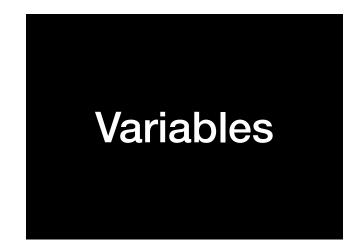
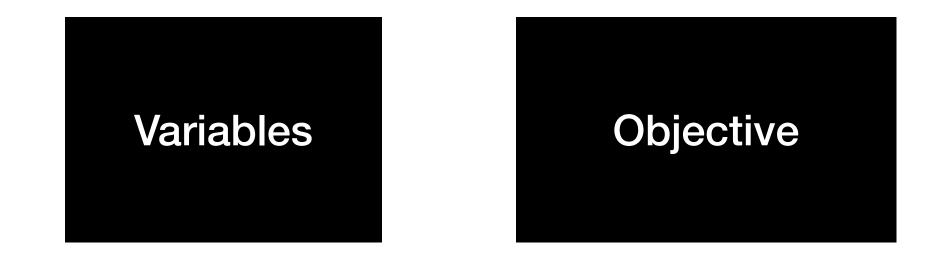
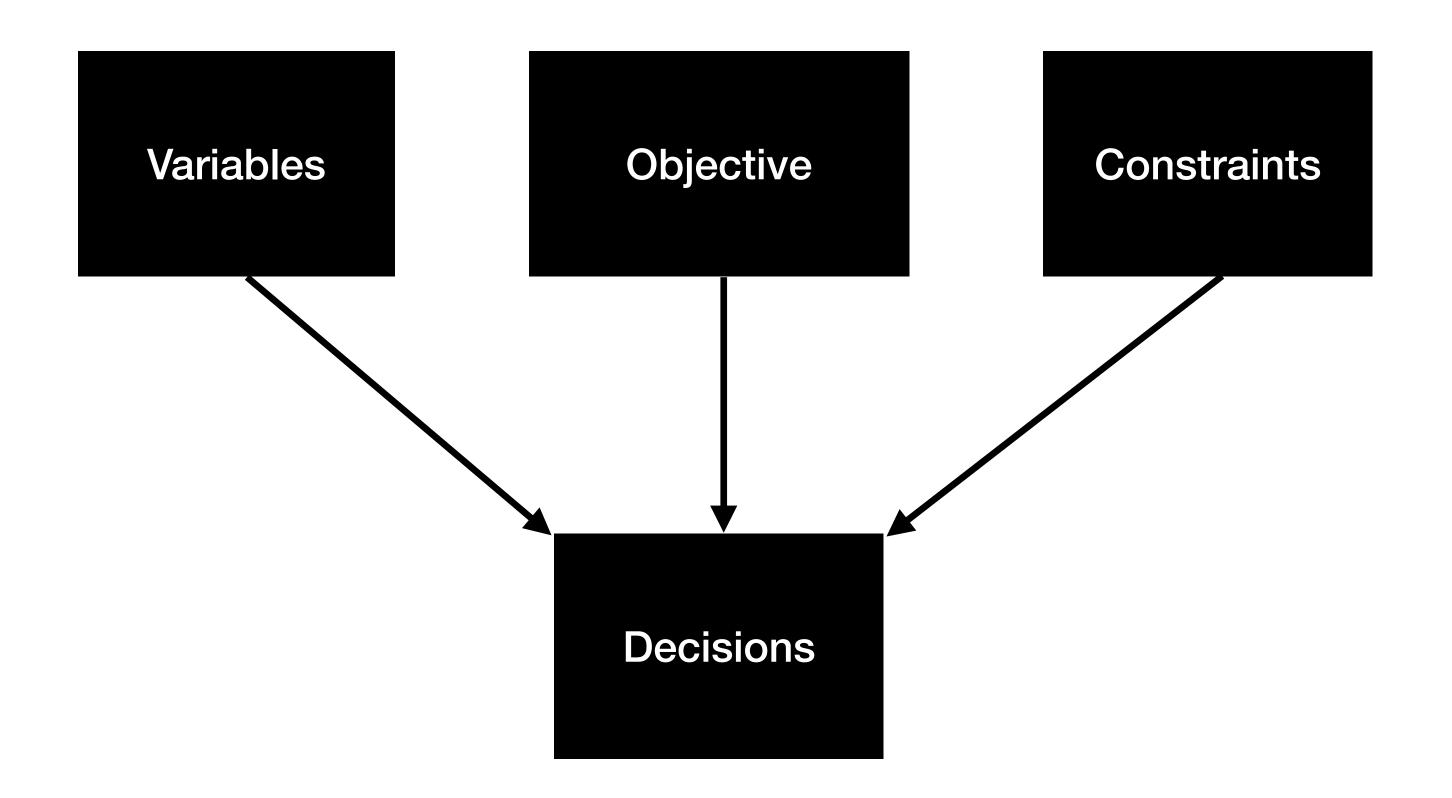
ORF522 – Linear and Nonlinear Optimization

