ORF522 – Linear and Nonlinear Optimization

3. Geometry and polyhedra

Ed forum

Questions and notes

- Is piecewise linear optimization always better than solving a convex problem?
- 1-norm LP (minimize $||x||_1$) or LASSO (minimize $||Ax b||_2 + ||x||_1$)?
- $\ell_1 \ell_0$ equivalence? Not always!
- "random matrix" on slide 21 (Sparse Signal Recovery example) means "randomly-generated" matrix.
- Robust curve fitting. What does "robustness" mean?
- Would a convex combination of ℓ_1 and ℓ_0 norm work better than any one of them; and be computationally feasible to work with?

Today's agenda

Readings [Chapter 2, Bertsimas and Tsitsiklis]

- Polyhedra and linear algebra
- Corners: extreme points, vertices, basic feasible solutions
- Constructing basic solutions
- Existence and optimality of extreme points

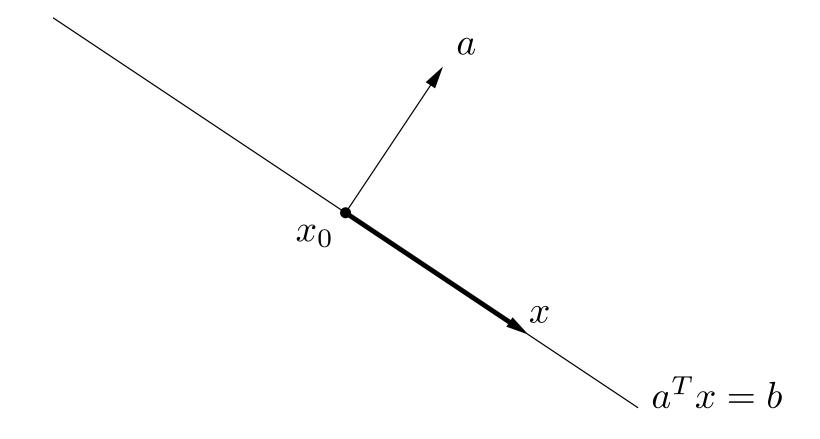
Polyhedra and linear algebra

Hyperplanes and halfspaces

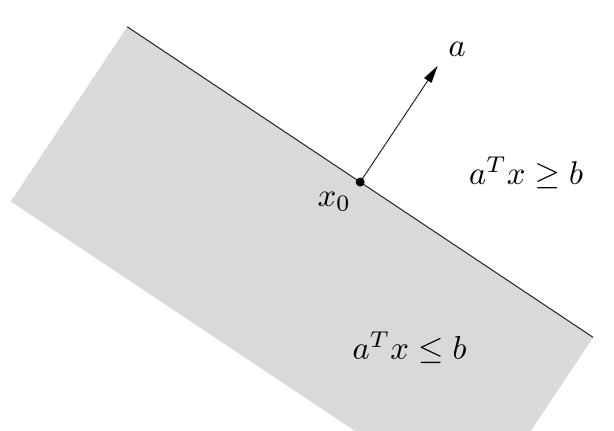
Definitions

Hyperplane

$$\{x \mid a^T x = b\}$$



Halfspace
$$\{x \mid a^T x \leq b\}$$

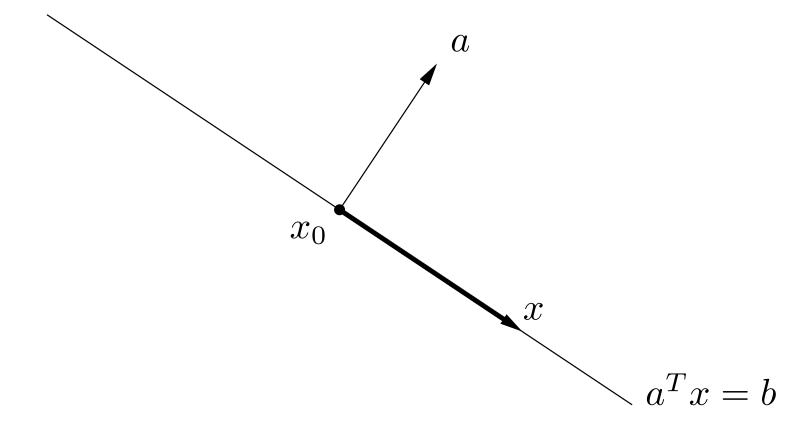


Hyperplanes and halfspaces

Definitions

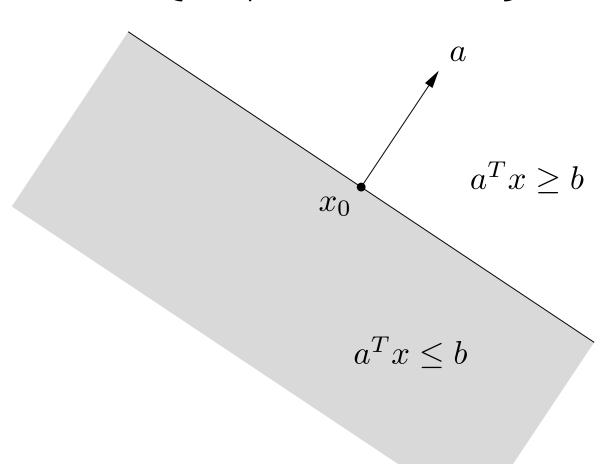
Hyperplane

$$\{x \mid a^T x = b\}$$



Halfspace

$$\{x \mid a^T x \le b\}$$



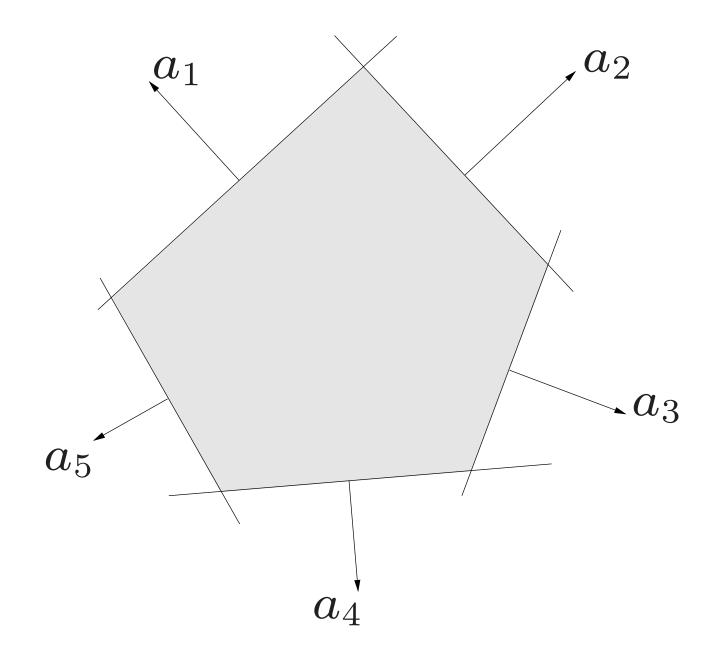
- x_0 is a specific point in the hyperplane
- For any x in the hyperplane defined by $a^Tx=b$, $x-x_0\perp a$
- The halfspace determined by $a^Tx \leq b$ extends in the direction of -a

