ORF307 - Optimization

20. Integer optimization

Bartolomeo Stellato — Spring 2024



Announcements

» | ast precepts next week

 |ast homework out Thursday next week



Today'’s lecture

Mixed-integer optimization

 Mixed-integer programs
 Modeling techniques
 Formulations

e |deal formulations



Mixed-integer optimization



Mixed-integer program

L2
Optimization problem where some
variables are restricted to be integer

minimize ¢l
subjectto Ax <b
x, €, 1€L




Mixed-integer program ,

2 )

Special cases

Integer linear program
7=A{1,...,n}
(all variables are integer)

Boolean linear program
T; © {O, 1}, 1 €L
(integer variables take values 0 or 1)




Modeling techniques




Binary choice

— & ze{01)"

1 event occurs
T = |
’ 0 otherwise

Examples

» Perform an financial transaction
» Select an arc in a graph
« Open a store



Knapsack problem

Goal decide between n items to put into knapsack

- Maximum total weight: b
» Weight of item 7: a;
« Value of item :: ¢;

Formulation

maximize ¢’z
subjectto alx <b
r; €4{0,1}, i=1,...,n



Logical relations
r e {0,1}"

At most one event occurs
112 <1

Neither or both events occur

L1 — L9

If 5 = 0 (does not occur), then £; = 0 (does not occur)

r1 < Io
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Facility location problem ./

flae

Data T~ 1 -

» n potential facility locations, m clients m\h/

* ¢; cost of opening facility at location T~ am

* d;; cost of serving client : from location j / - b |

ul —— e
Variables Problem
o 1 location j is selected minimize S:;P_l CiY; S:;ﬁl S:;?le d;j i
& 0 otherwise SUbjeCt to x?—l Tijj = I, +=1,....m

1 location j serves client i Tij <Y, 1=1,....m, jp=1...,n
xi . — - o o .
’ 0 otherwise Zij,y; € 10,1}
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Mixed-logical relations (big-M formulations)
reR, ye{01}

If y = 0, then x = 0. Otherwise, x unconstrained.
0< o< yM

Disjunctive constraints
either a’z < bord'z < fis valid

ale <b+yM
d'z < f+(1—y)M
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Cardinality
reR", ye{0,1}"

Cardinality (0O-norm)
number of nonzero elements

cardx = ||z[lo = » {i|wx; #0}

Cardinality constraint

iyi <k
i=1

Yi € {07 1}

cardx < k '

i=1,...

s T
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Restricted range of values

We want to restrict variable x € R to take values {a,...,a4}

Introduce d binary variables z; € {0,1}

L = Z Uj<j Vector form
= r=a'z
d
z; = 1 E—— 112 =1
J=1 z € {0,1}¢

z; €10,1}
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Signal decoding

Channel

Message Signal
n-vector x m-vector y
m-vector v are (unknown) noises or measurement errors

Signal constellation

Goal recover message 7 At every time k, z, can take
only values {a1,...,aq}

Signal decoding problem
minimize  ||Hx — y||1
subjectto zp € {a1,...,aq}, k=1,....,n
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Signal decoding as mixed-integer optimization

Signal decoding problem

minimize

subjectto zp € {a1,...,aq}, k=1,...

|Hx — y|1

Mixed-integer optimization

minimize
subject to

11w
—u< Hr—y<u
v, =a'zy, k=1,....n

1TZk:1, k:1,...,n
ZkE{O,l}d

. TV
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Signal decoding example

Exact message & € {—3,—1,1,3}%Y

Noisy signal y = Hz + v € R?Y

Exact message decoded!

20

0

i

—201

|

J

|

/\/

W

25

25

30

35

17



Relaxations



Relaxations

minimize ¢z

subjectto Az < b —

Remove integrality constraints

minimize 'z

| subjectto Az <b <+—— P
Pp —— x,€Z, i€l

Relaxations provide

*

P,CPg ——s lower Izoundf to pf,
Prel < pip 19



minimize ¢z

Multiple formulations exist  subjectto Az <

Equivalent formulations €4, 1€l
(same feasible points)
with different relaxations

Formulation 1 Formulation 2

Which one is better?

