ORF522 – Linear and Nonlinear Optimization

2. Linear optimization

Today's agenda

Readings: [Chapter 1, Bertsimas, Tsitsiklis]

- Linear optimization in inner-product and matrix notation
- Optimization terminology
- Standard form
- Piecewise-linear minimization
- Examples

Vector notations

By default, all vectors are column vectors and denoted by

$$x = (x_1, \dots, x_n)$$

The transpose of a vector is \boldsymbol{x}^T

 a^Tx is the inner product between a and x

$$a^T x = a_1 x_1 + \dots + a_n x_n = \sum_{i=1}^n a_i x_i$$

Linear optimization

Linear Programming (LP)

minimize
$$\sum_{i=1}^n c_i x_i$$
 subject to
$$\sum_{j=1}^n a_{ij} x_j \leq b_i, \quad i=1,\ldots,m$$

$$\sum_{j=1}^n d_{ij} x_j = f_i, \quad i=1,\ldots,p$$

Objective function and constraints are linear in the decision variables

Belongs to continuous optimization

Linear optimization

Inner product notation

 $\begin{array}{lll} \text{minimize} & \sum_{i=1}^n c_i x_i & \text{minimize} & c^T x \\ \text{subject to} & \sum_{j=1}^n a_{ij} x_j \leq b_i, & i=1,\ldots,m & \longrightarrow & \text{subject to} & a_i^T x \leq b_i, & i=1,\ldots,m \\ & \sum_{j=1}^n d_{ij} x_j = f_i, & i=1,\ldots,p & & d_i^T x = f_i, & i=1,\ldots,p \end{array}$

$$c,\ a_i,\ d_i\ ext{are}\ n ext{-vectors}$$
 $c=(c_1,\ldots,c_n)$ $a_i=(a_{i1},\ldots,a_{in})$ $d_i=(d_{i1},\ldots,d_{in})$

Linear optimization

Matrix notation

minimize
$$\sum_{i=1}^n c_i x_i$$
 minimize $c^T x$ subject to $\sum_{j=1}^n a_{ij} x_j \leq b_i, \quad i=1,\ldots,m$ \longrightarrow subject to $Ax \leq b$ $\sum_{j=1}^n d_{ij} x_j = f_i, \quad i=1,\ldots,p$ $Dx = f$

A is $m \times n$ -matrix with elements a_{ij} and rows a_i^T D is $p \times n$ -matrix with elements d_{ij} and rows d_i^T All (in)equalities are elementwise

Optimization terminology

minimize
$$c^Tx$$
 subject to $Ax \leq b$
$$Dx = f$$

x is **feasible** if it satisfies the constraints $Ax \leq b$ and Dx = f

The feasible set is the set of all feasible points

 x^{\star} is **optimal** if it is feasible and $c^T x^{\star} \leq c^T x$ for all feasible x

The optimal value is $p^* = c^T x^*$

Unbounded problem: $c^T x$ is unbounded below on the feasible set $(p^* = -\infty)$ Infeasible problem: feasible set is empty $(p^* = +\infty)$

Standard form

Definition

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$

- Minimization
- Equality constraints
- Nonnegative variables

- Matrix notation for theory
- Standard form for algorithms

Standard form

Transformation tricks

Change objective

If "maximize", use -c instead of c and change to "minimize".

Eliminate inequality constraints

If $Ax \le b$, define s and write Ax + s = b, $s \ge 0$.

If $Ax \ge b$, define s and write Ax - s = b, $s \ge 0$.

s are the slack variables

Change variable signs

If $x_i \leq 0$, define $y_i = -x_i$.

Eliminate "free" variables

If x_i unconstrained, define $x_i = x_i^+ - x_i^-$, with $x_i^+ \ge 0$ and $x_i^- \ge 0$.

Standard form

Transformation example

minimize
$$2x_1 + 4x_2$$
 subject to $x_1 + x_2 \ge 3$ $3x_1 + 2x_2 = 14$ $x_1 \ge 0$

minimize
$$2x_1 + 4x_2^+ - 4x_2^-$$

subject to $x_1 + x_2^+ - x_2^- - x_3 = 3$
 $3x_1 + 2x_2^+ - 2x_2^- = 14$
 $x_1, x_2^+, x_2^-, x_3 \ge 0$.