Polyhedron

$\frac{Q_{i} \times S_{i}}{Q_{i} \times S_{i}} = 0$ $\frac{Q_{i} \times S_{i}}{Q_{i} \times S_{i}} = 0$

Definition

$$P = \{x \mid a_i^T x \le b_i, \quad i = 1, \dots, m\} = \{x \mid Ax \le b\}$$



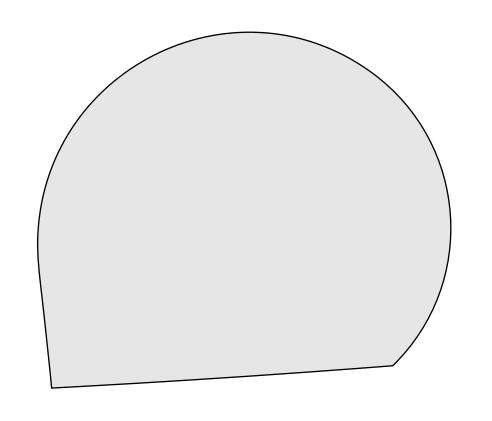
- Intersection of finite number of halfspaces
- Can include equalities

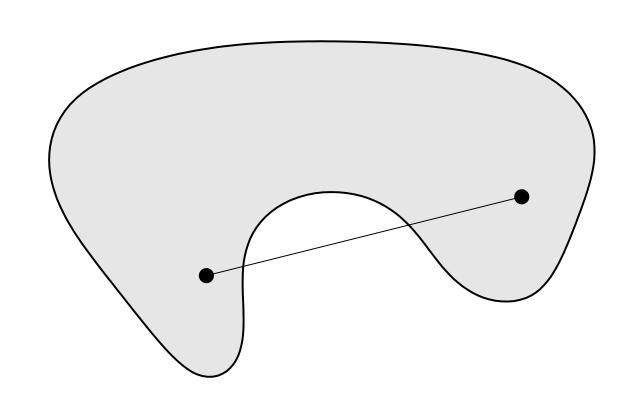
Convex set

Definition

For any $x, y \in C$ and any $\alpha \in [0, 1]$

$$\alpha x + (1 - \alpha)y \in C$$





Not convex

Examples

- \mathbf{R}^n
- Hyperplanes
- Halfspaces
- Polyhedra

Convex combinations

Convex combination

$$\alpha_1 x_1 + \cdots + \alpha_k x_k$$
 for any x_1, \ldots, x_k and $\alpha_1, \ldots, \alpha_k$ such that $\alpha_i \geq 0, \sum_{i=1}^k \alpha_i = 1$

Convex combinations

Convex combination

 $\alpha_1 x_1 + \dots + \alpha_k x_k$ for any x_1, \dots, x_k and $\alpha_1, \dots, \alpha_k$ such that $\alpha_i \ge 0$, $\sum_{i=1}^k \alpha_i = 1$

Convex hull
$$\mathbf{conv}\,C = \left\{\sum_{i=1}^k \alpha_k x_k \mid x_i \in C, \; \alpha_i \geq 0, \; i=1,\dots,k, \; \mathbf{1}^T \alpha = 1\right\}$$

Linear independence

a nonempty set of vectors $\{v_1,\ldots,v_k\}$ is linearly independent if

$$\alpha_1 v_1 + \dots + \alpha_k v_k = 0$$

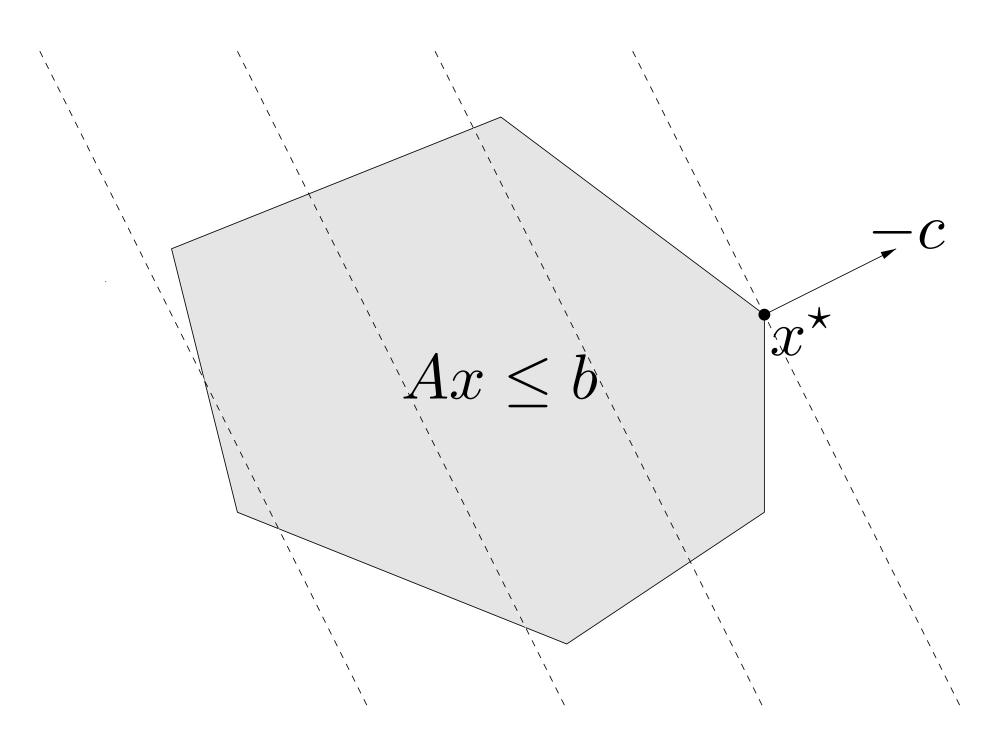
holds only for $\alpha_1 = \cdots = \alpha_k = 0$

Properties

- The coefficients α_k in a linear combination $x = \alpha_1 v_1 + \cdots + \alpha_k v_k$ are unique
- None of the vectors v_i is a linear combination of the other vectors

