ORF307 – Optimization

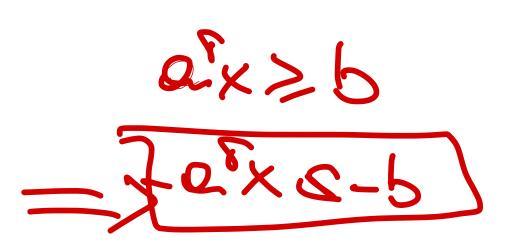
19. Linear optimization review

Today's lecture Linear optimization review

- Formulations
- Piecewise linear optimization
- Duality
- Sensitivity analysis
- Simplex method
- Interior point methods

Formulations

Linear optimization



minimize
$$c^T x$$

subject to
$$Ax \leq b$$

$$Dx = f$$

- Minimization
- Less-than ineq. constraints
- Dx = f Equality constraints

x is **feasible** if it satisfies the constraints $Ax \leq b$ and Dx = f

The **feasible set** is the set of all feasible points

 x^* is optimal if it is feasible and $c^T x^* \leq c^T x$ for all feasible x

The optimal value is $p^* = c^T x^*$

Unbounded problem: $c^T x$ is unbounded below on the feasible set $(p^* = -\infty)$ Infeasible problem: feasible set is empty ($p^* = +\infty$)

Feasibility problems

Possible results

- $p^* = 0$ if constraints are feasible (consistent). (Every feasible x is optimal)
- $p^* = \infty$ otherwise

