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Today’s agenda
Readings: [Chapter 1, Bertsimas, Tsitsiklis]

* |inear optimization in inner-product and matrix notation
e Optimization terminology

« Standard form

* Piecewise-linear minimization

« Examples



Vector notations

By default, all vectors are column vectors and denoted by

r=(T1,...,Tn)

The transpose of a vector is z*

a’ z is the inner product between a and z

n

alr = 11+ "+ aQnT,y, = E a;T;
i=1



Linear optimization

Linear Programming (LP)

minimize > " . ¢y
. n, .
SUbjeCt {0 ijl AL <b;, 1=1,....m

Z?:ldij$j:fi7 iZl,...,p

Objective function and constraints are linear in the decision variables

Belongs to continuous optimization



Linear optimization

Inner product notation

minimize > " ¢, minimize

CTCE

subjectto 7 a;z; <b;, i=1,...,m — subjectto alz <b,

Z?:ldij$j:fi7 iZl,...,p

c, a;, d; are n-vectors
c=(C1,...,Cn)

a; = (%1,---,@7;77,)

di = (di1,...,din)

d?:c — fi,



Linear optimization

Matrix notation

minimize Y ", c;x; minimize ¢’z
SUbjeCt {0 2?21 AL <b;, 1=1,....m —> SubjeCt to Ax <b
> dijri=fi, i=1,...,p Dz = f

A'is m x n-matrix with elements a;; and rows a;
D is p x n-matrix with elements d;; and rows d;

All (in)equalities are elementwise



Optimization terminology
minimize ¢’z
subjectto Az <b
Dx=f
z IS feasible if it satisfies the constraints Ax < band Dz = f

The feasible set is the set of all feasible points
r* is optimal if it is feasible and ¢! z* < ¢! x for all feasible x

The optimal value is p* = ¢! z*

Unbounded problem: ¢! z is unbounded below on the feasible set (p* = —0)

Infeasible problem: feasible set is empty (p* = +o0)



Standard form
Definition

minimize L ¢ e Minimization
subjectto Az =b * Equality constraints

r >0  Nonnegative variables

 Matrix notation for theory

o Standard form for algorithms



Standard form

Transformation tricks

Change objective
If “maximize”, use —c instead of c and change to “minimize”.

Eliminate inequality constraints
If Ax < b, define s and write Ax +s =050, s > 0.
If Ax > b, define s and write Ax — s =050, s > 0.

s are the slack variables

Change variable signs
If z; <0, define y;, = —x;.

Eliminate “free” variables_ |
If ; unconstrained, define z; = =" — x;, with z;” > 0 and z; > 0.
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Standard form

Transformation example
minimize
subject to

2$1
L1

3331

minimize  2x; + 4a

subjectto x; + a3
3r1 + QQE;_
L1, 33;7

+  4dxo

+ 12 2>3

+ 2x9 =14
> ()

— 4z,

_ 372_ _

— 2%

373—3
= 14
$3ZO
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Linear, affine and convex functions

Linear function: f(z) =a'
flar +By) = af(x)+8f(y), VYr,yeR" o, feR

Affine function: f(z) =alxz + b
flaz+ (1 -a)y) =af(z) + (1 -a)f(y), Vz,ycR" acR

Convex function:
f(()é.il? T (1 - Oé)y) < &f(x) T (1 - &)f(y)a Vx,y S Rna Qo [07 1]
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Convex piecewise-linear functions

f(r) = max (aiTx + b;)

1=1,....m
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=N

Matrix notation

minimize f(x)

R

Equivalent linear optimization

max (a; x + b;)

1=1

minimize

minimize
subjectto A7 < b

I

00000

t

~T~

C

X

~

S

subjectto a x + b; <t,

Convex piecewise-linear minimization

i=1,...

o 1T
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Sum of piecewise-linear functions

minimize f(z) 4+ g(x) = max (aj x + b;) + max (ci x + d;)
1=1,..., m 1=1,..., D

)" @+ (b + dj))

f(x) +g(x) = max ((a; + ¢,

Equivalent linear optimization

minimize  t1 + t-
SUbjeCttO a?$+bi§f1, r=1,...,m
C;F,CE—FCZZ S?fg, , = 1,...,]? notation?
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Examples



1-norm approximation
|Az —b];

minimize

The 1-norm of m-vector y IS

lylli = ) _ vl = ) max{yi, —yi}
i=1 i=1

Equivalent problem

m
minimize E U
1=1

subject to

—u < Az —b<u

Matrix notation

minimize

subject to

A

VA
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Comparison with least-squares

Histogram of residuals Ax — b with randomly generated A € R?Y9*80

T1s = argmin ||Ax — b||, ry, = argmin ||Ax — bl

1

-

~3 —9 1 0 1 9 3
(Aili‘gl — b)k

¢1-norm distribution is wider with a high peak at zero
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! ~=-norm (Chebyshev) approximation

minimize |[Az — b/~

The oco-norm of m-vector y Is

|Ylloc = max [y = max max{yi, —yi}
1=1,..., m 1=1,..., m

Matrix notation

— - T — -
minimize t minimize L
subjectto —t1 < Az —b < t1 L |t

Equivalent problem

subject to

VA




Robust curve fitting

Fit affine function f(z) = a + Bz to m points (z;, ;)