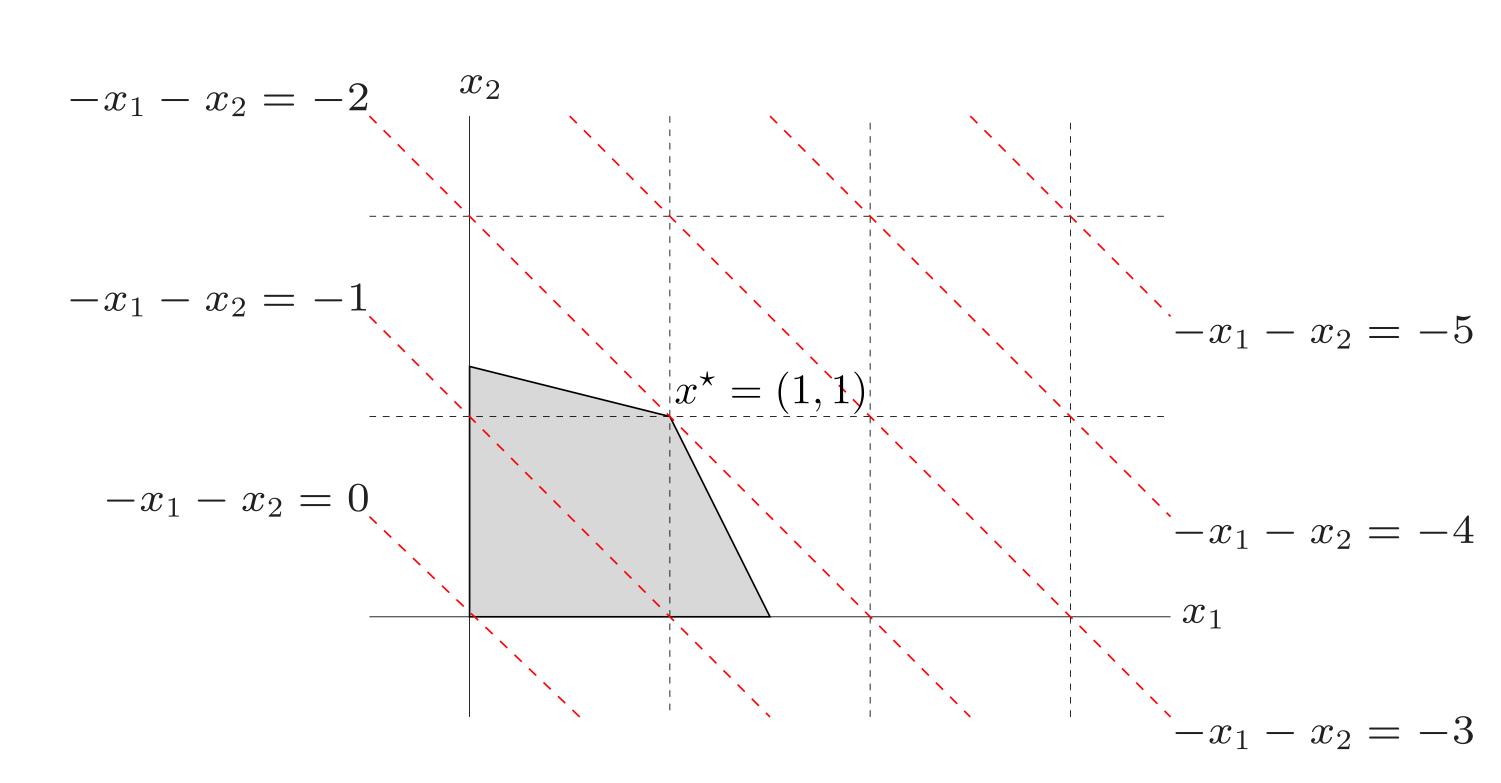
Geometrical interpretation of linear optimization

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$



Example of linear optimization

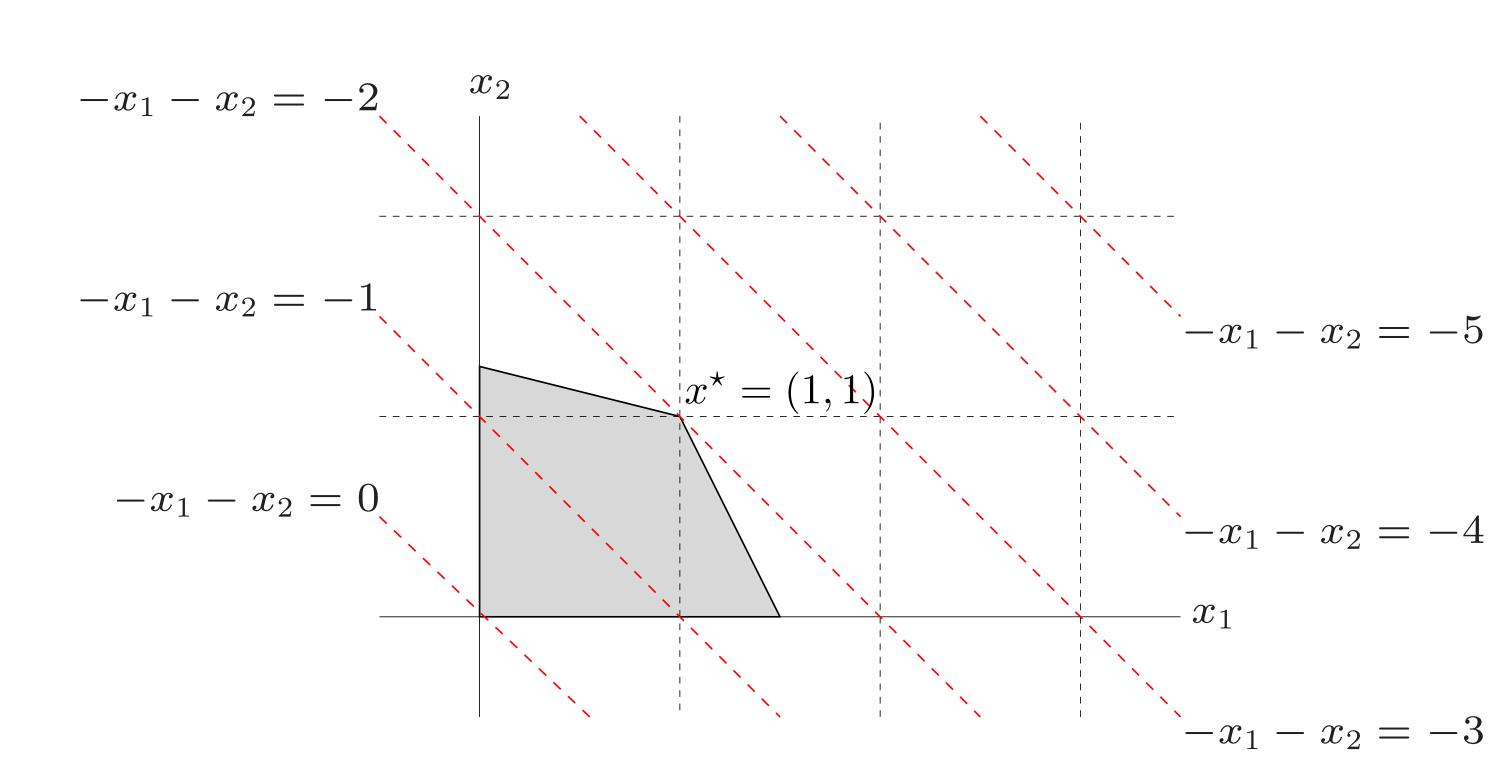
minimize $-x_1-x_2$ subject to $2x_1+x_2\leq 3$ $x_1+4x_2\leq 5$ $x_1\geq 0,\ x_2\geq 0$



Optimal solutions tend to be at a "corner" of the feasible set

Example of linear optimization

minimize $-x_1-x_2$ subject to $2x_1+x_2\leq 3$ $x_1+4x_2\leq 5$ $x_1\geq 0,\; x_2\geq 0$