Standard form

Definition

$$A \times 55 - 3 \quad A \times + 5 = 5$$
 $8 > 9$

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

- Minimization
- Equality constraints
- Nonnegative variables

Useful to

- develop algorithms
- algebraic manipulations

Piecewise linear optimization

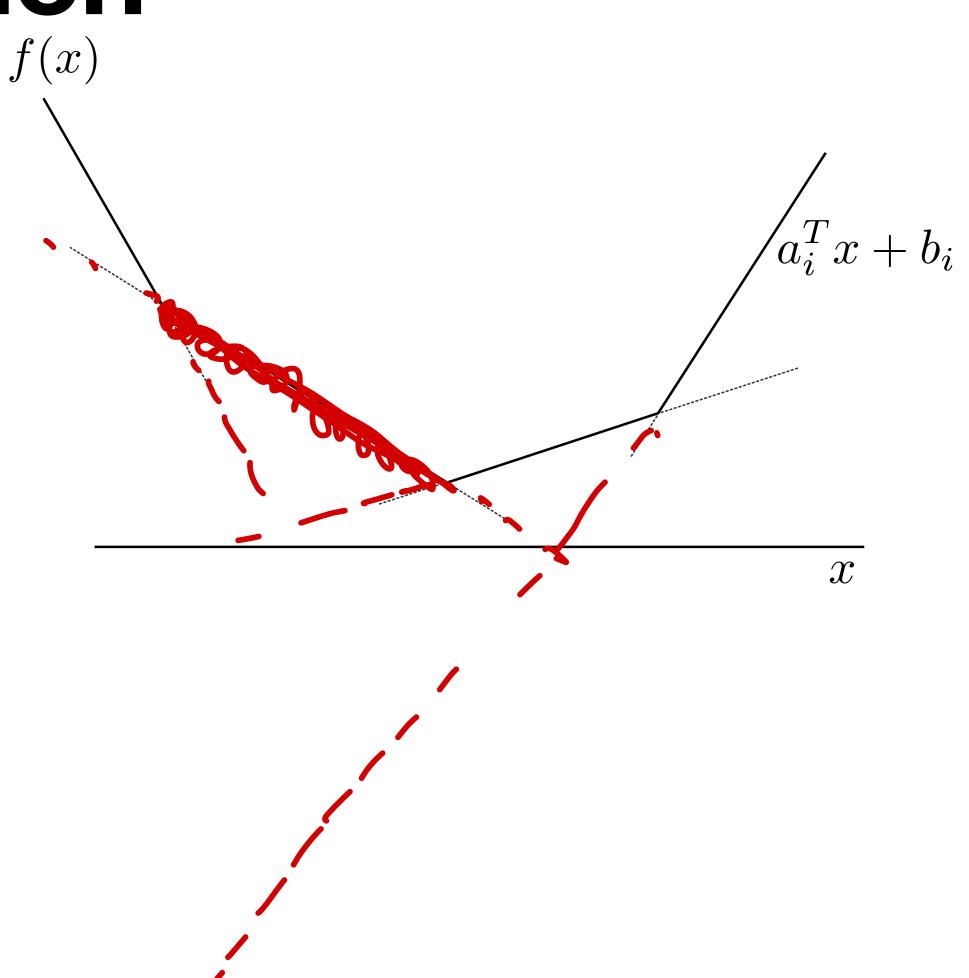
Piecewise-linear minimization

minimize
$$f(x) = \max_{i=1,\dots,m} (a_i^T x + b_i)$$

$$\downarrow$$

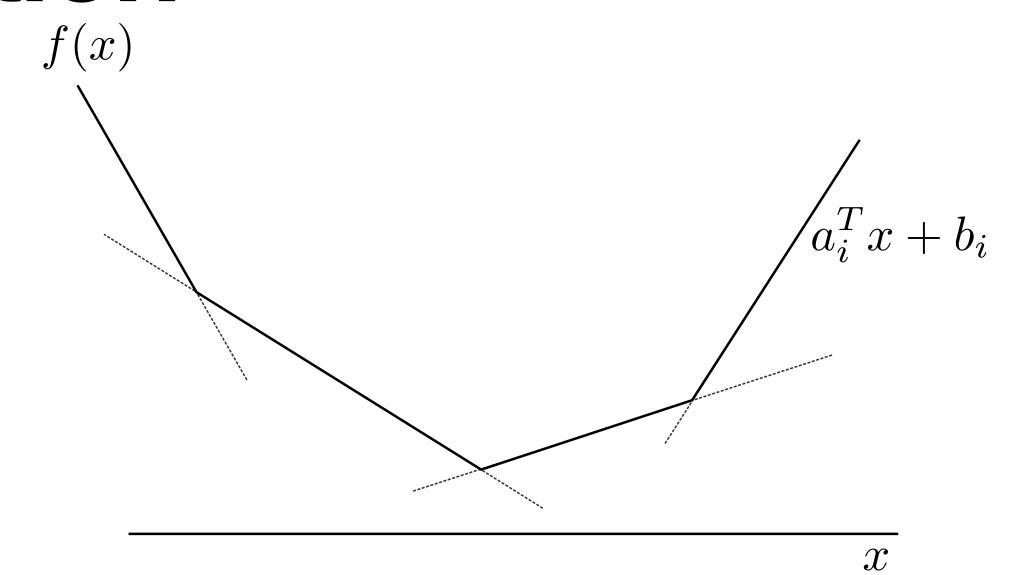
$$\min i i minimize \qquad t$$

$$\text{subject to} \quad a_i^T x + b_i \leq t, \quad i = 1,\dots,m$$



Piecewise-linear minimization

subject to $a_i^T x + b_i \leq t$, i = 1, ..., m

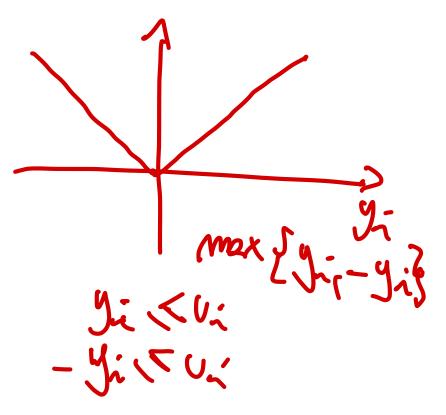


Matrix notation

 $\begin{array}{ll} \text{minimize} & \tilde{c}^T \tilde{x} \\ \text{subject to} & \tilde{A} \tilde{x} \leq \tilde{b} \end{array}$

$$\tilde{x} = \begin{bmatrix} x \\ t \end{bmatrix}, \quad \tilde{c} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \tilde{A} = \begin{bmatrix} a_1^T & -1 \\ \vdots & \vdots \\ a_m^T & -1 \end{bmatrix}, \quad \tilde{b} = \begin{bmatrix} -b_1 \\ \vdots \\ -b_m \end{bmatrix}$$

1 and infinity norms reformulations



1-norm minimization:

minimize
$$||Ax - b||_1 = \sum_{i} |(Ax - b)_i|$$

Equivalent to:

 $\begin{array}{ll} \text{minimize} & \mathbf{1}^T u \\ \text{subject to} & -u \leq Ax - b \leq u \end{array}$

Absolute value of every element $(Ax - b)_i$ is bounded by a component of the **vector** u

∞-norm minimization:

minimize
$$||Ax - b||_{\infty} = \max_{i} |(Ax - b_i)_i|$$

Equivalent to:

 $\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & -t\mathbf{1} \leq Ax - b \leq t\mathbf{1} \end{array}$

Absolute value of every element $(Ax-b)_i$ is bounded by the same **scalar** t

Duality

Primal

minimize $c^T x$

subject to $Ax \leq b$ (9)

Dual

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \end{array}$$

$$y \ge 0$$

Primal

minimize $c^T x$ subject to $Ax \leq b$

Dual function

$$\begin{split} g(y) &= \underset{x}{\text{minimize}} \left(c^T x + y^T (Ax - b) \right) \\ &= -b^T y + \underset{x}{\text{minimize}} \left(c + A^T y \right)^T x \\ &= \begin{cases} -b^T y & \text{if } c + A^T y = 0 \\ -\infty & \text{otherwise} \end{cases} \end{split}$$

Dual

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$$

Primal

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$

Dual function

$$\begin{split} g(y) &= \underset{x}{\text{minimize}} \left(c^T x + y^T (Ax - b) \right) \\ &= -b^T y + \underset{x}{\text{minimize}} \left(c + A^T y \right)^T x \\ &= \begin{cases} -b^T y & \text{if } c + A^T y = 0 \\ -\infty & \text{otherwise} \end{cases} \end{split}$$

Dual

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$$

Lagrangian

$$L(x,y) = c^T x + y^T (Ax - b)$$

Primal

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$

Dual function

$$g(y) = \underset{x}{\mathsf{minimize}} \left(c^T x + y^T (Ax - b) \right)$$

$$= -b^T y + \underset{x}{\mathsf{minimize}} \left(c + A^T y \right)^T x$$

$$= \begin{cases} -b^T y & \mathsf{if } c + A^T y = 0 \\ -\infty & \mathsf{otherwise} \end{cases}$$