Linear, affine and convex functions

Linear function: $f(x) = a^T x$

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y), \quad \forall x, y \in \mathbf{R}^n, \ \alpha, \beta \in \mathbf{R}$$

Affine function: $f(x) = a^T x + b$

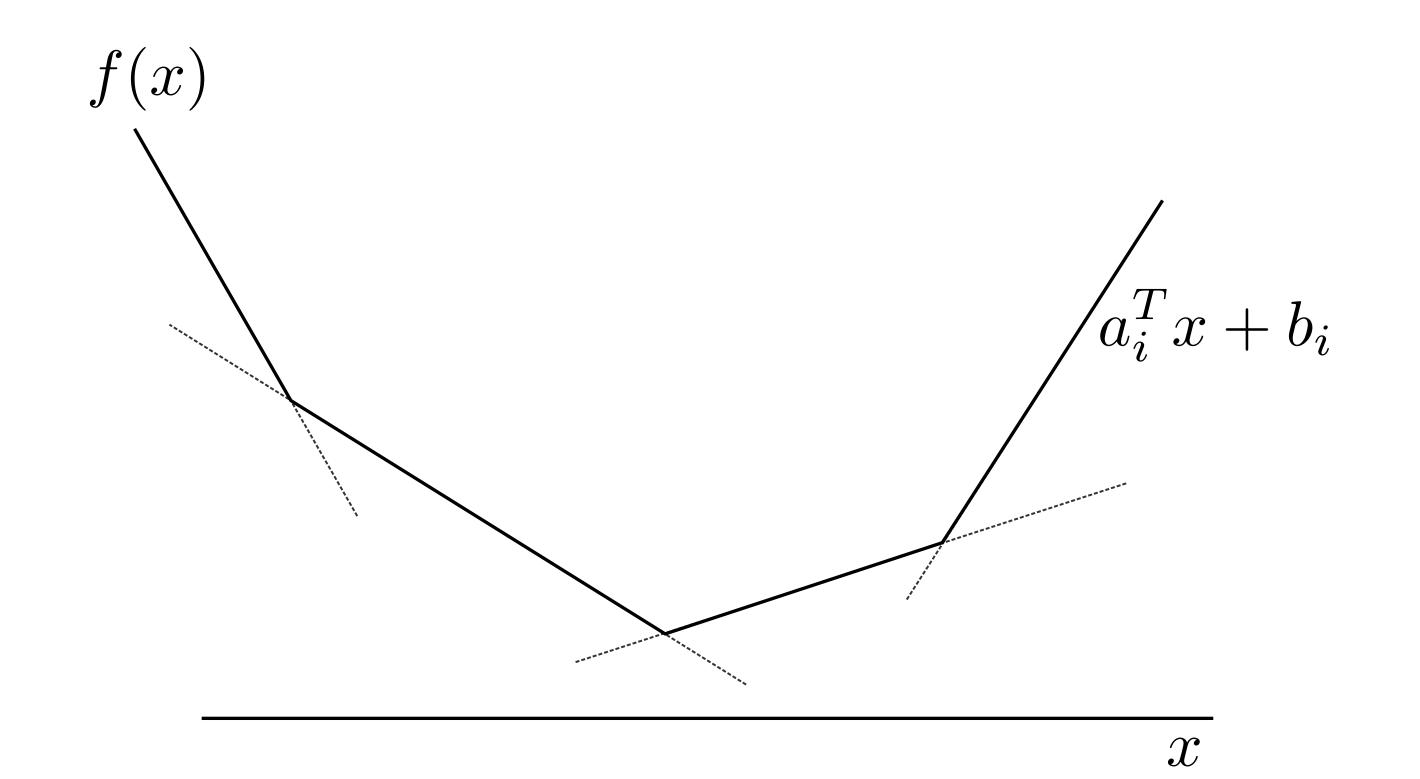
$$f(\alpha x + (1 - \alpha)y) = \alpha f(x) + (1 - \alpha)f(y), \quad \forall x, y \in \mathbf{R}^n, \ \alpha \in \mathbf{R}$$

Convex function:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y), \quad \forall x, y \in \mathbf{R}^n, \ \alpha \in [0, 1]$$