Optimal solutions tend to be at a "corner" of the feasible set

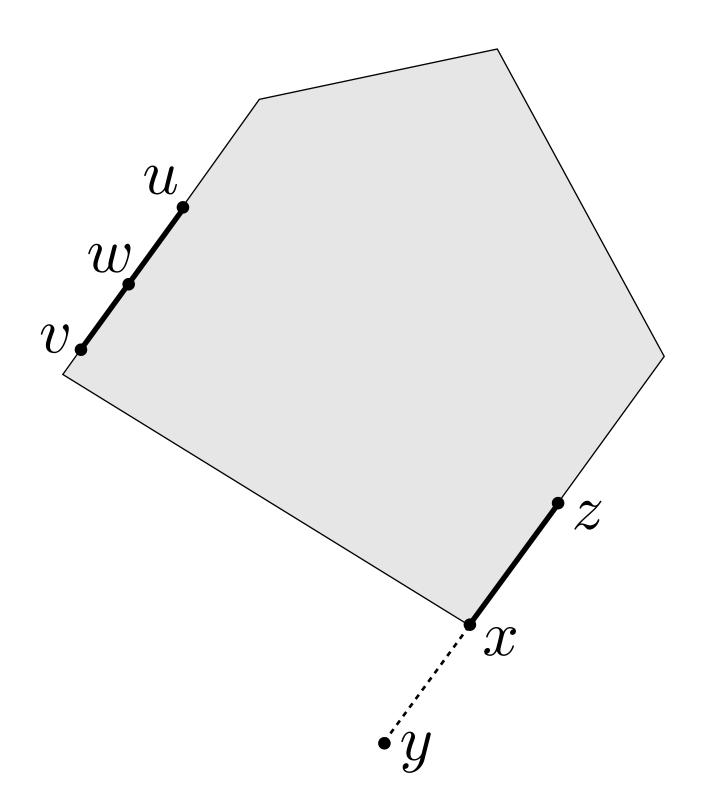
Corners of linear optimization

Extreme points

Definition

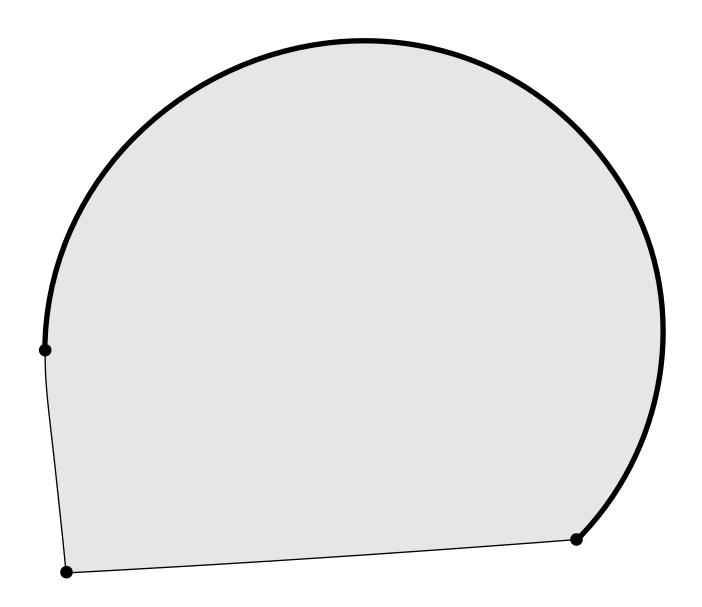
 $x \in P$ is said to be an **extreme point** of P if

 $\exists y, z \in P \ (y \neq x, z \neq x) \text{ and } \alpha \in [0, 1] \text{ such that } x = \alpha y + (1 - \alpha)z$



Extreme points

Convex sets



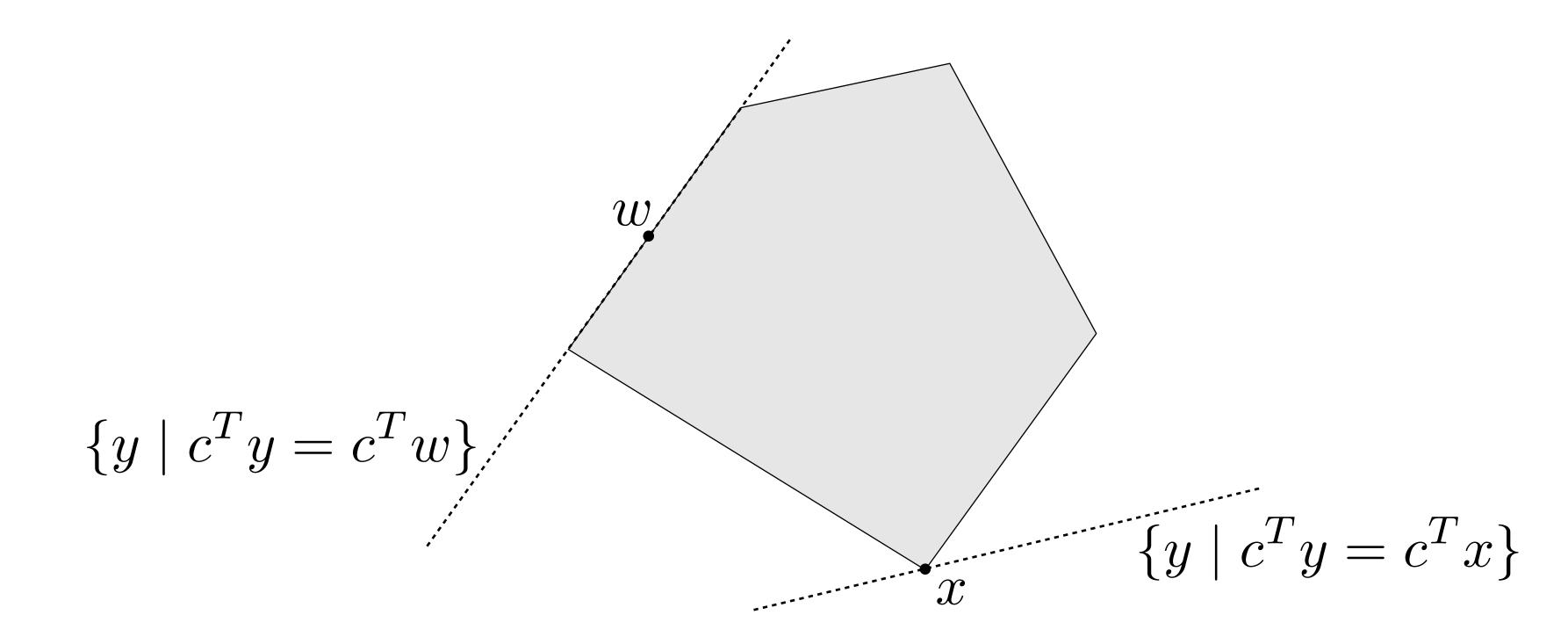
- Convex sets can have an infinite number of extreme points
- Polyhedra are convex sets with a finite number of extreme points