Dual

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$$

Lagrangian

$$L(x,y) = c^T x + y^T (Ax - b)$$

$$\nabla_x L(x, y) = c + A^T y = 0$$

Karush-Kuhn-Tucker conditions

Optimality conditions for linear optimization

Primal

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax < b \end{array}$

Dual

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$$

Primal feasibility

$$Ax \leq b$$

Dual feasibility

$$\nabla_x L(x,y) = A^T y + c = 0 \quad \text{and} \quad y \ge 0$$

Complementary slackness

$$y_i(Ax - b)_i = 0, \quad i = 1, \dots, m$$

min
$$c^{T}x$$
 $st. Axeb$
 st

St. C+A'y+C'2+W-D'S=0 370, W>0, S>0

St.
$$Ax = b$$
 (9)

 $Ax = b$ (10)

 $Ax = b$

min ctx

min ctx

T = (Df)

General forms

Inequality form LP

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \end{array}$$

 $y \ge 0$

Standard form LP

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

LP with inequalities and equalities

minimize
$$c^Tx$$
 subject to $Ax \leq b$
$$Dx = f$$

maximize
$$-b^Ty-f^Tz$$
 subject to
$$A^Ty+D^Tz+c=0$$

$$y\geq 0$$

Theorem

If x, y satisfy:

- x is a feasible solution to the primal problem $-b^T y \le c^T x$
- y is a feasible solution to the dual problem

Theorem

If x, y satisfy:

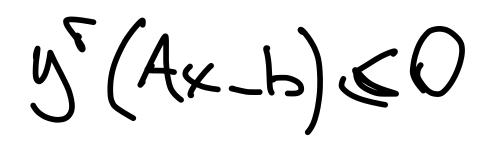
- x is a feasible solution to the primal problem $\frac{1}{h}$
- y is a feasible solution to the dual problem

$-b^T y \le c^T x$

Proof

We know that $Ax \leq b$, $A^Ty + c = 0$ and $y \geq 0$. Therefore,

$$0 \le y^{T}(b - Ax) = b^{T}y - y^{T}Ax = c^{T}x + b^{T}y$$



Theorem

If x, y satisfy:

- x is a feasible solution to the primal problem
- y is a feasible solution to the dual problem

$-b^T y \le c^T x$

Proof

We know that $Ax \leq b$, $A^Ty + c = 0$ and $y \geq 0$. Therefore,

$$0 \le y^{T}(b - Ax) = b^{T}y - y^{T}Ax = c^{T}x + b^{T}y$$

Remark

- Any dual feasible y gives a **lower bound** on the primal optimal value
- ullet Any primal feasible x gives an **upper bound** on the dual optimal value
- $c^T x + b^T y$ is the duality gap

Corollaries

Unboundedness vs feasibility

- Primal unbounded $(p^* = -\infty) \Rightarrow$ dual infeasible $(d^* = -\infty)$
- Dual unbounded $(d^* = +\infty) \Rightarrow$ primal infeasible $(p^* = +\infty)$

Corollaries

Unboundedness vs feasibility

- Primal unbounded $(p^* = -\infty) \Rightarrow$ dual infeasible $(d^* = -\infty)$
- Dual unbounded $(d^* = +\infty) \Rightarrow$ primal infeasible $(p^* = +\infty)$

Optimality condition

If x, y satisfy:

- x is a feasible solution to the primal problem
- y is a feasible solution to the dual problem
- The duality gap is zero, *i.e.*, $c^Tx + b^Ty = 0$

Then x and y are optimal solutions to the primal and dual problem respectively

Strong duality

Primal

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$

Dual

 $\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$

Theorem

If a linear optimization problem has an optimal solution, then

- so does its dual
- the optimal values of the primal and dual are equal

Relationship between primal and dual

	$p^{\star} = +\infty$	p^{\star} finite	$p^{\star} = -\infty$
$d^{\star} = +\infty$	primal inf. dual unb.		
d^\star finite		optimal values equal	
$d^{\star} = -\infty$	exception		primal unb. dual inf

Primal

minimize $c^T x$ subject to $Ax \leq b$

Dual

maximize $-b^Ty$ subject to $A^Ty+c=0$ $y\geq 0$

Theorem

Primal, dual feasible x, y are optimal if and only if

$$y_i(b_i - a_i^T x) = 0, \quad i = 1, \dots, m$$

i.e., at optimum, b - Ax and y have a complementary sparsity pattern:

$$y_i > 0 \implies a_i^T x = b_i$$

$$a_i^T x < b_i \implies y_i = 0$$

Primal

minimize $c^T x$ subject to $Ax \leq b$

Dual

maximize
$$-b^Ty$$
 subject to $A^Ty+c=0$ \Rightarrow $C = A^Ty$

Proof

The duality gap at primal feasible x and dual feasible y can be written as

$$c^{T}x + b^{T}y = (-A^{T}y)^{T}x + b^{T}y = (b - Ax)^{T}y = \sum_{i=1}^{n} y_{i}(b_{i} - a_{i}^{T}x) = 0$$

Primal

 $\begin{array}{ccc} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$

Dual

maximize
$$-b^Ty$$
 subject to $A^Ty+c=0$
$$y\geq 0$$

Proof

The duality gap at primal feasible x and dual feasible y can be written as

$$c^{T}x + b^{T}y = (-A^{T}y)^{T}x + b^{T}y = (b - Ax)^{T}y = \sum_{i=1}^{m} y_{i}(b_{i} - a_{i}^{T}x) = 0$$