Convex piecewise-linear functions

$$f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$$



Convex piecewise-linear minimization

minimize
$$f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$$

Equivalent linear optimization

minimize
$$t$$
 subject to $a_i^T x + b_i \leq t, \quad i = 1, \dots, m$

Matrix notation

$$\begin{array}{ll} \text{minimize} & \tilde{c}^T \tilde{x} \\ \text{subject to} & \tilde{A} \tilde{x} \leq \tilde{b} \end{array}$$

$$\tilde{x} = \begin{bmatrix} x \\ t \end{bmatrix}, \quad \tilde{c} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \tilde{A} = \begin{bmatrix} a_1^T & -1 \\ \vdots & \vdots \\ a_m^T & -1 \end{bmatrix}, \quad \tilde{b} = \begin{bmatrix} -b_1 \\ \vdots \\ -b_m \end{bmatrix}$$

Sum of piecewise-linear functions

minimize
$$f(x) + g(x) = \max_{i=1,...,m} (a_i^T x + b_i) + \max_{i=1,...,p} (c_i^T x + d_i)$$

Cost function is piecewise-linear

$$f(x) + g(x) = \max_{\substack{i=1,\dots,m\\j=1,\dots,p}} ((a_i + c_j)^T x + (b_i + d_j))$$

Equivalent linear optimization

Examples

1-norm approximation

minimize $||Ax - b||_1$

The 1-norm of m-vector y is

$$||y||_1 = \sum_{i=1}^{m} |y_i| = \sum_{i=1}^{m} \max\{y_i, -y_i\}$$

Equivalent problem

 $\begin{array}{ll} \text{minimize} & \sum_{i=1}^m u_i \\ \\ \text{subject to} & -u \leq Ax - b \leq u \end{array}$

Matrix notation

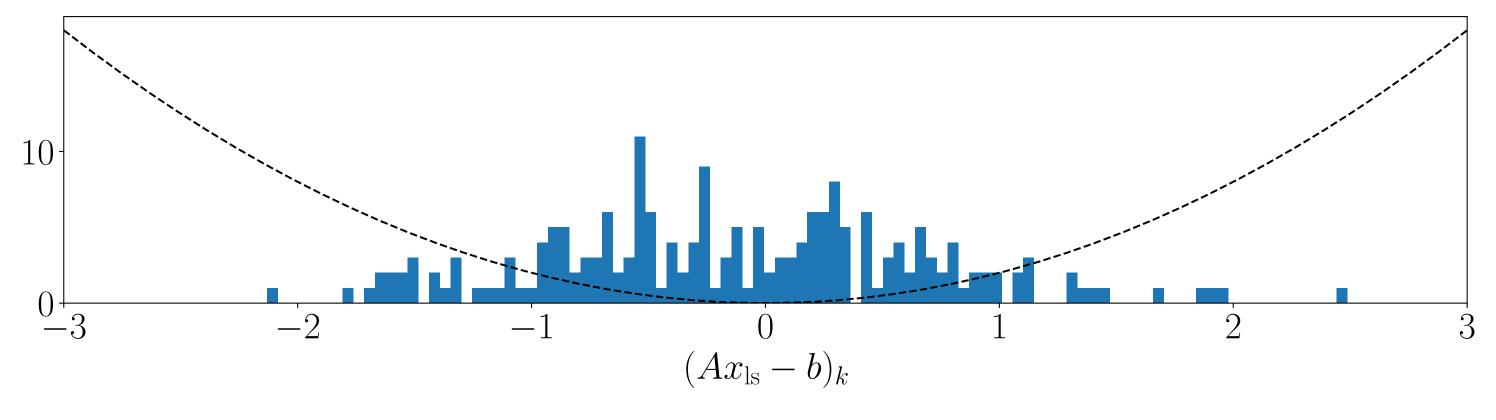
$$\begin{array}{c} \mathsf{minimize} & \begin{bmatrix} 0 \\ \mathbf{1} \end{bmatrix}^T \begin{bmatrix} x \\ u \end{bmatrix} \end{array}$$