Vertices

Definition

 $x \in P$ is a **vertex** if $\exists c$ such that x is the unique optimum of

 $\begin{array}{ll} \text{minimize} & c^T y \\ \text{subject to} & y \in P \end{array}$



$$P = \{x \mid a_i^T x \le b_i, \quad i = 1, \dots, m\}$$

$$P = \{x \mid a_i^T x \le b_i, i = 1, \dots, m\}$$

Active constraints at \bar{x}

$$\mathcal{I}(\bar{x}) = \{i \in \{1, \dots, m\} \mid a_i^T \bar{x} = b_i\}$$

Index of all the constraints satisfied as equality

$$P = \{x \mid a_i^T x \le b_i, i = 1, \dots, m\}$$

Active constraints at \bar{x}

$$\mathcal{I}(\bar{x}) = \{i \in \{1, \dots, m\} \mid a_i^T x = b_i\}$$

Index of all the constraints satisfied as equality

Basic solution \bar{x}

• $\{a_i \mid i \in \mathcal{I}(\bar{x})\}$ has n linearly independent vectors

$$P = \{x \mid a_i^T x \le b_i, \quad i = 1, \dots, m\}$$

Active constraints at \bar{x}

$$\mathcal{I}(\bar{x}) = \{i \in \{1, \dots, m\} \mid a_i^T \bar{x} = b_i\}$$

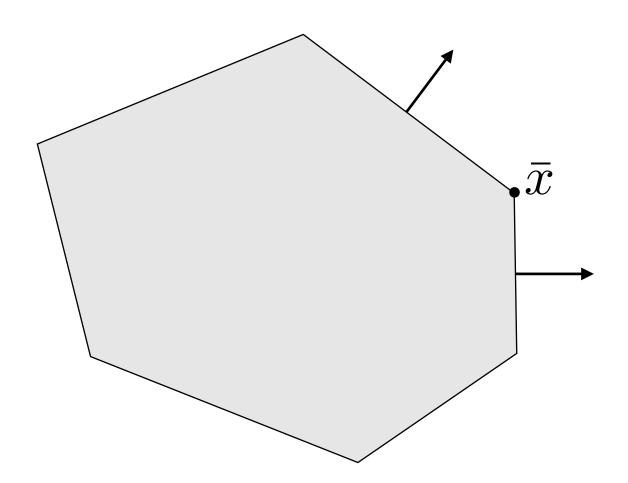
Index of all the constraints satisfied as equality

Basic solution \bar{x}

• $\{a_i \mid i \in \mathcal{I}(\bar{x})\}$ has n linearly independent vectors

Basic feasible solution \bar{x}

- $\bar{x} \in P$
- $\{a_i \mid i \in \mathcal{I}(\bar{x})\}$ has n linearly independent vectors



Degenerate basic feasible solutions

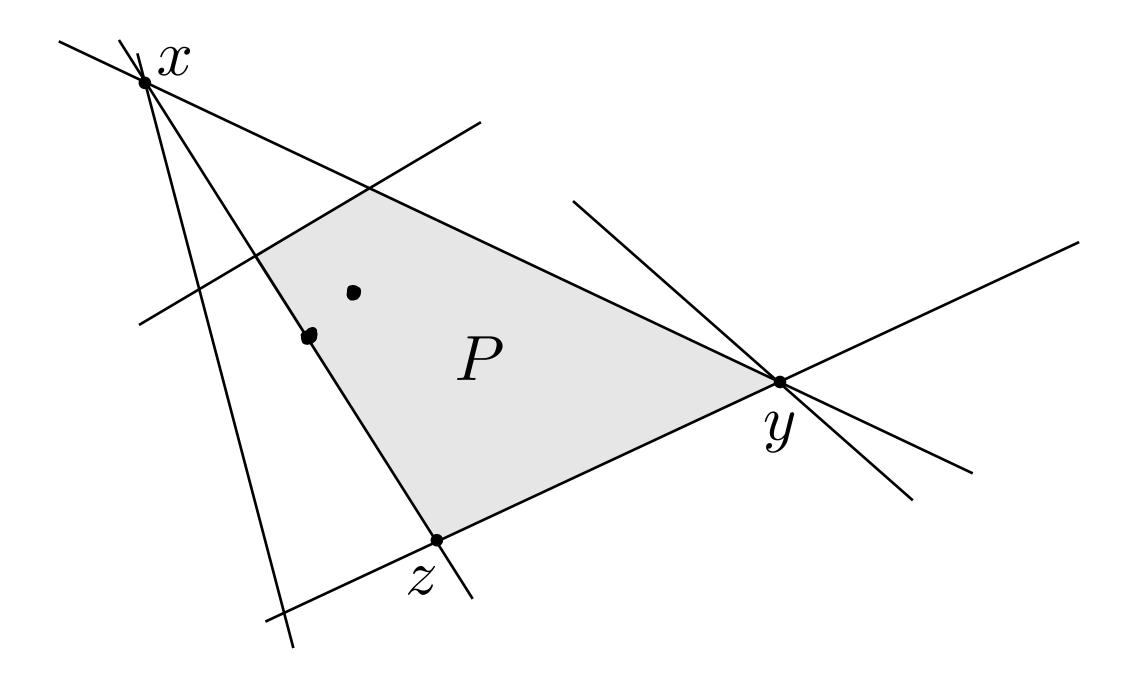
A solution \bar{x} is degenerate if $|\mathcal{I}(\bar{x})| > n$

Degenerate basic feasible solutions

A solution \bar{x} is degenerate if $|\mathcal{I}(\bar{x})| > n$

True or False?

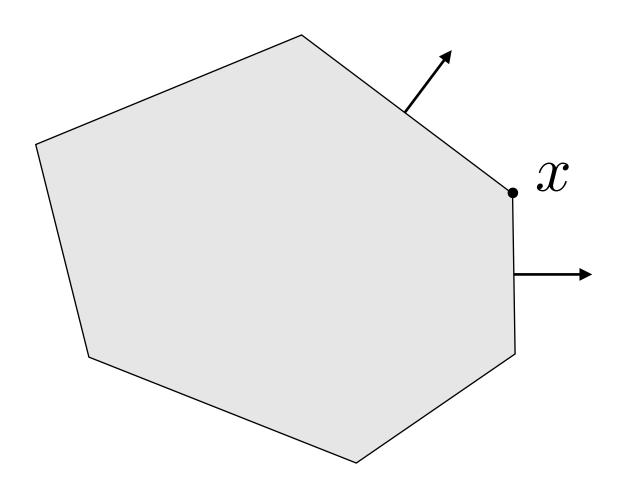
	Basic	Feasible	Degenerate
x	ν	<u> </u>	Y
y	γ	V	Y
z	Y	~	