Since all the elements of the sum are nonnegative, they must all be 0

Primal

minimize $c^T x$ subject to $Ax \leq b$

Dual

maximize
$$-b^Ty$$
 subject to $A^Ty+c=0$ $y\geq 0$

Proof

The duality gap at primal feasible x and dual feasible y can be written as

$$c^{T}x + b^{T}y = (-A^{T}y)^{T}x + b^{T}y = (b - Ax)^{T}y = \sum_{i=1}^{T} y_{i}(b_{i} - a_{i}^{T}x) = 0$$

Since all the elements of the sum are nonnegative, they must all be 0

$$C = (-4, -5)$$

minimize
$$-4x_1 - 5x_2$$

subject to
$$\begin{bmatrix} -4x_1 - 5x_2 \\ -1 & 0 \\ 2 & 1 \\ 0 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 0 \\ 3 \\ 0 \\ 3 \end{bmatrix}$$

$$A$$

$$b$$

$$Mx - by$$

$$Y = 0$$

$$Y = 0$$

mode
$$-54$$
It. Ayyc=0
 $y \ge 0$

Let's show that feasible x = (1, 1) is optimal

minimize
$$-4x_1 - 5x_2$$

subject to
$$\begin{bmatrix} -1 & 0 \\ 2 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq \begin{bmatrix} 0 \\ 3 \\ 0 \\ 3 \end{bmatrix}$$

Let's **show** that feasible x = (1, 1) is optimal

Second and fourth constraints are active at $x \longrightarrow y = (0, y_2, 0, y_4)$

$$A^Ty=-c \quad \Rightarrow \quad \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} y_2 \\ y_4 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix} \qquad \text{and} \qquad \quad y_2 \geq 0, \quad y_4 \geq 0$$

minimize
$$-4x_1 - 5x_2$$

subject to
$$\begin{bmatrix} -1 & 0 \\ 2 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 0 \\ 3 \\ 0 \\ 3 \end{bmatrix}$$

Let's **show** that feasible x = (1, 1) is optimal

Second and fourth constraints are active at $x \longrightarrow y = (0, y_2, 0, y_4)$

$$A^Ty=-c \quad \Rightarrow \quad egin{bmatrix} 2 & 1 \ 1 & 2 \end{bmatrix} egin{bmatrix} y_2 \ y_4 \end{bmatrix} = egin{bmatrix} 4 \ 5 \end{bmatrix} \qquad \text{and} \qquad y_2 \geq 0, \quad y_4 \geq 0$$

y=(0,1,0,2) satisfies these conditions and proves that x is optimal

minimize
$$-4x_1 - 5x_2$$

Let's **show** that feasible x = (1, 1) is optimal

Second and fourth constraints are active at $x \longrightarrow y = (0, y_2, 0, y_4)$

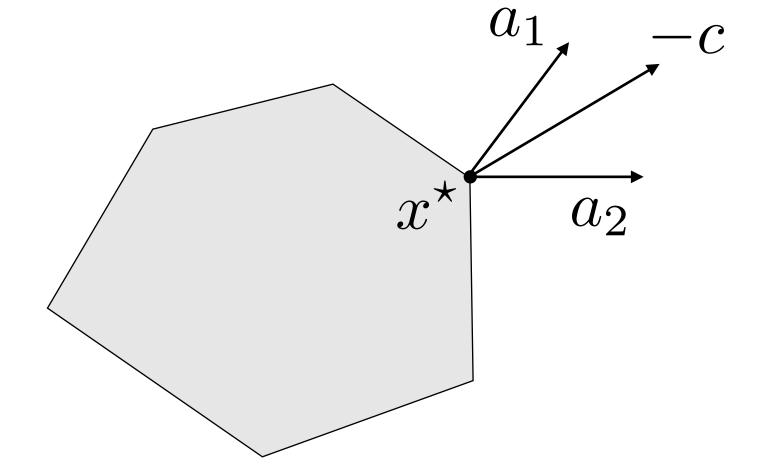
$$A^Ty=-c \quad \Rightarrow \quad egin{bmatrix} 2 & 1 \ 1 & 2 \end{bmatrix} egin{bmatrix} y_2 \ y_4 \end{bmatrix} = egin{bmatrix} 4 \ 5 \end{bmatrix} \qquad \text{and} \qquad y_2 \geq 0, \quad y_4 \geq 0$$

y=(0,1,0,2) satisfies these conditions and proves that x is optimal

Complementary slackness is useful to recover y^* from x^*

Geometric interpretation

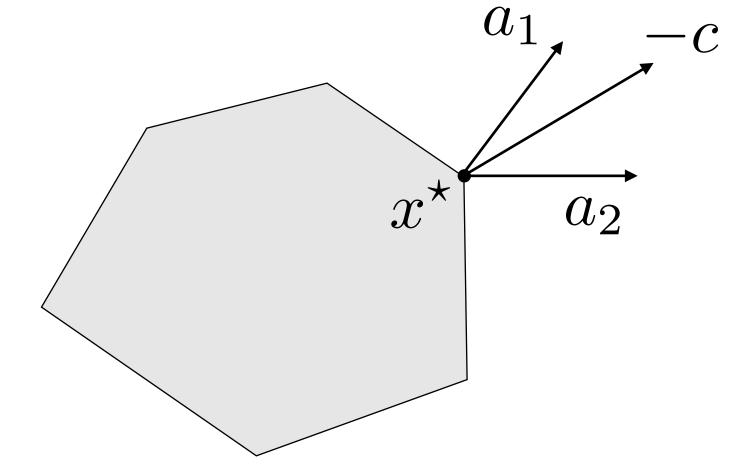
Example in ${f R}^2$



Two active constraints at optimum: $a_1^T x^* = b_1, \quad a_2^T x^* = b_2$

Geometric interpretation

Example in ${f R}^2$



Two active constraints at optimum: $a_1^T x^* = b_1, \quad a_2^T x^* = b_2$

Optimal dual solution y satisfies:

$$A^T y + c = 0, \quad y \ge 0, \quad y_i = 0 \text{ for } i \ne \{1, 2\}$$

In other words, $-c = a_1y_1 + a_2y_2$ with $y_1, y_2 \ge 0$

Sensitivity analysis

Changes in problem data

Goal: extract information from x^*, y^* about their sensitivity with respect to changes in problem data

Modified LP

minimize $c^T x$

subject to Ax = b + u

$$x \ge 0$$

Optimal value function

$$p^{\star}(u) = \min\{c^{T}x \mid Ax = b + u, \ x \ge 0\}$$

Changes in problem data

Goal: extract information from x^*, y^* about their sensitivity with respect to changes in problem data

Modified LP

 $\begin{array}{ll} \text{minimize} & c^Tx \\ \text{subject to} & Ax = b+u \\ & x \geq 0 \end{array}$

Optimal value function

$$p^*(u) = \min\{c^T x \mid Ax = b + u, \ x \ge 0\}$$

Assumption: $p^*(0)$ is finite

Properties

- $p^{\star}(u) > -\infty$ everywhere (from global lower bound)
- $p^*(u)$ is piecewise-linear on its domain

Global sensitivity

Dual of modified LP

$$\begin{array}{ll} \text{maximize} & -(b+u)^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Global sensitivity

Dual of modified LP

$$\begin{array}{ll} \text{maximize} & -(b+u)^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Global lower bound

Given y^* a dual optimal solution for u=0, then

$$p^{\star}(u) \ge -(b+u)^T y^{\star}$$
 (from weak duality and $= p^{\star}(0) - u^T y^{\star}$ dual feasibility)

Global sensitivity

Dual of modified LP

$$\begin{array}{ll} \text{maximize} & -(b+u)^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Global lower bound

Given y^* a dual optimal solution for u=0, then

$$p^{\star}(u) \ge -(b+u)^T y^{\star}$$
 (from weak duality and $= p^{\star}(0) - u^T y^{\star}$ dual feasibility)