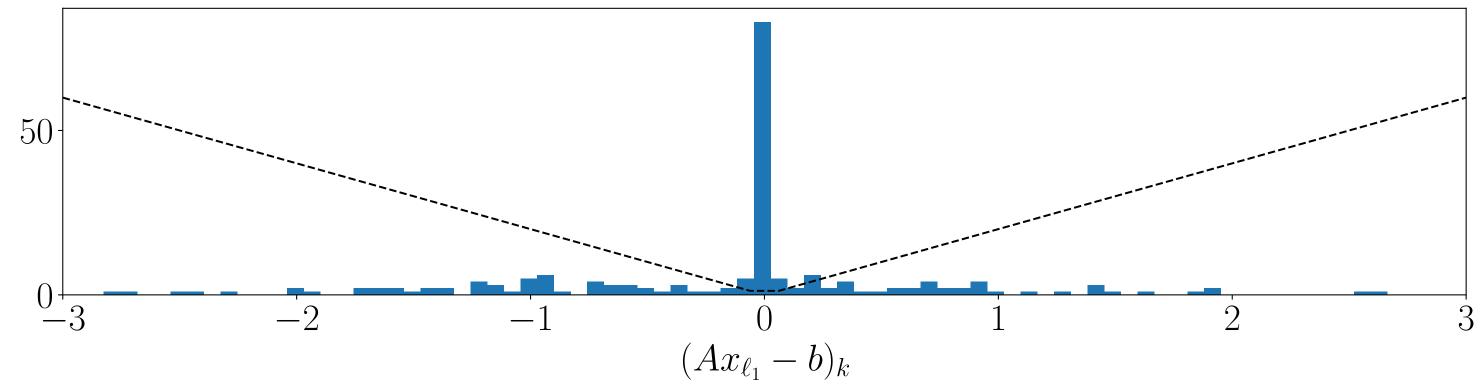
subject to
$$\begin{bmatrix} A & -I \\ -A & -I \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} \leq \begin{bmatrix} b \\ -b \end{bmatrix}$$
 16

Comparison with least-squares

Histogram of residuals Ax-b with randomly generated $A \in \mathbf{R}^{200 \times 80}$

$$x_{ls} = \operatorname{argmin} ||Ax - b||, \qquad x_{\ell_1} = \operatorname{argmin} ||Ax - b||_1$$





 ℓ_1 -norm distribution is wider with a high peak at zero

ℓ_{∞} -norm (Chebyshev) approximation

minimize
$$||Ax - b||_{\infty}$$

The ∞ -norm of m-vector y is

$$||y||_{\infty} = \max_{i=1,...,m} |y_i| = \max_{i=1,...,m} \max\{y_i, -y_i\}$$

Equivalent problem

 $\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & -t\mathbf{1} \leq Ax - b \leq t\mathbf{1} \end{array}$

Matrix notation

minimize
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}^T \begin{bmatrix} x \\ t \end{bmatrix}$$

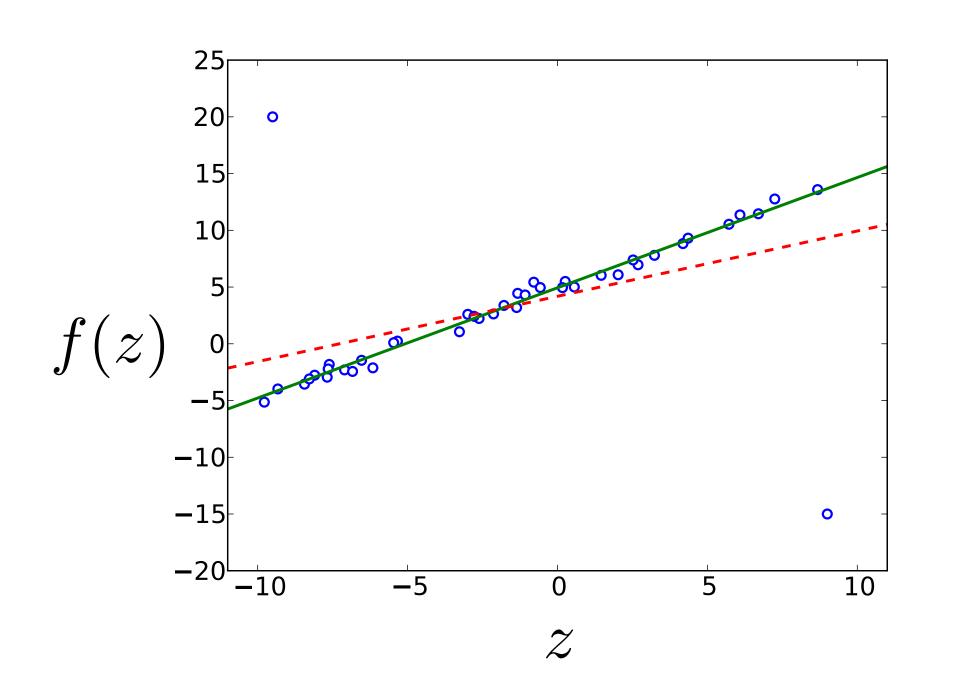
subject to
$$\begin{bmatrix} A & -1 \\ -A & -1 \end{bmatrix} \begin{bmatrix} x \\ t \end{bmatrix} \le \begin{bmatrix} b \\ -b \end{bmatrix}$$
 18