Equivalence

Theorem

Given a nonempty polyhedron $P = \{x \mid Ax \leq b\}$



Let $x \in P$

x is a vertex $\iff x$ is an extreme point $\iff x$ is a basic feasible solution

Constructing basic solutions

Standard form polyhedra

Definition

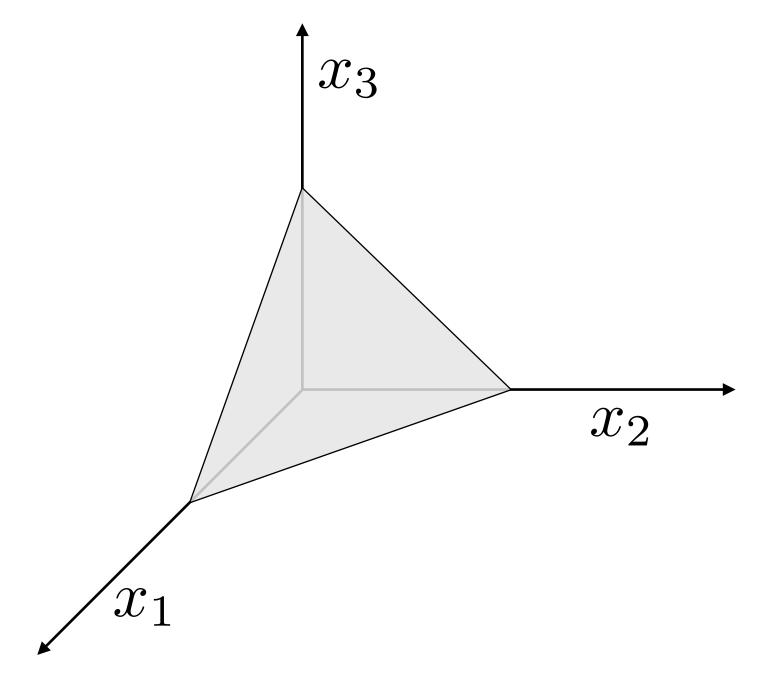
Standard form LP

minimize
$$c^T x$$
 subject to $Ax = b$

$$x \ge 0$$

Standard form polyhedron

$$P = \{x \mid Ax = b, \ x \ge 0\}$$



Standard form polyhedra

Definition

Standard form LP

minimize
$$c^T x$$

subject to
$$Ax = b$$

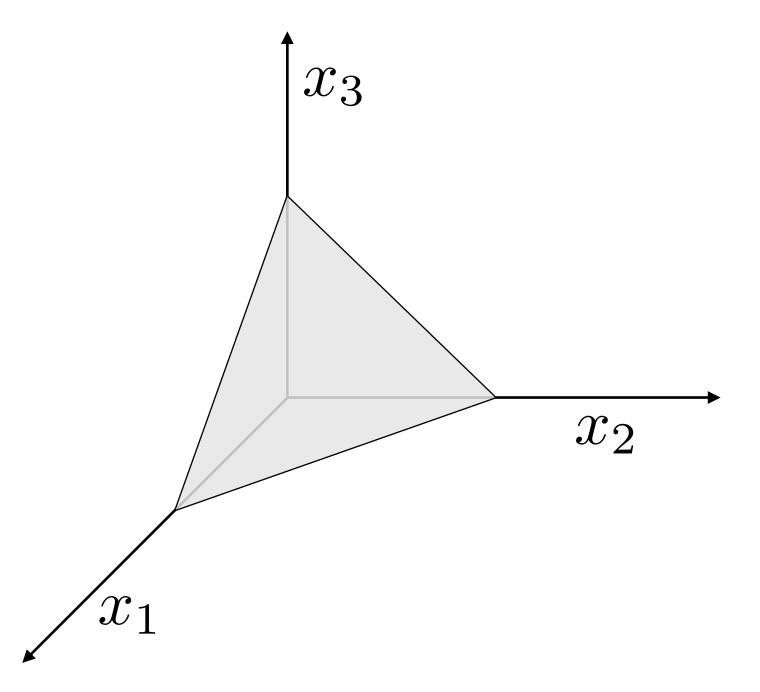
$$x \ge 0$$

Assumption

 $A \in \mathbf{R}^{m \times n}$ has full row rank $m \leq n$

Standard form polyhedron

$$P = \{x \mid Ax = b, \ x \ge 0\}$$



Standard form polyhedra

Definition

Standard form LP

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

Assumption

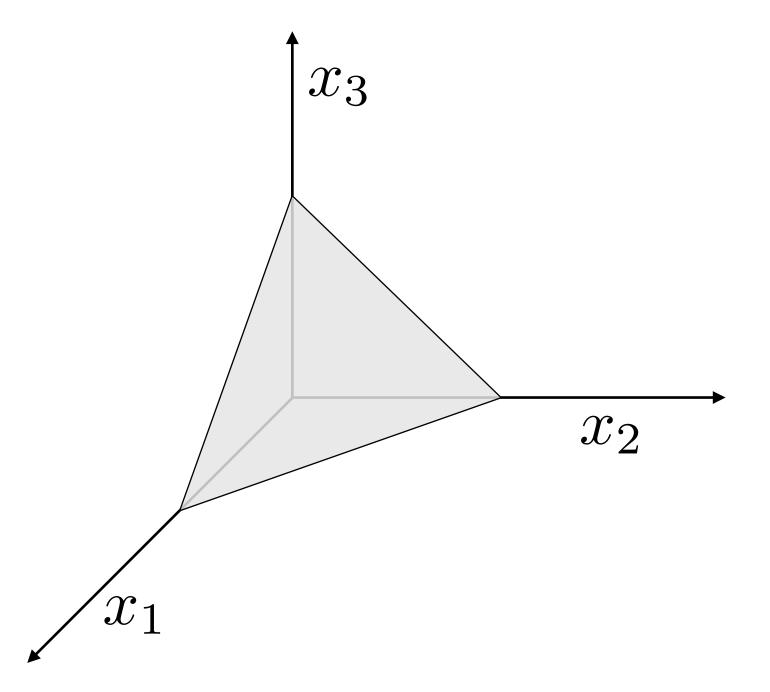
 $A \in \mathbf{R}^{m \times n}$ has full row rank $m \leq n$

Interpretation

P lives in (n-m)-dimensional subspace

Standard form polyhedron

$$P = \{x \mid Ax = b, \ x \ge 0\}$$



Basic solutions

Standard form polyhedra

$$P = \{x \mid Ax = b, \ x \ge 0\}$$

with

$$A \in \mathbf{R}^{m \times n}$$
 has full row rank $m \leq n$

Basic solutions

Standard form polyhedra

$$P = \{x \mid Ax = b, x \ge 0\}$$

with

 $A \in \mathbf{R}^{m \times n}$ has full row rank $m \leq n$

x is a **basic solution** if and only if

- Ax = b
- There exist indices $R_1, \dots, B(m)$ such that
 - columns $A_{B(1)}, \ldots, A_{B(m)}$ are linearly independent
 - $x_i = 0$ for $i \neq B(1), \dots, B(m)$