1. Introduction

Meet your classmates!







Finance

Variables

Amounts invested in each asset

Constraints

Budget, investment per asset, minimum return, etc.

Objective

Maximize profit, minus risk

Optimal control

Variables

Inputs: thrust, flaps, etc.

Constraints

System limitations, obstacles, etc.

Objective

Minimize distance to target and fuel consumption

Machine learning

Variables

Model parameters

Constraints

Prior information, parameter limits

Objective

Minimize prediction error, plus regularization

Mathematical optimization

minimize
$$f(x)$$
 subject to $g_i(x) \leq 0, \quad i = 1, \dots, m$

$$x = (x_1, \dots, x_n)$$
 Variables

$$f: \mathbf{R}^n \to \mathbf{R}$$
 Objective function

$$g_i: \mathbf{R}^n \to \mathbf{R}$$
 Constraint functions

$$x^{\star}$$
 Solution/Optimal point $f(x^{\star})$ Optimal value

Most optimization problems cannot be solved

Solving optimization problems

General case ——— Very hard!

Compromises

- Long computation times
- Not finding the solution (in practice it may not matter)

Solving optimization problems

General case ——— Very hard!

Compromises

- Long computation times
- Not finding the solution (in practice it may not matter)

Exceptions

- Linear optimization
- Convex optimization

Can be solved very efficiently and reliably

Meet your teaching staff

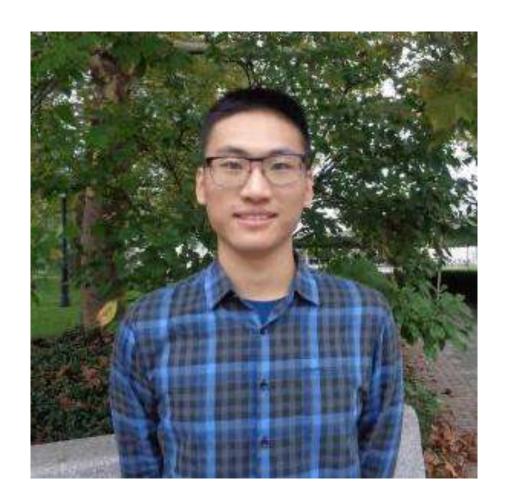
Bartolomeo Stellato

I am a Professor at ORFE. I obtained my PhD from Oxford and I was a postdoc at MIT.

email: <u>bstellato@princeton.edu</u>

office hours: Wed 2:00pm-4:00pm EST, at this zoom link

website: stellato.io



Zheng Yu

PhD student at ORFE.

email: <u>zhengy@princeton.edu</u>

office hours: Fri 2:00pm-4:00pm EST, at this zoom link

Today's agenda

- Optimization problems
- History of optimization
- Course contents and information
- A glance into modern optimization

Linear optimization

minimize
$$c^T x$$
 subject to $a_i^T x \leq b_i, \quad i = 1, \ldots, m$

No analytical formula (99% of the time there will be none in this course!)

Efficient algorithms and software we can solve problems with several thousands of variables and constraints

Extensive theory (duality, degeneracy, sensitivity)