Robust curve fitting

Fit affine function $f(z) = \alpha + \beta z$ to m points (z_i, y_i)

Approximation problem $Ax \approx b$ where

$$A = \begin{bmatrix} 1 & z_1 \\ \vdots & \vdots \\ 1 & z_m \end{bmatrix}, \quad x = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}, \quad b = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$



- Dashed: minimize ||Ax b||
- Solid: minimize $||Ax b||_1$

 ℓ_1 -norm approximation more robust against outliers

Sparse signal recovery via ℓ_1 -norm minimization

 $\hat{x} \in \mathbf{R}^n$ is unknown signal, known to be sparse We make linear measurements $y = A\hat{x}$ with $A \in \mathbf{R}^{m \times n}, m < n$

Estimate signal with smallest ℓ_1 -norm, consistent with measurements

minimize
$$||x||_1$$
 subject to $Ax = y$

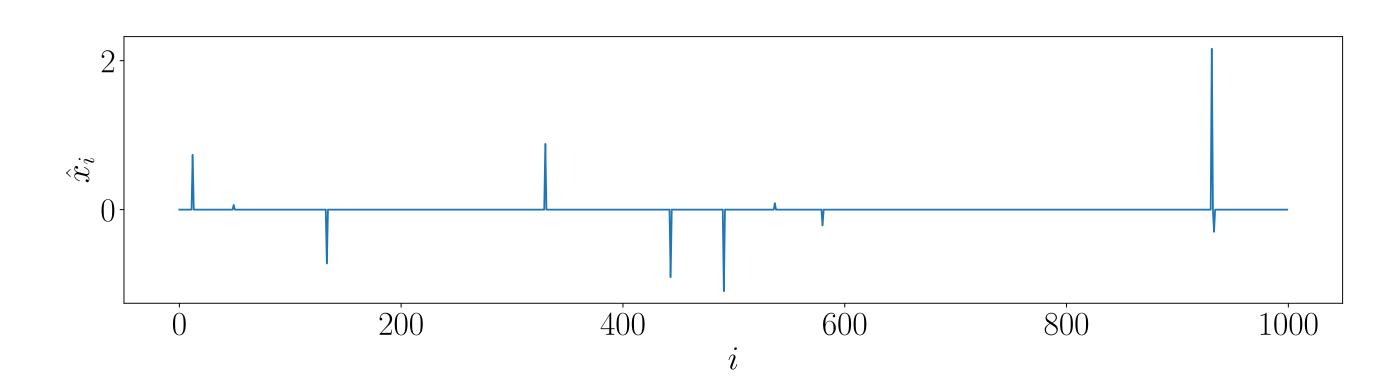
Equivalent linear optimization

$$\begin{array}{ll} \text{minimize} & \mathbf{1}^T u \\ \text{subject to} & -u \leq x \leq u \\ & Ax = y \end{array}$$

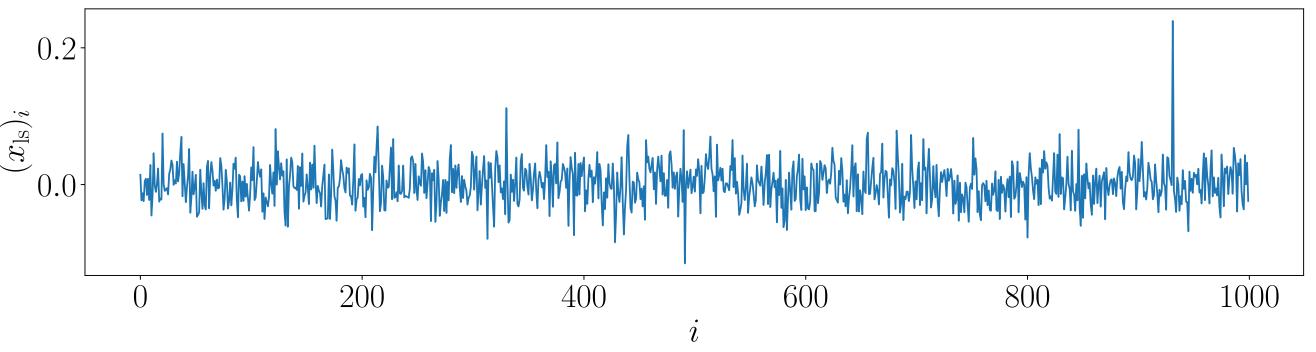
Sparse signal recovery via ℓ_1 -norm minimization