Q

Approximation problem Az ~ b where A=

» Dashed: minimize ||Ax — b

+ Solid: minimize ||Az — b

~10 _5 0 5 10

- ¢1-norm approximation more robust against outliers
19




Sparse signal recovery via /;-norm minimization

r € R" Is unknown signal, known to be sparse

We make linear measurements y = Az with A € R™”*"

,m < n

Estimate signal with smallest /;-norm, consistent with measurements

minimize  ||x|
subjectto Ax =y

Equivalent linear optimization
minimize 11w
subjectto —u<z<uwu

Axr =y .



Sparse signal recovery via /;-norm minimization

Example

Exact signal z ¢ R'%Y
10 nonzero components g1 |

Random A € R100x1000 T [T

0 200 400 600 300 1000

0.2

The least squares estimate s
cannot recover the sparse signal ~,

0 200 400 600 300 1000

The ¢i-norm estimate iIs exact .

0 200 400 600 300 1000



Sparse signal recovery via /;-norm minimization

Exact recovery
When are these two problems equivalent?

minimize  card(x) minimize  ||z|;
subjectto Ax =y subjectto Ax =y

card(z) is cardinality (humber of nonzero components) of x

We say A allows exact recovery of k-sparse vectors if

T = argmin ||z||; wheny = Az and card(z) < k
Ax=y

It depends on the nullspace! of the “measurement matrix” A

1. Feuer & Nemirovski (IEEE Trans. On Information Technology, 2003) and several other papers on compressed sensing. 22



Scheduling problem

A hospital wants to make a weekly night shift schedule for its nurses

- The demand for the night shift on day j is d; (7 days)
» Every nurse works 5 days in a row

» Minimize the total number of nurses used while meeting all demand

23



Scheduling problem

Decision variables

How about z; to be the number of nurses on day :?
Can’t capture the constraints that nurses have to work 5 days in a row!

Let’s define x; to be the number of nurses starting at day

Objective

minimize x1+ o+ x3+ x4 + 5 + 6 + X7
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Scheduling problem

Formulation
minimize

subject to

7
D Tj
=1

X1+

VvV IV IV IV IV IV TV
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Linear classification

Support vector machine (linear separation)

Given a set of points {vq,...,vy} with binary labels s; € {—1,1}
Find hyperplane that strictly separates the tho classes

atv,+b>0 if s, =1
atv,+b<0 if s =—1

Homogeneous in (a, b), hence equivalent to the linear inequalities (in a, b)

s;(a’ v; + b) > 1
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Linear classification

Separable case
Feasibility problem

find a,b
subjectto s;(a’v; +b)>1, ¢=1,...,N

Which can be seen as a special case of LP with
minimize 0
subjectto  s;(a’v; +b)>1, i=1,...,N

p* = 0 Iif problem feasible (points separable)
p* = oo If problem infeasible (points not separable) —— What then?
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Linear classification

Approximate linear separation of nhon-separable points

minimize Zé\il(l —si(a’tv; + b)) = S:,f\il max{0,1 — s;(a’ v; +0)}

If v; misclassified, 1 — s;(a’ v; + b) is the penalty

Piecewise-linear minimization problem with variables a, b
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Linear classification

Approximate linear separation of nhon-separable points

minimize Zfil max{0,1 — s;(a’ v; + b)}

Equivalent problem

minimize 3., u;

subjectto 1 —s;(via+0b) <w;,, i=1,...,N
Ogui, ZIl,,N

Matrix notation?
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Modelling software for linear programs

Modelling tools simplify the formulation of LPs (and other problems)
* Accept optimization problem in common notation (max, || - ||1,.. ")
 Recognize problems that can be converted to LPs

* EXxpress the problem in input format required by a specific LP solver

Examples

 AMPL, GAMS

o CVX, YALMIP (Matlab)
» CVXPY, Pyomo (Python)
* JuMP,jl, Convex.jl (Julia)



CVXPY example

minimize  ||Ax — b||;
subjectto 0< <1

= cp.Variable(n)
objective = cp.Minimize(cp.norm(A*x - b, 1))
constraints = [0 <= x, X <= 1]
problem = cp.Problem(objective, constraints)

result = problem.solve()

print (x.value)
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Why linear optimization?
Easy to solve

* |t is solvable in polynomial time, and it is tractable in practice

o State-of-the-art software can solve LPs with tens of thousands of variables.
We can solve LPs with millions of variables with specific structure.

Extremely versatile
It can model many real-world problems, either exactly or approximately.

Fundamental
The theory of linear optimization lays the foundation for most optimization theories

32



Next lecture

Geometry of linear optimization

 Polyhedra
 Extreme points

e Basic feasible solutions
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