* *
Prell S Prel2 I
> 20



Facility location problem

Multiple formulations

Formulation 1

n m

minimize >0 ¢y + 00 D0 dwmw
SUbjeCt to ;:;/_1 Tij = I, +=1,..
$Z'j§yj, i:1,...,m, j:1,...,n

Lijs Y - {O, 1}

Are they both valid?

Formulation 2 (fewer constraints) Which i better?
ich one is better*

mn m

minimize >0 ¢y + 300 i dwxw

SUbjeCt to Z;)le Lijj = I, 1=1,.
y:?llwzggmy]? j:17'°'7n
Lijs Y - {O, 1}
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Facility location problem

Multiple formulations

Formulation 1

Prell = Z%j =1, wi; <yj;, @iy €10, 1
j=1
Formulation 2

1=1

Prel2 = {Z%g = 1, Z%‘j <my;, xij,Y; € |0, 1]}
j=1

Prell C PrelQ

Relationship Formulation 1
= Plas < Phen <P°=pl = p} Is better
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Facility location problem

Multiple formulations proof P..1 C P

Formulation 1: P..; Formulation 2: P,-

[ [

m
L < Yi, VZ,] < max Iy ; < Y; inj < mys, \V/] < avg Lij < Yy
1=1

Maximum less than y;

imoli — Pren € F
implies average less than y; rell = 1 rel2

Average less than y;
doesn’t imply maximum less than y;

y (iblj,mzj,ﬂjgj) — (03,04,05)
+ y; = 0.45 B

E— Prell # PrelQ
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ldeal formulations



What'’s the best possible formulation?

Problem Relaxation

minimize ¢z

subjectto Az <b
x, €, 1€L

minimize ¢!z
subjectto Az <b

What happens if the relaxation solution is integer feasible point?

We found an optimal solution!

Does this formulation always exist?
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Convex hull

Recap

The convex hull is the set of all possible

convex combinations of the points.

convC{Zozia:ia>O, 1T041} o
i=1

What is the convex hull of an integer optimization problem?
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Convex hull of integer optimizatio

minimize c¢lx
subjectto Az <b
x, €, 1€L

The convex hull has
Integer feasible extreme points

conv P =conv{z | Ax <b, x,€Z, 1€}
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ldeal formulations

A formulation is ideal if solving its relaxation gives
an integer feasible point

minimize 'z

subjectto Az <b .,
v, €, 1€L

. T Integer feasible
minimize c'x

subjectto Az <b

This happens if

conv P = {Ax < b}

It is very hard to construct ideal formulations!
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Facility location problem

Formulation 1
minimize > 5 ciyy + D i >y dijTi
SUbjeCt to ;:;/_1 Tij = I, 2=1,....,m
$Z'j§yj, i:1,...,m, j:1,...,n

Lijs Y - {O, 1}

Formulation 2 (fewer constraints)
minimize > 5 iy + Y i Do dijTi
subject to Z] T =1, i=1,...,m

S <my;, j=1,...,n
z;i,Y; € {0,1}

Ranking relaxations
conv P g Prell g PrelQ
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Judging formulations

Size of feasible region
Goal: conv P ~ {Ax < b}

Objective function value

Dk Kk
Goal: p;, ~ pi,

Problem size

Goal: keep moderate LP relaxation size
(unfortunately, better formulations

tend to have more
variables/constraints)

Problem formulation

minimize ¢l x

subjectto Az <b
x; € 4,

1 €L
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Minimum cost network flow

Integrality theorem
minimize  ¢7r If A totally unimodular
(e.g., graph arc-node incidence)
b and u are integral
Uszswu solutions z* are integral

subjectto Az =10 —_—

Formulation is ideal
T

minimize c¢ «x
subjectto Az =0 Very easy
0<zxz<u special case!

r € 1"
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How do we solve integer optimization problems?

minimize c¢lx
subjectto Az <b
v, €L, 1€L

Idea: Refine the feasible set until the relaxation
gives integer feasible solutions!
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Mixed-integer optimization

Today, we learned to:
 Define mixed-integer optimization problems
 Model logical relationships with integer variables and constraints

 Analyze relaxations and formulations
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Next lecture

* |Integer optimization algorithms
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