Basic solutions

Standard form polyhedra

$$P = \{x \mid Ax = b, \ x \ge 0\}$$

with

 $A \in \mathbf{R}^{m \times n}$ has full row rank m < n

x is a **basic solution** if and only if

- Ax = b
- There exist indices $B_1, \ldots, B(m)$ such that
 - columns $A_{B(1)}, \ldots, A_{B(m)}$ are linearly independent
 - $x_i = 0$ for $i \neq B(1), \dots, B(m)$

x is a basic feasible solution if x is a basic solution and $x \ge 0$

Constructing basic solution

- 1. Choose any m independent columns of A: $A_{B(1)}, \ldots, A_{B(m)}$
- 2. Let $x_i = 0$ for all $i \neq B(1), ..., B(m)$
- 3. Solve Ax = b for the remaining $x_{B(1)}, \ldots, x_{B(m)}$

Constructing basic solution

- 1. Choose any m independent columns of A: $A_{B(1)}, \ldots, A_{B(m)}$
- 2. Let $x_i = 0$ for all $i \neq B(1), ..., B(m)$
- 3. Solve Ax = b for the remaining $x_{B(1)}, \ldots, x_{B(m)}$

Constructing basic solution

- 1. Choose any m independent columns of A: $A_{B(1)}, \ldots, A_{B(m)}$
- 2. Let $x_i = 0$ for all $i \neq B(1), ..., B(m)$
- 3. Solve Ax = b for the remaining $x_{B(1)}, \ldots, x_{B(m)}$

Basis Basis columns matrix
$$B = \begin{bmatrix} A_{B(1)} & A_{B(2)} & \dots & A_{B(m)} \end{bmatrix}$$

Basic variables

$$B = \begin{bmatrix} & & & & & \\ A_{B(1)} & A_{B(2)} & \dots & A_{B(m)} \\ & & & & \end{bmatrix}, \quad x_B = \begin{bmatrix} x_{B(1)} \\ \vdots \\ x_{B(m)} \end{bmatrix} \qquad x_B = B^{-1}b$$

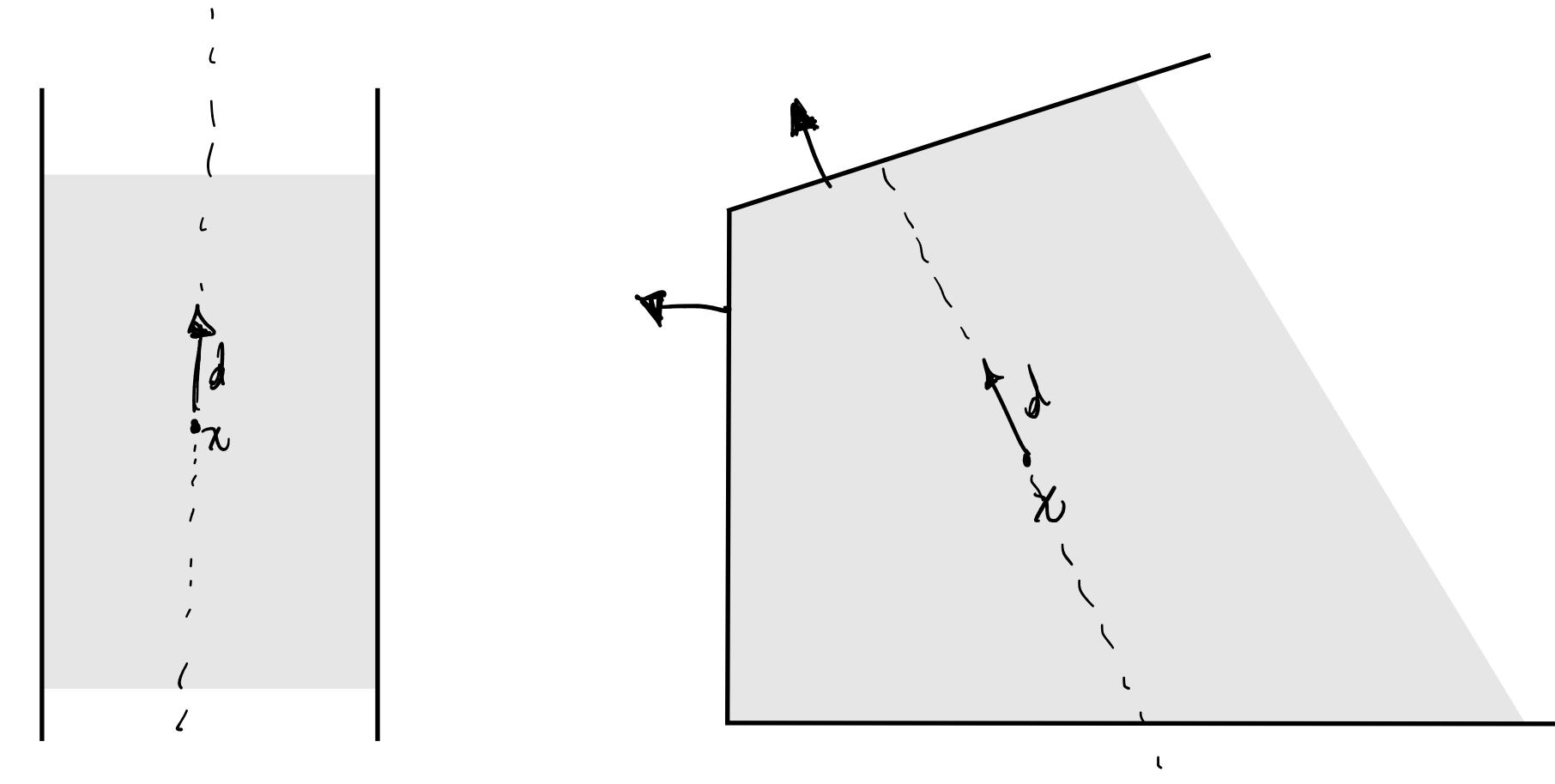
If $x_B \ge 0$, then x is a basic feasible solution

Quiz



Existence and optimality of extreme points

Example



No extreme points

Extreme points

Characterization

A polyhedron P contains a line if

 $\exists x \in P \text{ and a nonzero vector } d \text{ such that } x + \lambda d \in P, \text{ The substitution of } \lambda \in R$

Characterization

A polyhedron P contains a line if

 $\exists x \in P \text{ and a nonzero vector } d \text{ such that } x + \lambda d \in P,$

Given a polyhedron $P = \{x \mid a_i^T x \leq b_i, i = 1, ..., m\}$, the following are equivalent

- P does not contain a line
- P has at least one extreme point
- n of the a_i vectors are linearly independent

Characterization

A polyhedron P contains a line if

 $\exists x \in P$ and a nonzero vector d such that $x + \lambda d \in P$, where $A \in R$

Given a polyhedron $P = \{x \mid a_i^T x \leq b_i, i = 1, ..., m\}$, the following are equivalent