Linear optimization

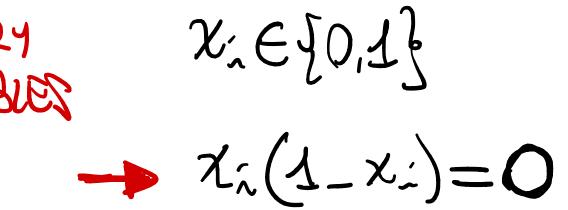
Example: resource allocation

maximize
$$\sum_{j=1}^n c_i x_i$$
 subject to $\sum_{j=1}^n a_{ij} x_j \leq b_i, \quad i=1,\ldots,m$ $x_i \geq 0, \quad i=1,\ldots,n$

 c_i : profit per unit of product i shipped

 b_i : units of raw material i on hand

 a_{ji} : units of raw material j required to produce one unit of product i

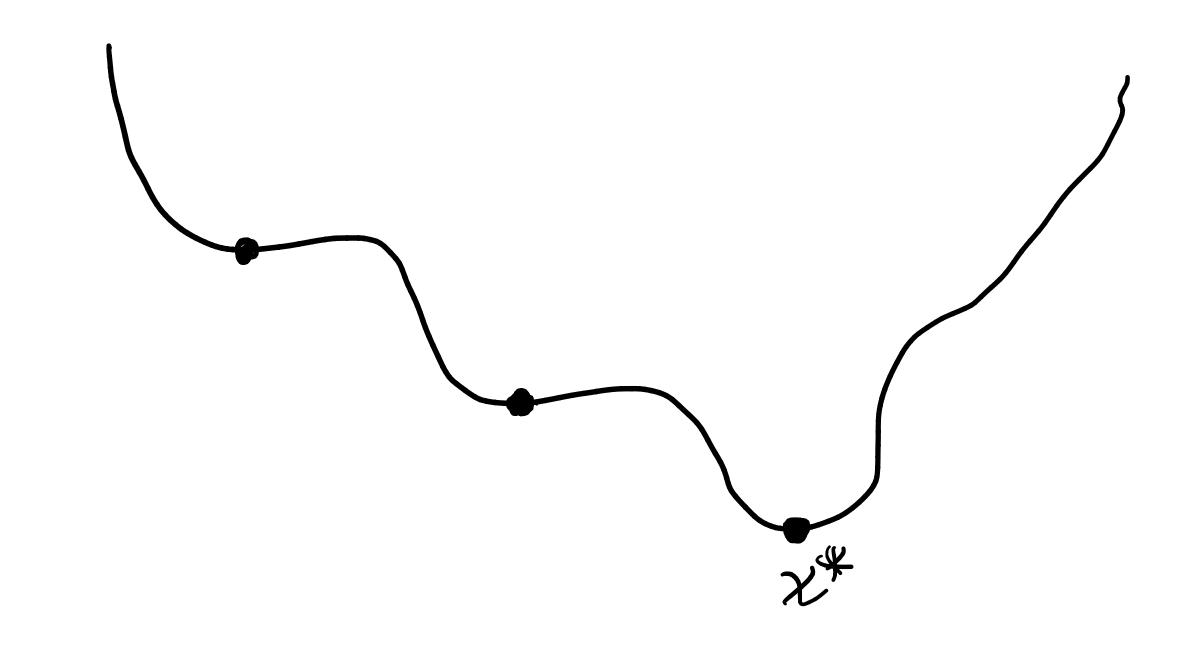


Nonlinear optimization

minimize
$$f(x)$$
 subject to $g_i(x) \leq 0, \quad i = 1, \dots, m$

Hard to solve in general

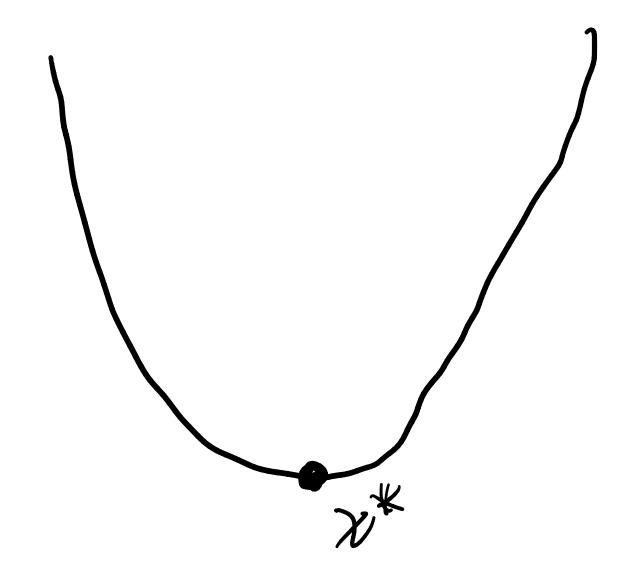
- multiple local minima
- discrete variables $x \in \mathbb{Z}^n$
- hard to certify optimality



Convex optimization

Convex functions

minimize f(x) subject to $g_i(x) \leq 0, \quad i = 1, \dots, m$



All local minima are global!

