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22. The role of optimization
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Announcements

Participation
* Please send last note by the end of this weekend

Final Project

* |ast year’s project out
* Longer coding exercise (similar to coding in homeworks)
* Jopics on the whole course:

» | east-squares

* Linear optimization

* |Integer optimization



Today’s lecture

The role of optimization

 Geometry of optimization problems
e Solving optimization problems

e What’s left out there?

 The role of optimization



Basic use of optimization

Optimal decisions

o

Decisions

Mathematical
language

The algorithm
computes
them for you



Most optimization problems
cannot be solved




Geometry of optimization
problems




Least squares

X
minimize  ||Az — b||?
subjectto (Cz =

ptimal point properties
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Linear optimization

f(z)

}
minimize ¢’z
subjectto Az <b

Cx=d

Optimal point properties

» Extreme points are optimal
* Need to search only between extreme points



Duality

Properties
Dual function » Lower bound ¢g(y) < f(x)
q(y) — (z primal and y dual feasible)

- Always concave
(mMinimum of linear functions of x)

Strong duality
g(y™) = f(z7)

It holds unless primal and dual infeasible



Optimality conditions

Linear optimization Least-squares
minimize ¢’z «— f(z) minimize  ||Ax — b||* «— f(z)
subjectto Az <b subjectto Cx =d

Cx=d

KKT optimality conditions

Vi) + Ay +C 2" =0
y* >0

Az < b

Cz* =d

yr(Az* —b); =0, i=1,...,m complementary slackness 1,

dual feasibility

primal feasibility



Integer optimization

minimize ¢!z«
subjectto Az <b
x, €, 1€L

Optimal point properties

» Extreme points are not optimal in general
- |f all integral variables, then finite set of solutions
- z; € Z = Cannot use KKT optimality conditions
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Optimality in integer optimization

return feasible point
“Incumbent”

certify optimality —— L <claz* <U

Lower bounds from
direct relaxation

* Do not give integer feasible x
- Different than the optimal objective ¢! z*

Partition = Leaves

Optimality certificate In
Integer optimization
» Partition S’
» Bounds (L;,U;) Vj
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Solving optimization problems



Numerical linear algebra

The core of optimization algorithms is linear systems solution
Axr = b

Direct method

1. Factor A = A A, ... A, in “simple” matrices (O(n?))
2. Compute x = A, " ... A7 'b by solving k “easy” linear systems (O(n?))

Main benefit
factorization can be reused
with different right-hand sides b

You never invert A
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Solving least squares

minimize || Az — b||?
subjectto Cx =d

KKT linear system solution
24TA OT| |z*|  |24Tb
C 0 z d




Solving linear optimization

minimize c¢lx
subjectto Az <b
Cx =d

No closed form solution

l

We need an iterative algorithm
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Algorithms for linear optimization

L

Primal simplex Dual simplex Interior-point methods
* Primal feasibility * Dual feasibility * Interior condition

| | :

* Primal feasibility
» Zero duality gap » Zero duality gap » Dual feasibility
Dual feasibility - Primal feasibllity e Zero duality gap

Exponential worst-case complexity Polynomial worst-case complexity
Requires feasible point Allows infeasible start
Can be warm-started Cannot be warm-started
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Linear optimization solvers

* Very reliable and efficient (many open source)
* (Can solve problems in milliseconds on small processors
 Simplex and interior-point solvers are almost a technology

* Used daily in almost everywhere

18



Solving mixed-integer optimization

minimize c¢lx
subjectto Az <b
x, €, 1€L

Relaxation does not
always give feasible —
solutions

Recursively partition
the feasible space
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Algorithms for mixed-integer optimization

Branch and bound

Partition Binary tree

lteratively branch and bound until U — L < ¢
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Mixed-integer optimization solvers

 Can be slow (the only very good ones are commercial)
 Recent huge progress in hardware and software
« Still not a reliable technology

* Used daily in almost everywhere
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What’s left out there?



What we did not cover in continuous optimization?

Convex optimization
e Quadratic optimization

Covered Iin
* Second-order cone optimization —  ORF363: Computing and
 Semidefinite optimization Optimization

 Convex relaxations of combinatorial problems

Optimization applications

» Stochastic Optimization and ML in Finance (ORF311)
* Design, Synthesis, and Optimization of Chemical Processes (CBE442)
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What we did not cover in machine learning?

Machine

* Analysis of big data (ORF350)
* Introduction to Machine Learning (COS324)

e Special Topics in Data and Information Science:
Optimization for Machine Learning (ELE539)

Decision-making under uncertainty
* Optimal learning (ORF418)
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The role of optimization



Optimization as a surrogate for real goal

Very often, optimization is not the actual goal

The goal usually comes from practical
implementation (hew data, real dynamics, etc.)

Real goal is usually encoded (approximated) in cost/constraints
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Optimization problems are just models

“All models are wrong, some are useful.”

— George Box

Implications

* Problem formulation does not need to be "accurate”
* Objective function and constraints “guide” the optimizer
 The model includes parameters to tune

We often do not need to solve most problems to extreme accuracy

27



Data fitting

Goal learn model from training data
Yy~ f(x) (x(i),y(i)) fore=1,..., N

Data

» The goal of model is not to predict outcome for given data (Train)
» Instead, it is to predict the outcome on new, unseen data (Test)

l

- Amodel bf generalizes if it makes reasonable predictions on unseen data
» A model overfits if it makes poor predictions on unseen data
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Regularization as proxy for generalization

3_
8‘5
2_
B
— 1 .
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X

Regularized fitting LP

minimize ||Axz — b||; + v||z||1 «— Proxy
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Train vs test error across regularization

Error
1.57 Train
Test
1.01
0.51
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A
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Regularized fitting LP
minimize || Ax — b||1 + Al|z||1 «— Proxy
* Minimum test error A =~ 1.15

 Dashed lines: true values

e r —0as A\ — o



Portfolio optimization

Goal: maximize average future returns from historical returns

avg(Rw) = ilw T x n matrix of asset returns: R

Our model generalizes if a good w on past returns
leads to good future returns

Example

* Pick w based on last 2 years of returns

» Use w during next 6 months
31



Portfolio optimization

Minimize risk-return tradeoff
(on historical data)

Returns Risk
minimize  —p' w + y||[Rw — p* wlljy «— Proxy
subjectto 11w =1

w > 0

Risk is a proxy to perform well in the future
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Portfolio value (thousand dollars)

Past vs future returns on portfolio optimization

Minimize risk-return tradeoff

minimize  —p' w + y||Rw — p wl|l;  «<— Proxy
subjectto 11w =1
w > 0
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Conclusions

In ORF307, we learned to:

 Model decision-making problems across different disciplines as
mathematical optimization problems.

 Apply the most appropriate optimization tools when faced with a concrete
problem.

* Implement optimization algorithms

 Understand the limitations of optimization
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Optimization cannot solve all our problems

It is Just a mathematical model

But it can help us making better decisions

Thank you!

Bartolomeo Stellato
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