ORF522 - Linear and Nonlinear Optimization
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Decisions



FInance

Variables
Amounts invested In each asset

Constraints

Budget, investment per asset,
minimum return, etc.

Objective
Maximize profit, minus risk




Optimal control

Variables
Inputs: thrust, flaps, etc.

Constraints
System limitations, obstacles, etc.

Objective
Minimize distance to target and
fuel consumption




Machine learning

Variables
Model parameters

Constraints
Prior information, parameter limits

Objective
Minimize prediction error, plus
regularization




Mathematical optimization

minimize  f(x)
subjectto g¢g;(x) <0, i=1,...,m

r=(x1,...,T,) Variables

™ Solution/Optimal point
f:R" =R Objective function

f(z™) Optimal value
g, : R" = R Constraint functions



Most optimization problems
cannot be solved
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Solving optimization problems

Compromises

* | ong computation times

General case Very hard!

* Not finding the solution
(in practice it may not matter)

Exceptions

e |Linear optimization Can be solved very

efficiently and reliably

—_—

e Convex optimization



Meet your teaching staff

Bartolomeo Stellato
| am a Professor at ORFE. | obtained my PhD
from Oxford and | was a postdoc at MIT.

email: bstellato@princeton.edu
office hours: Wed 2:00pm-4:00pm EST, at this zoom link

website: stellato.io

Zheng Yu
PhD student at ORFE.

email: zhengy@princeton.edu
office hours: Fri 2:00pm-4:00pm EST, at this zoom link
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Today’s agenda

* Optimization problems
* History of optimization
* Course contents and information

* A glance into modern optimization
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Linear optimization

minimize ¢z
subjectto alz <b;, i=1....,m

No analytical formula (99% of the time there will be none in this course!)

Efficient algorithms and software we can solve problems with several
thousands of variables and constraints

Extensive theory (duality, degeneracy, sensitivity)
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Linear optimization

Example: resource allocation

. . n
maximize ., ¢

. n .
SUbjeCt {0 ijl AL <b;, 1=1,....m

r;, >0, 1=1,...,n

c; . profit per unit of product ¢ shipped

b; : units of raw material : on hand
aj; - units of raw material j required to produce one unit of product ¢
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Nonlinear optimization

minimize  f(x)
subjectto g¢;(z) <0,

Hard to solve in general

 multiple local minima
 discrete variables x € Z"
* hard to certify optimality

SNARY

.

i=1,...

| VARARLRY

. €404t
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Convex optimization

Convex functions

minimize f/

subject to g,

All local minima are global!

Efficient algorithms and software
Extensive theory (convex analysis and conic optimization) [ORF523]

Used to solve non convex problems
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Prehistory of optimization

Calculus of variations

Fermat/Newton Euler Lagrange
minimize f(z), x € R minimize f(x), x € R" minimize  f(x)
df(z) ] Vf(z) =0 subjectto g(z) =0

de
1670 1755 1797 Time
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History of optimization

Algorithms
Origin of Interior-point Interior-point
linear optimization  Simplex Ellipsoid method for methods for Large-scale
(Kantorovich, algorithm method  linear optimization convex optimization optimization
Koopmans) (Dantzig) (Khachyan) (Karmarkar) (Nesterov, Nemirovski)
e ————————————————
1930s 1947 1970s 1984 1990s 2000s
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History of optimization

Applications
Operations Research Engtinlee.ringly | Machine learning
Economics (control, signal processing, Statistics

communications, ...)

—’
1990s 2000s
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What is happening today?

Huge scale optimization

Real-time optimization

Massive Massive Fast real-time  Low-cost computing

T SRR

computations requirements platforms
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What is happening today?

Huge scale optimization Real-time optimization
Massive Massive Fast real-time  Low-cost computing
computations requirements platforms

Renewed interest In
old methods (70s)

 Subgradient methods  Cheap iterations

—

* Proximal algorithms * Simple implementation
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Contents of this course

Linear optimization Nonlinear optimization
* Modelling and applications * Modelling and applications
Geometry  Optimality conditions

Duality  First-order methods

Degeneracy e Second-order methods

The simplex method

Sensitivity analysis

Interior point methods

Extensions

* Seqguential convex
programming

Branch and bound
algorithms

Data-driven
heuristics and
algorithm design

Real-time
optimization




Course information
Grading

25% Homeworks
5 bi-weekly homeworks with coding component. Collaborations are
encouraged!

25% Midterm
90 minutes written exam at home. No collaborations.

40% Final
Take-home assignment with coding component. No collaborations.

10% Participation
One question or note on Ed after each lecture.
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Course information

10% Participation notes/questions
What?

* Briefly summarize what you learned in the last lecture
* Highlight the concepts that were most confusing/you would like to review.

 Can be anonymous (to your classmates, not to the instructor) or public, as you choose.

Why?
 We will use your ideas to clarity previous lectures, and to improve the course in future iterations.

* You can ask questions you don’t feel comfortable asking in class.

* You can use these to gather your thoughts on the previous lecture and solidify your understanding.
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Course information

Materials

Prerequisites

 Good knowledge of linear algebra and calculus. For a refresher, we recommend reading Appendices A
and C of the S. Boyd and L. Vandenberghe Convex Optimization (available online).

* Familiarity with Python.

Materials

Lecture slides and readings.

Readings

The following books are useful as reference texts and they are digitally available on Canvas (Reserves):

* R. J. Vanderbei: Linear Programming: Foundations & Extensions
 D. Bertsimas, J. Tsitsiklis: Introduction to Linear Optimization
* J. Nocedal, S. J. Wright: Numerical Optimization
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Software (open-source)

CVXPY

X = cp.Variable(n)

prob = cp.Problem(
T cp.Minimize(c.T@x),
[A @ x <= Db]

minimize c'x
. —
subjectto Az < b )

prob.solve ()
print ( "The optimal value 1s", prob.value)
print ("The solution x 1is", x.value)

Python
Numerical computations on numpy and scipy.
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Learning goals

 Model your favorite decision-making problems as mathematical optimization
problems.

* Apply the most appropriate optimization tools when faced with a concrete
problem.

* Implement optimization algorithms and prove their convergence.
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Glance into modern optimization
Huge scale optimization

Dataset with
billions of datapoints (z*,y') ———  Goal: Design predictor {* = 9o (")
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Glance into modern optimization
Huge scale optimization

Dataset with o
billions of datapoints (z*,y') ———  Goal: Design predictor §* = gy(z*)

Optimization problem
Loss Reqularizer

minimize  L£(0) + Ar(0) = >, £(9°, y") + Ar(6)

Large-scale Many examples
computing  Support vector machines
 Parallel

 Regularized regression

e Distributed
e Neural networks 26



Glance into modern optimization

Real-time optimization
Ty & R" :

Dynamical system: z;,.1 = Ax; + Buy
Ur & R™ :

Goal: track trajectory minimize Y, ||z — 28|

Constraints: inputs ||u|| < U, statesa <z; <D

State
iInput
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Glance into modern optimization

Real-time optimization

r. € R": state

Dynamical system: z;,.1 = Ax; + Buy |
U & R™ : |npUt

Goal: track trajectory minimize Y, ||z — 28|

Constraints: inputs ||u|| < U, statesa <z; <D

I-norm Linear optimization

—

0o-Norm (more next lecture...)

Solve and repeat.....
How fast can we solve these problems?
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Next lecture

Linear optimization

e Definitions
 Modelling
e Formulations

« Examples
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