Efficient algorithms and software

Extensive theory (convex analysis and conic optimization) [ORF523]

Used to solve non convex problems

Prehistory of optimization

Calculus of variations

Fermat/Newton

minimize $f(x), x \in \mathbf{R}$ $\frac{\mathrm{d}f(x)}{\mathrm{d}x} = 0$

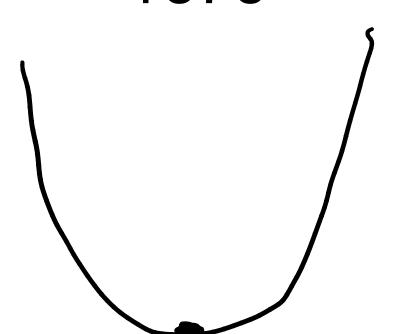
Euler

minimize $f(x), x \in \mathbf{R}^n$ $\nabla f(x) = 0$

Lagrange

minimize f(x)subject to g(x) = 0

1670



1755

1797

Time

History of optimization Algorithms

Origin of linear optimization (Kantorovich, Koopmans)	Simplex algorithm (Dantzig)	Ellipsoid method (Khachyan)	Interior-point method for linear optimization (Karmarkar)	Interior-point methods for convex optimization (Nesterov, Nemirovski)	Large-scale optimization
1930s	1947	1970s	1984	1990s	2000s

History of optimization Algorithms

Origin of linear optimization (Kantorovich, Koopmans)	Simplex algorithm (Dantzig)	Ellipsoid method (Khachyan)	Interior-point method for linear optimization (Karmarkar)	Interior-point methods for convex optimization (Nesterov, Nemirovski)	Large-scale optimization
1930s	1947	1970s	1984	1990s	2000s

Linear vs Nonlinear

History of optimization Algorithms

Origin of linear optimization (Kantorovich, Koopmans)	Simplex algorithm (Dantzig)	Ellipsoid method (Khachyan)	Interior-point method for linear optimization (Karmarkar)	Interior-point methods for convex optimization (Nesterov, Nemirovski)	Large-scale optimization	
1930s	1947	1970s	1984	1990s	2000s	

Linear vs Nonlinear

Convex vs Nonconvex

History of optimization

Applications

Operations Research Economics

Engineering (control, signal processing, communications, ...)