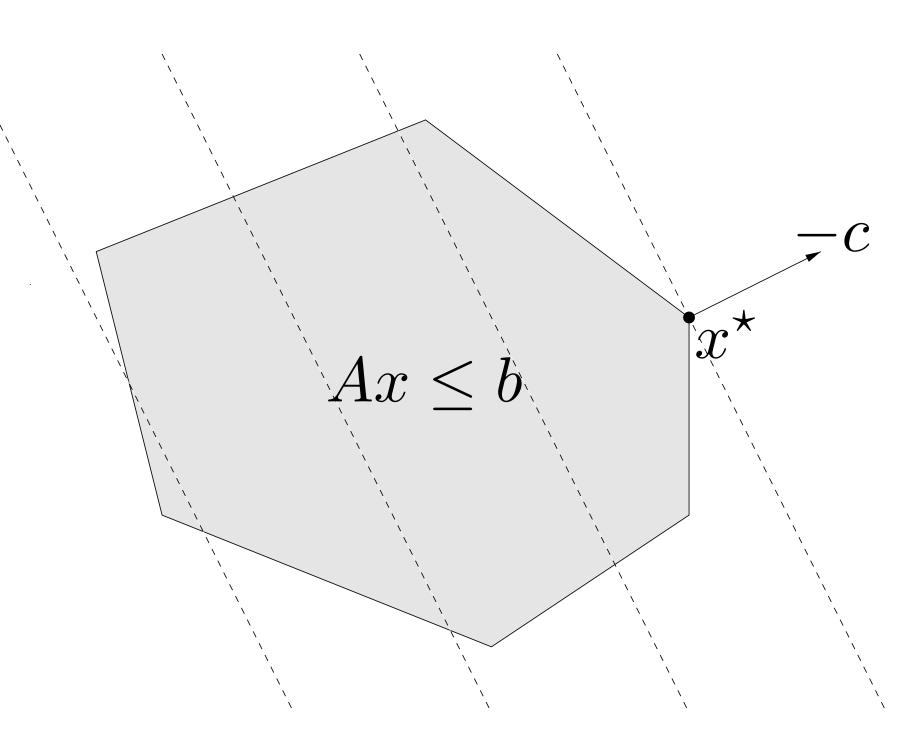
- P does not contain a line
- P has at least one extreme point
- n of the a_i vectors are linearly independent

Corollary
Every nonempty bounded polyhedron has
at least one basic feasible solution

Optimality of extreme points

minimize $c^T x$

subject to $Ax \leq b$



Optimality of extreme points

minimize $c^T x$ subject to $Ax \leq b$

- P has at least one extreme point $^{\vee}$ There exists an optimal solution x^{\star} \vee

Then, there exists an optimal solution which is an **extreme point** of P

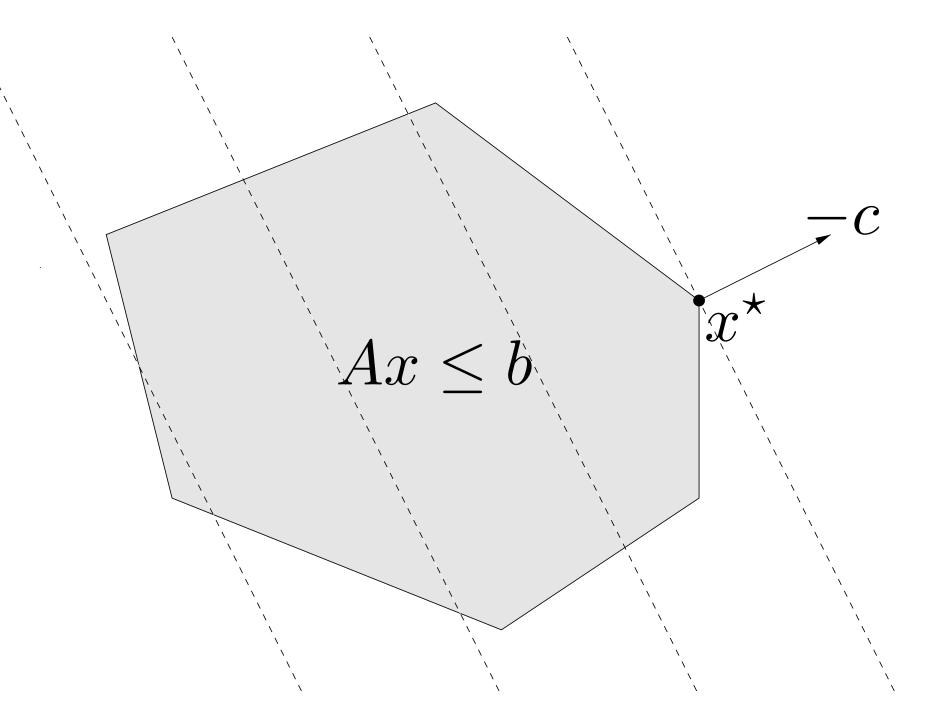


Optimality of extreme points

minimize $c^T x$ subject to $Ax \leq b$

Then, there exists an optimal solution which is an **extreme point** of P

We only need to search between extreme points



Quiz

How to search among basic feasible solutions?

How to search among basic feasible solutions?

Idea

List all the basic feasible solutions, compare objective values and pick the best one.

How to search among basic feasible solutions?

Idea

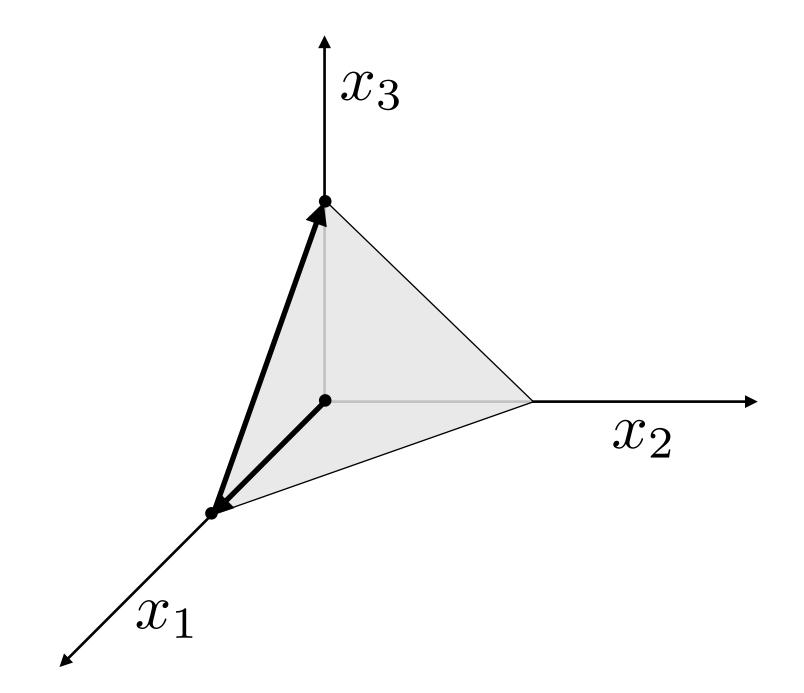
List all the basic feasible solutions, compare objective values and pick the best one.

Intractable!

If n = 1000 and m = 100, we have 10^{143} combinations!

Conceptual algorithm

- Start at corner
- Visit neighboring corner that improves the objective



Geometry of linear optimization

Today, we learned to:

- Apply geometric and algebraic properties of polyhedra to characterize the "corners" of the feasible region.
- Construct basic feasible solutions by solving a linear system.
- Recognize existence and optimality of extreme points.

Next lecture The simplex method

- Iterations
- Convergence
- Complexity