Example

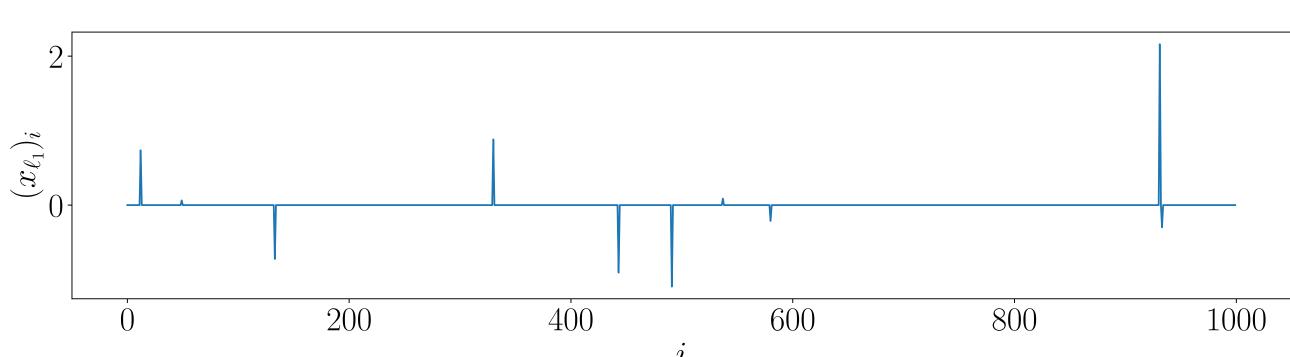
Exact signal $\hat{x} \in \mathbf{R}^{1000}$ 10 nonzero components Random $A \in \mathbf{R}^{100 \times 1000}$



The least squares estimate cannot recover the sparse signal



The ℓ_1 -norm estimate is **exact**



Sparse signal recovery via ℓ_1 -norm minimization

Exact recovery

When are these two problems equivalent?

minimize card(x)

minimize $||x||_1$

subject to Ax = y

subject to Ax = y

card(x) is cardinality (number of nonzero components) of x

We say A allows **exact recovery** of k-sparse vectors if

$$\hat{x} = \underset{Ax=y}{\operatorname{argmin}} \|x\|_1$$
 when $y = A\hat{x}$ and $\operatorname{card}(\hat{x}) \leq k$

It depends on the nullspace 1 of the "measurement matrix" A

Scheduling problem

A hospital wants to make a weekly night shift schedule for its nurses

- The demand for the night shift on day j is d_j (7 days)
- Every nurse works 5 days in a row
- Minimize the total number of nurses used while meeting all demand

Scheduling problem

Decision variables

How about x_i to be the number of nurses on day i? Can't capture the constraints that nurses have to work 5 days in a row!

Let's define x_i to be the number of nurses starting at day i

Objective

minimize
$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$$

Scheduling problem

Formulation

Support vector machine (linear separation)

Given a set of points $\{v_1,\ldots,v_N\}$ with binary labels $s_i\in\{-1,1\}$

Find hyperplane that strictly separates the tho classes

Homogeneous in (a,b), hence equivalent to the linear inequalities (in a,b)

$$s_i(a^T v_i + b) \ge 1$$

Separable case

Feasibility problem

find
$$a,b$$
 subject to $s_i(a^Tv_i+b)\geq 1, \quad i=1,\ldots,N$

Which can be seen as a special case of LP with

minimize 0

subject to $s_i(a^Tv_i+b) \geq 1, \quad i=1,\ldots,N$

 $p^{\star} = 0$ if problem feasible (points separable)