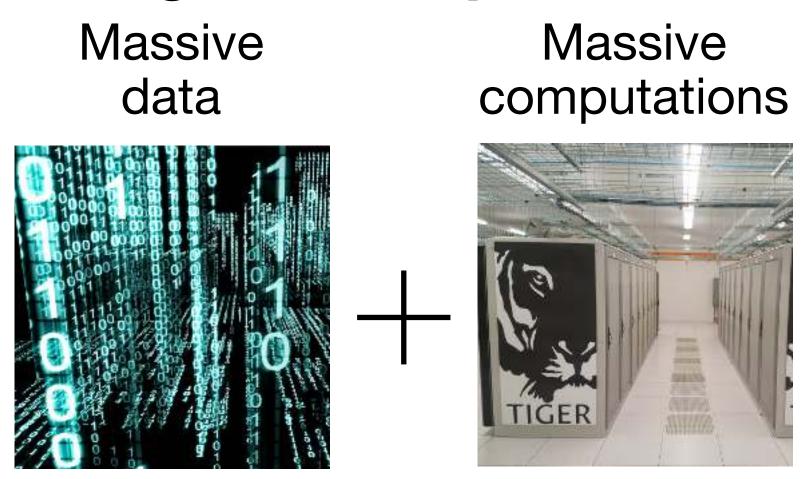
Machine learning Statistics

1990s

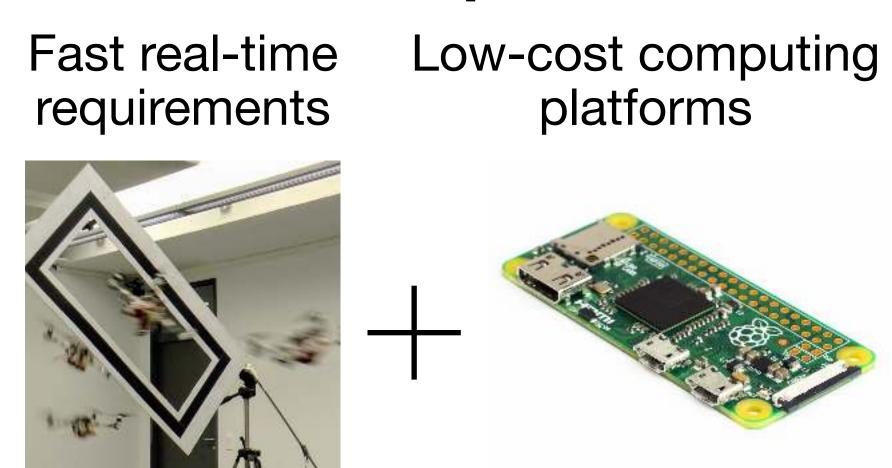
2000s

What is happening today?

Huge scale optimization



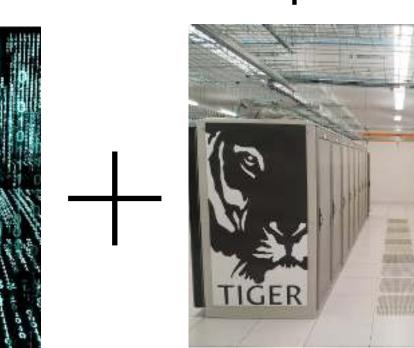
Real-time optimization



What is happening today?

Huge scale optimization

Massive data

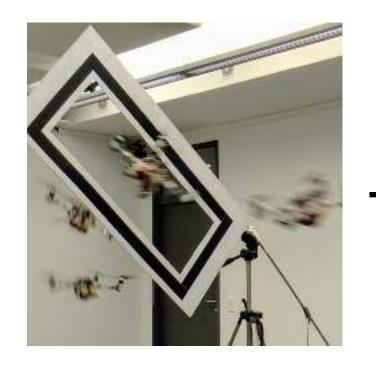


Massive computations

Real-time optimization

Fast real-time requirements

Low-cost computing platforms



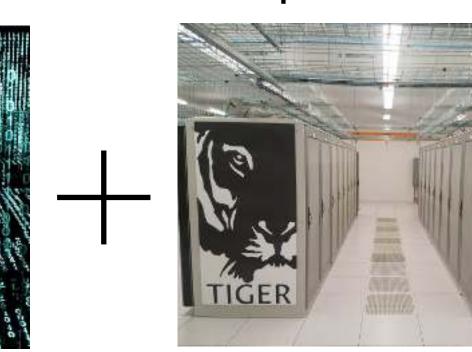
Renewed interest in old methods (70s)

- Subgradient methods
- Proximal algorithms

What is happening today?

Huge scale optimization

Massive data

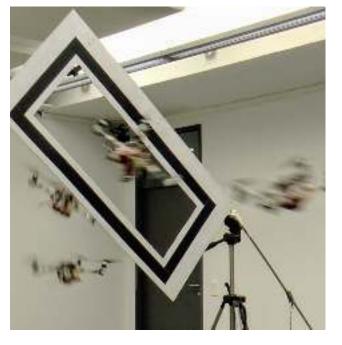


Massive computations

Real-time optimization

Fast real-time requirements

Low-cost computing platforms



Renewed interest in old methods (70s)

- Subgradient methods
- Proximal algorithms

- Cheap iterations
- Simple implementation

Contents of this course

Linear optimization

- Modelling and applications
- Geometry
- Duality
- Degeneracy
- The simplex method
- Sensitivity analysis
- Interior point methods

Nonlinear optimization

- Modelling and applications
- Optimality conditions
- First-order methods
- Second-order methods

Extensions

- Sequential convex programming
- Branch and bound algorithms
- Data-driven
 heuristics and
 algorithm design
- Real-time optimization

Course information

Grading

- 25% Homeworks
 5 bi-weekly homeworks with coding component. Collaborations are encouraged!
- 25% Midterm
 90 minutes written exam at home. No collaborations.
- 40% Final
 Take-home assignment with coding component. No collaborations.
- 10% Participation
 One question or note on Ed after each lecture.

Course information

10% Participation notes/questions

What?