It holds for any u

Local sensitivity

u in neighborhood of the origin

Original LP

minimize

subject to Ax = b

$$x \ge 0$$

Optimal solution

Primal $x_i = 0, \quad i \notin B \\ x_B^\star = A_B^{-1} b$

$$x_B^{\star} = A_B^{-1}b$$

Dual
$$y^* = -A_B^{-T} c_B$$

Local sensitivity

u in neighborhood of the origin

Original LP

minimize $c^T x$

subject to Ax = b

$$x \ge 0$$

Optimal solution

Primal $x_i = 0, \quad i \notin B \\ x_B^\star = A_B^{-1} b$

$$x_B^{\star} = A_B^{-1}b$$

Dual $y^* = -A_B^{-T} c_B$

Modified LP

minimize $c^T x$

subject to Ax = b + u

$$Ax = b + u$$

$$x \ge 0$$

Modified dual

maximize $-(b+u)^T y$

subject to $A^T y + c > 0$

Optimal basis does not change

Local sensitivity

u in neighborhood of the origin

Original LP

minimize $c^T x$

subject to Ax = b

$$x \ge 0$$

Optimal solution

Primal $x_i = 0, \quad i \notin B \\ x_B^\star = A_B^{-1} b$

$$x_B^{\star} = A_B^{-1}b$$

Dual $y^* = -A_B^{-T} c_B$

Modified LP

minimize $c^{T}x$

$$c^T x$$

subject to
$$Ax = b + u$$

$$x \ge 0$$

Modified dual

maximize $-(b+u)^T y$

subject to $A^Ty + c > 0$

Optimal basis does not change

Modified optimal solution

$$x_B^*(u) = A_B^{-1}(b+u) = x_B^* + A_B^{-1}u$$

 $y^*(u) = y^*$

Derivative of the optimal value function

Modified optimal solution

$$x_B^*(u) = A_B^{-1}(b+u) = x_B^* + A_B^{-1}u$$

 $y^*(u) = y^*$

Derivative of the optimal value function

Modified optimal solution

$$x_B^*(u) = A_B^{-1}(b+u) = x_B^* + A_B^{-1}u$$

 $y^*(u) = y^*$

Optimal value function

$$p^{\star}(u) = c^{T}x^{\star}(u)$$

$$= c^{T}x^{\star} + c_{B}^{T}A_{B}^{-1}u$$

$$= p^{\star}(0) - y^{\star T}u \qquad \text{(affine for small } u\text{)}$$

Derivative of the optimal value function

Modified optimal solution

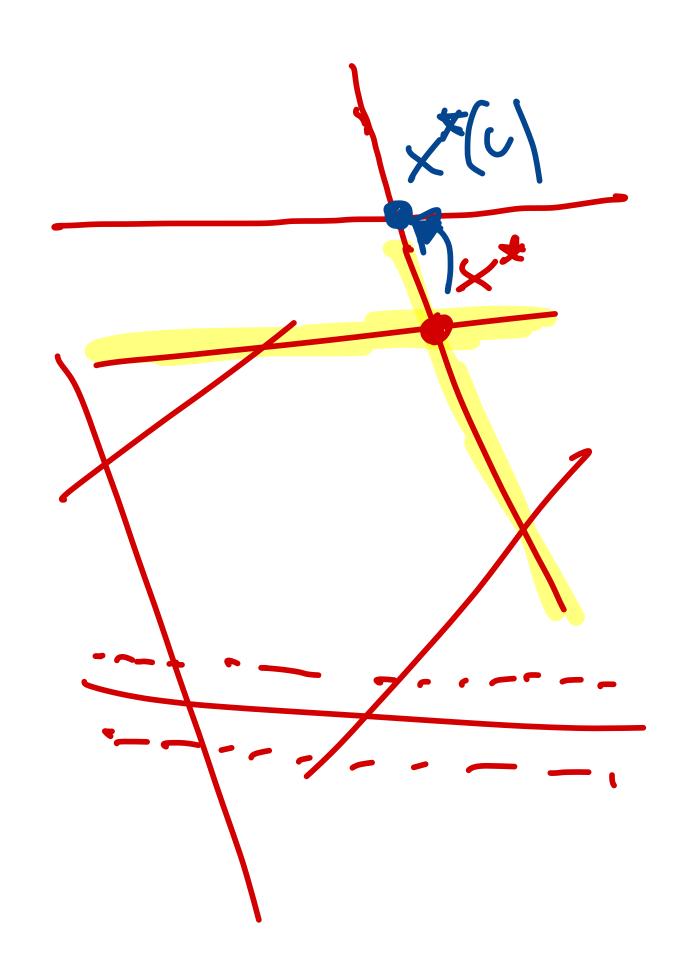
$$x_B^*(u) = A_B^{-1}(b+u) = x_B^* + A_B^{-1}u$$

 $y^*(u) = y^*$

$$\begin{split} p^{\star}(u) &= c^T x^{\star}(u) \\ &= c^T x^{\star} + c_B^T A_B^{-1} u \\ &= p^{\star}(0) - y^{\star T} u \quad \text{(affine for small } u\text{)} \end{split}$$

Local derivative

$$\nabla p^{\star}(u) = -y^{\star}$$
 (y* are the shadow prices)



Network flow optimization

Arc-node incidence matrix

 $m \times n$ matrix A with entries

$$A_{ij} = \begin{cases} 1 & \text{if arc } j \text{ starts at node } i \\ -1 & \text{if arc } j \text{ ends at node } i \end{cases}$$
 otherwise

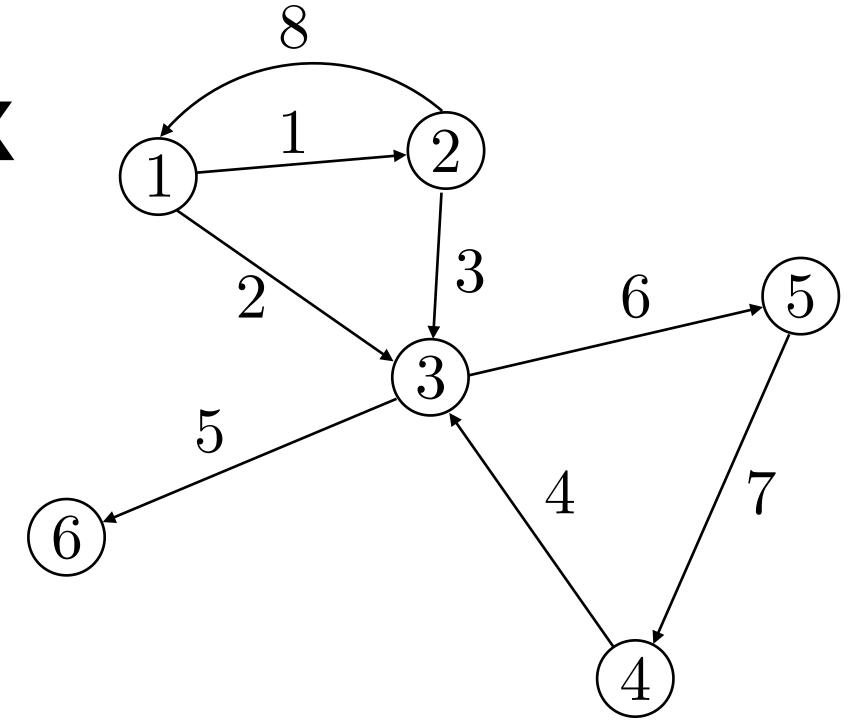
Note Each column has one -1 and one 1

Arc-node incidence matrix

 $m \times n$ matrix A with entries

$$A_{ij} = \begin{cases} 1 & \text{if arc } j \text{ starts at node } i \\ -1 & \text{if arc } j \text{ ends at node } i \end{cases}$$
 otherwise

