

Basic index
$$j = 3 \longrightarrow d = (-1, 0, 1)$$

$$d_j = 1$$

$$d_B = -B^{-1}A_j$$

How does the cost change?

The new cost is $c^T(x + \theta d)$

The cost improvement is
$$c^T(x + \theta d) - c^T x = \theta c^T d$$

We call \bar{c}_j the **reduced cost** of (introducing) variable x_j

$$\bar{c}_j = c^T d = \sum_{i=1}^n c_i d_j = c_i + c_B^T d_B = c_i - c_B^T B^{-1} A_j$$

Reduced costs

Meaning

Change in objective/marginal cost of adding x_i to the basis

Cost per-unit increase of variable \boldsymbol{x}_j

Cost to change other variables compensating for x_j to enforce Ax = b

- $c_j > 0$: adding x_j will increase the objective (bad)
- $c_j < 0$: adding x_j will decrease the objective (good)

Reduced costs for basic variables is 0

$$\bar{c}_{B(i)} = c_{B(i)} - c_B^T B^{-1} A_{B(i)} = c_{B(i)} - c_B^T e_i = c_{B(i)} - c_{B(i)} = 0$$

Optimality conditions

Optimality conditions

Theorem

Let x be a basic feasible solution associated with basis matrix B Let \bar{c} be the vector of reduced costs.

If $\bar{c} \geq 0$, then x is optimal

Remark

This is a **stopping criterion** for the simplex algorithm. If the **neighboring solutions** do not improve the cost, we are done (because of convexity).

Optimality conditions

Proof

For a basic feasible solution x with basis matrix B the reduced costs are $\bar{c} \geq 0$.

Consider any feasible solution y and define d = y - x

Since x and y are feasible, then Ax = Ay = b and Ad = 0

$$Ad = Bd_B + \sum_{i \in N} A_i d_i = 0 \quad \Rightarrow \quad d_B = -\sum_{i \in N} B^{-1} A_i d_i$$

N are the nonbasic indices

The change in objective is

$$c^{T}d = c_{B}^{T}d_{B} + \sum_{i \in N} c_{i}d_{i} = \sum_{i \in N} (c_{i} - c_{B}^{T}B^{-1}A_{i})d_{i} = \sum_{i \in N} \bar{c}_{i}d_{i}$$

Since $y \ge 0$ and $x_i = 0$, $i \in N$, then $d_i = y_i - x_i \ge 0$, $i \in N$

$$c^T d = c^T (y - x) \ge 0 \quad \Rightarrow \quad c^T y \ge c^T x.$$

Simplex iterations

Stepsize

What happens if some $\bar{c}_i < 0$?

We can decrease the cost by bringing x_i into the basis

How far can we go?

$$\theta^* = \max\{\theta \mid \theta \ge 0 \text{ and } x + \theta d \ge 0\}$$

d is the j-th basic direction

Unbounded

If d > 0, then $\theta^* = \infty$. The LP is unbounded.

Bounded

If
$$d_i < 0$$
 for some i , then

If
$$d_i < 0$$
 for some i , then
$$\theta^\star = \min_{\{i \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right) = \min_{\{i \in B \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$$

(Since
$$d_i \geq 0, i \in N$$
)

Moving to a new basis

Next feasible solution

$$x + \theta^{\star} d$$

Let
$$B(\ell)\in\{B(1),\dots,B(m)\}$$
 be the index such that $\theta^\star=-\frac{x_{B(\ell)}}{d_{B(\ell)}}.$ Then, $x_{B(\ell)}+\theta^\star d_{B(\ell)}=0$

New solution

- $x_{B(\ell)}$ becomes 0 (exits)
- x_j becomes θ^* (enters)

New basis

$$\bar{B} = \begin{bmatrix} A_{B(1)} & \dots & A_{B(\ell-1)} & A_j & A_{B(\ell+1)} & \dots & A_{B(m)} \end{bmatrix}$$

Example

$$P = \{x \mid x_1 + x_2 + x_3 = 2, \quad x \ge 0\}$$

$$x = (2, 0, 0)$$
 $B = \{1\}$

Basic index
$$j=3$$
 \longrightarrow $d=(-1,0,1)$
$$d_j=1$$

$$d_B=-B^{-1}A_j$$

Stepsize
$$\theta^{\star} = -\frac{x_1}{d_1} = 2$$

New solution
$$y=x+\theta^{\star}d=(0,0,2)$$
 $\bar{B}=\{3\}$

An iteration of the simplex method First part

We start with a basic feasible solution x and a basis matrix $B = \begin{bmatrix} A_{B(1)} & \dots, A_{B(m)} \end{bmatrix}$

- 1. Compute the reduced costs $\bar{c}_j = c_j c_B^T B^{-1} A_j$ for $j \in N$
- 2. If $\bar{c_j} \geq 0$, x optimal. break
- 3. Choose j such that $\bar{c}_i < 0$

An iteration of the simplex method Second part

- 4. Compute search direction components $d_B = -B^{-1}A_j$
- 5. If $d_B \ge 0$, the problem is **unbounded** and the optimal value is $-\infty$. **break**
- 6. Compute step length $\theta^\star = \min_{\{i \in B \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$
- 7. Define y such that $y = x + \theta^* d$

Finite convergence

Assume that

- $P = \{x \mid Ax = b, x \ge 0\}$ not empty
- Every basic feasible solution non degenerate

Then

- The simplex method terminates after a finite number of iterations
- At termination we either have one of the following
 - an optimal basis \boldsymbol{B}
 - a direction d such that $Ad=0,\ d\geq 0,\ c^Td<0$ and the optimal cost is $-\infty$

Finite convergence

Proof sketch

At each iteration the algorithm improves

- by a **positive** amount θ^*
- along the direction d such that $c^T d < 0$

Therefore

- The cost strictly decreases
- No basic feasible solution can be visited twice

Since there is a **finite number of basic feasible solutions**The algorithm **must eventually terminate**

The simplex method

Today, we learned to:

- Iterate between basic feasible solutions
- Verify optimality and unboundedness conditions
- Apply a single iteration of the simplex method
- Prove finite convergence of the simplex method in the non-degenerate case

Next lecture

- Finding initial basic feasible solution
- Degeneracy
- Complexity