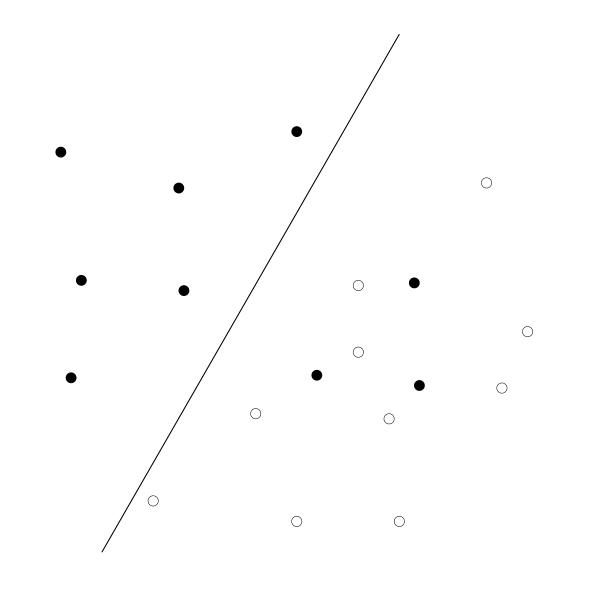
 $p^* = \infty$ if problem infeasible (points not separable) — What then?

Approximate linear separation of non-separable points

minimize
$$\sum_{i=1}^{N} (1 - s_i(a^T v_i + b))_+ = \sum_{i=1}^{N} \max\{0, 1 - s_i(a^T v_i + b)\}$$

If v_i misclassified, $1 - s_i(a_i^T v_i + b)$ is the penalty

Piecewise-linear minimization problem with variables a, b



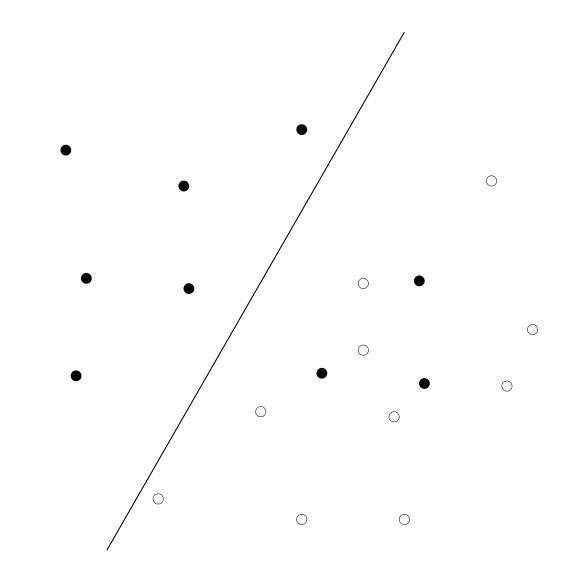
Approximate linear separation of non-separable points

minimize
$$\sum_{i=1}^{N} \max\{0, 1 - s_i(a^T v_i + b)\}$$

Equivalent problem

minimize
$$\sum_{i=1}^N u_i$$
 subject to
$$1-s_i(v_i^Ta+b) \leq u_i, \quad i=1,\dots,N$$

$$0 \leq u_i, \quad i=1,\dots,N$$



Matrix notation?

Modelling software for linear programs

Modelling tools simplify the formulation of LPs (and other problems)

- Accept optimization problem in common notation ($\max, \|\cdot\|_1, \ldots$)
- Recognize problems that can be converted to LPs
- Express the problem in input format required by a specific LP solver

Examples

- AMPL, GAMS
- CVX, YALMIP (Matlab)
- CVXPY, Pyomo (Python)
- JuMP.jl, Convex.jl (Julia)

CVXPY example

```
minimize ||Ax - b||_1 subject to 0 \le x \le 1
```

```
x = cp.Variable(n)
objective = cp.Minimize(cp.norm(A*x - b, 1))
constraints = [0 <= x, x <= 1]
problem = cp.Problem(objective, constraints)

# The optimal objective value is returned by `problem.solve()`.
result = problem.solve()

# The optimal value for x is stored in `x.value`.
print(x.value)</pre>
```

Why linear optimization?

Easy to solve

- It is solvable in polynomial time, and it is tractable in practice
- State-of-the-art software can solve LPs with tens of thousands of variables.
 We can solve LPs with millions of variables with specific structure.

Extremely versatile

It can model many real-world problems, either exactly or approximately.

Fundamental

The theory of linear optimization lays the foundation for most optimization theories

Next lectureGeometry of linear optimization

- Polyhedra
- Extreme points
- Basic feasible solutions