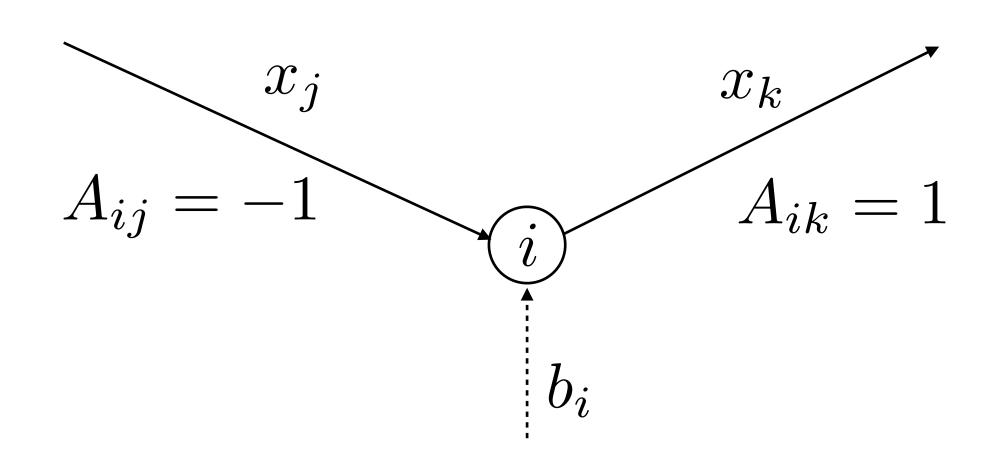
Note Each column has one -1 and one 1



$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & -1 \\ -1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & -1 & -1 & -1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \end{bmatrix}$$

supply vector $b \in \mathbf{R}^m$

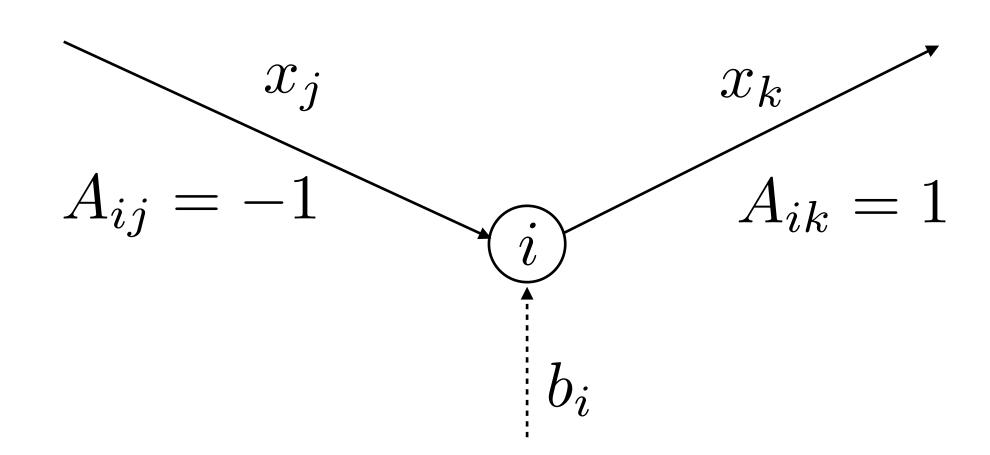
- b_i is the external supply at node i (if $b_i < 0$, it represents demand)
- We must have $\mathbf{1}^T b = 0$ (total supply = total demand)



supply vector $b \in \mathbf{R}^m$

- b_i is the external supply at node i (if $b_i < 0$, it represents demand)
- We must have $\mathbf{1}^T b = 0$ (total supply = total demand)

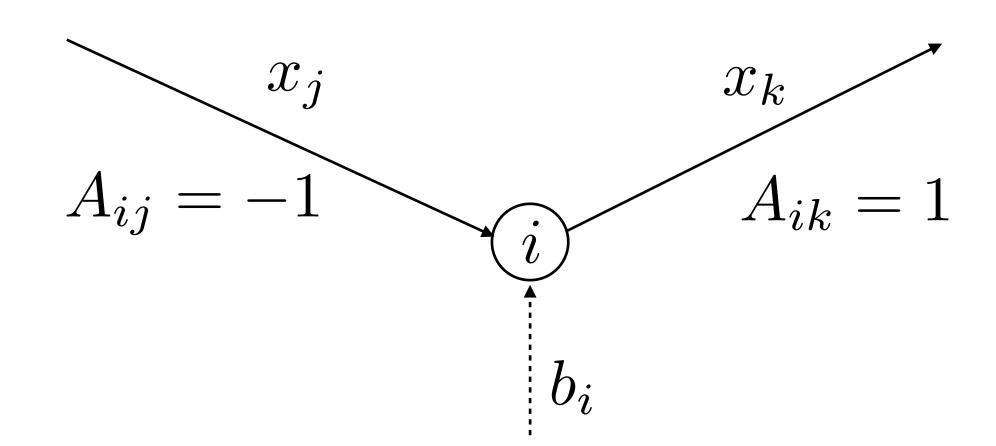
$$\sum_{j=1}^{n} A_{ij}x_j = (Ax)_i = b_i, \quad \text{for all } i$$