- Briefly summarize what you learned in the last lecture
- Highlight the concepts that were most confusing/you would like to review.
- Can be anonymous (to your classmates, not to the instructor) or public, as you choose.

Why?

- We will use your ideas to clarify previous lectures, and to improve the course in future iterations.
- You can ask questions you don't feel comfortable asking in class.
- You can use these to gather your thoughts on the previous lecture and solidify your understanding.

Course informationMaterials

Prerequisites

- Good knowledge of linear algebra and calculus. For a refresher, we recommend reading Appendices A
 and C of the S. Boyd and L. Vandenberghe Convex Optimization (available online).
- Familiarity with Python.

Materials

Lecture slides and readings.

Readings

The following books are useful as reference texts and they are digitally available on Canvas (Reserves):

- R. J. Vanderbei: Linear Programming: Foundations & Extensions
- D. Bertsimas, J. Tsitsiklis: Introduction to Linear Optimization
- J. Nocedal, S. J. Wright: Numerical Optimization

Software (open-source)

CVXPY

Python

Numerical computations on numpy and scipy.

Learning goals

 Model your favorite decision-making problems as mathematical optimization problems.

 Apply the most appropriate optimization tools when faced with a concrete problem.

• Implement optimization algorithms and prove their convergence.

Huge scale optimization

Dataset with billions of datapoints (x^i, y^i) ——— Goal: Design predictor $\hat{y}^i = g_{\theta}(x^i)$

Huge scale optimization

Dataset with billions of datapoints (x^i, y^i) ——— Goal: Design predictor $\hat{y}^i = g_{\theta}(x^i)$

Optimization problem

minimize
$$\mathcal{L}(\theta) + \lambda r(\theta) = \sum_{i=1}^{n} \ell(\hat{y}^i, y^i) + \lambda r(\theta)$$

Huge scale optimization

Dataset with billions of datapoints (x^i, y^i) ——— Goal: Design predictor $\hat{y}^i = g_{\theta}(x^i)$

Optimization problem

Loss

minimize
$$\mathcal{L}(\theta) + \lambda r(\theta) = \sum_{i=1}^{n} \ell(\hat{y}^i, y^i) + \lambda r(\theta)$$

Huge scale optimization

Dataset with billions of datapoints (x^i, y^i) ——— Goal: Design predictor $\hat{y}^i = g_{\theta}(x^i)$

Optimization problem

Loss Regularizer $\mathcal{L}(\theta) + \lambda r(\theta) = \sum_{i=1}^n \ell(\hat{y}^i, y^i) + \lambda r(\theta)$

Huge scale optimization

Dataset with billions of datapoints (x^i, y^i) ——— Goal: Design predictor $\hat{y}^i = g_{\theta}(x^i)$

Optimization problem

Loss Regularizer

minimize $\mathcal{L}(\theta) + \lambda r(\theta) = \sum_{i=1}^{n} \ell(\hat{y}^i, y^i) + \lambda r(\theta)$

Large-scale computing

- Parallel
- Distributed

Huge scale optimization

Dataset with billions of datapoints (x^i, y^i) ——— Goal: Design predictor $\hat{y}^i = g_{\theta}(x^i)$

Optimization problem

Loss Regularizer

minimize $\mathcal{L}(\theta) + \lambda r(\theta) = \sum_{i=1}^{n} \ell(\hat{y}^i, y^i) + \lambda r(\theta)$

Large-scale computing

- Parallel
- Distributed

Many examples

- Support vector machines
- Regularized regression
- Neural networks

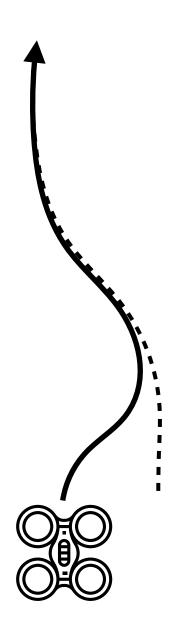
Real-time optimization

Dynamical system: $x_{t+1} = Ax_t + Bu_t$

 $x_t \in \mathbf{R}^n$: state $u_t \in \mathbf{R}^m$: input

Goal: track trajectory minimize $\sum_t \|x_t - x_t^{\text{des}}\|$

Constraints: inputs $||u|| \le U$, states $a \le x_t \le b$



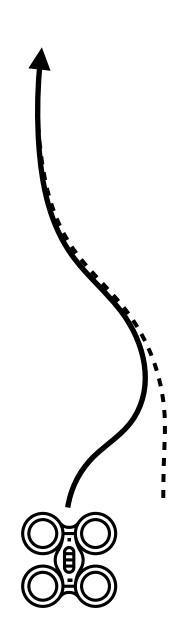
Real-time optimization

Dynamical system: $x_{t+1} = Ax_t + Bu_t$

 $x_t \in \mathbf{R}^n$: state $u_t \in \mathbf{R}^m$: input

Constraints: inputs $||u|| \le U$, states $a \le x_t \le b$

1-norm \longrightarrow ???



Real-time optimization

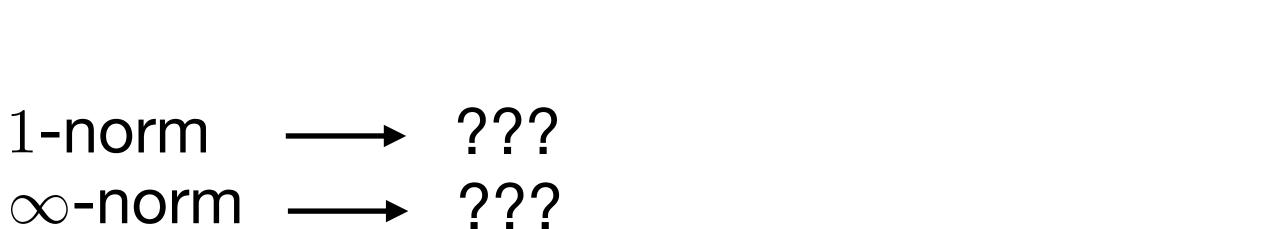
Dynamical system: $x_{t+1} = Ax_t + Bu_t$

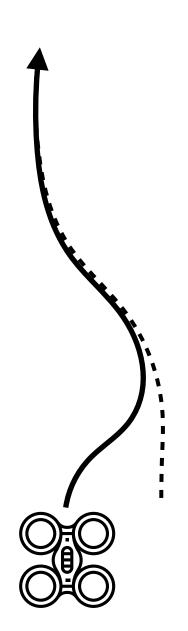
 $x_t \in \mathbf{R}^n$: state $u_t \in \mathbf{R}^m$: input

Goal: track trajectory minimize $\sum_{t} \|x_t - x_t^{\text{des}}\|$

Constraints: inputs $||u|| \leq U$, states $a \leq x_t \leq b$

1-norm \longrightarrow ???





Real-time optimization

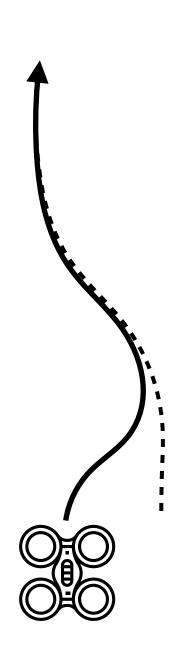
Dynamical system: $x_{t+1} = Ax_t + Bu_t$

 $x_t \in \mathbf{R}^n$: state $u_t \in \mathbf{R}^m$: input

Goal: track trajectory minimize $\sum_{t} \|x_t - x_t^{\text{des}}\|$

Constraints: inputs $||u|| \leq U$, states $a \leq x_t \leq b$

1-norm ∞-norm Linear optimization (more next lecture...)



Real-time optimization

Dynamical system: $x_{t+1} = Ax_t + Bu_t$

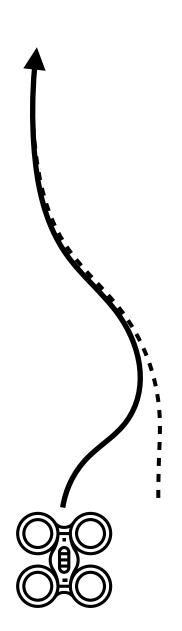
 $x_t \in \mathbf{R}^n$: state $u_t \in \mathbf{R}^m$: input

Constraints: inputs $||u|| \leq U$, states $a \leq x_t \leq b$

Linear optimization (more next lecture...) 1-norm ∞ -norm

Solve and repeat....

How fast can we solve these problems?



Next lecture Linear optimization

- Definitions
- Modelling
- Formulations
- Examples