supply vector $b \in \mathbf{R}^m$

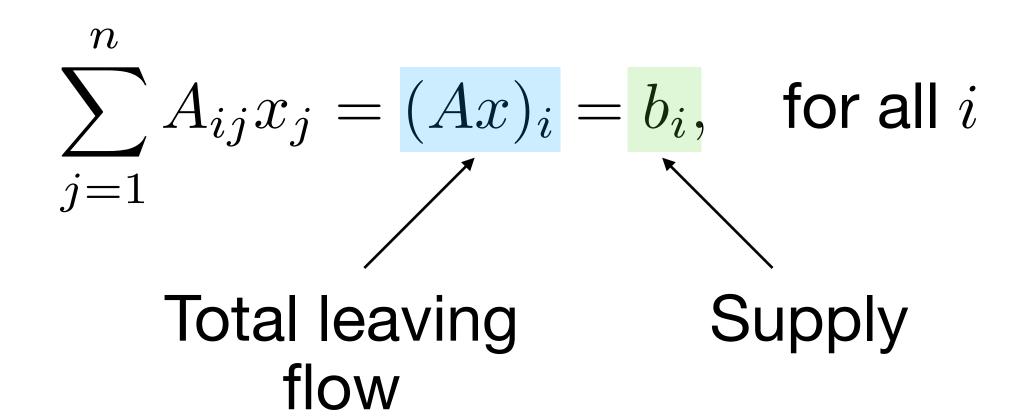
- b_i is the external supply at node i (if $b_i < 0$, it represents demand)
- We must have $\mathbf{1}^T b = 0$ (total supply = total demand)

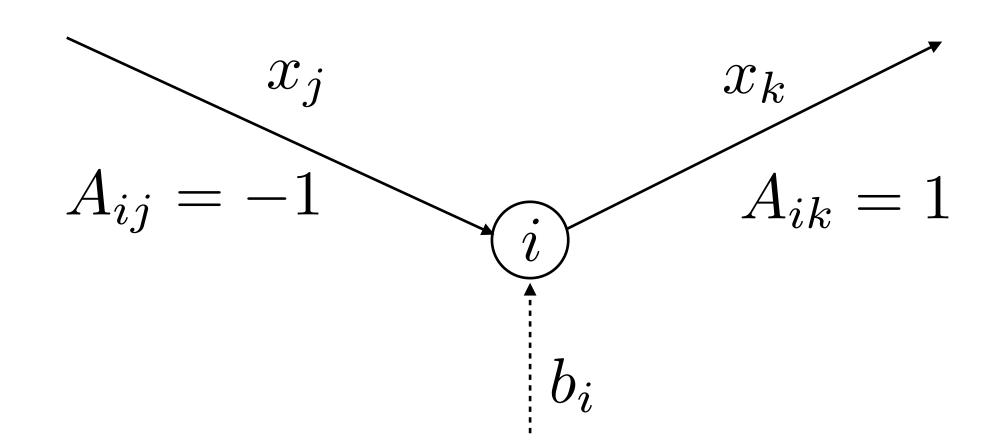
$$\sum_{j=1}^n A_{ij} x_j = \underbrace{(Ax)_i}_i = b_i, \quad \text{for all } i$$
Total leaving flow



supply vector $b \in \mathbf{R}^m$

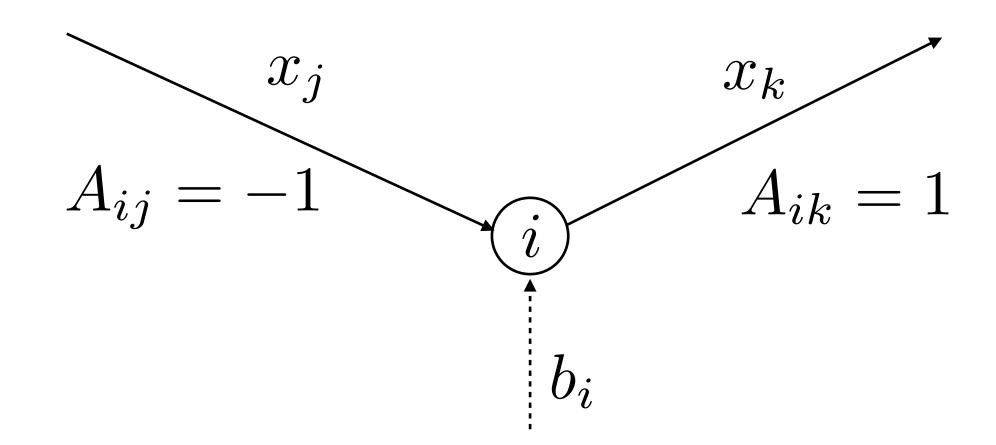
- b_i is the external supply at node i (if $b_i < 0$, it represents demand)
- We must have $\mathbf{1}^T b = 0$ (total supply = total demand)





supply vector $b \in \mathbf{R}^m$

- b_i is the external supply at node i (if $b_i < 0$, it represents demand)
- We must have $\mathbf{1}^T b = 0$ (total supply = total demand)



$$\sum_{j=1}^n A_{ij} x_j = \underbrace{(Ax)_i}_{j=1} = b_i, ext{ for all } i$$
 Total leaving Supply flow

$$Ax = b$$

Minimum cost network flow problem

minimize
$$c^Tx$$
 subject to $Ax = b$
$$0 \le x \le u$$

- c_i is unit cost of flow through arc i
- Flow x_i must be nonnegative
- u_i is the maximum flow capacity of arc i
- Many network optimization problems are just special cases

Integrality theorem

Given a polyhedron

$$P = \{ x \in \mathbf{R}^n \mid Ax = b, \quad x \ge 0 \}$$

where

- \bullet A is totally unimodular
- ullet b is an integer vector

all the extreme points of P are integer vectors.

Integrality theorem

Given a polyhedron

$$P = \{ x \in \mathbf{R}^n \mid Ax = b, \quad x \ge 0 \}$$

where

- \bullet A is totally unimodular
- ullet b is an integer vector

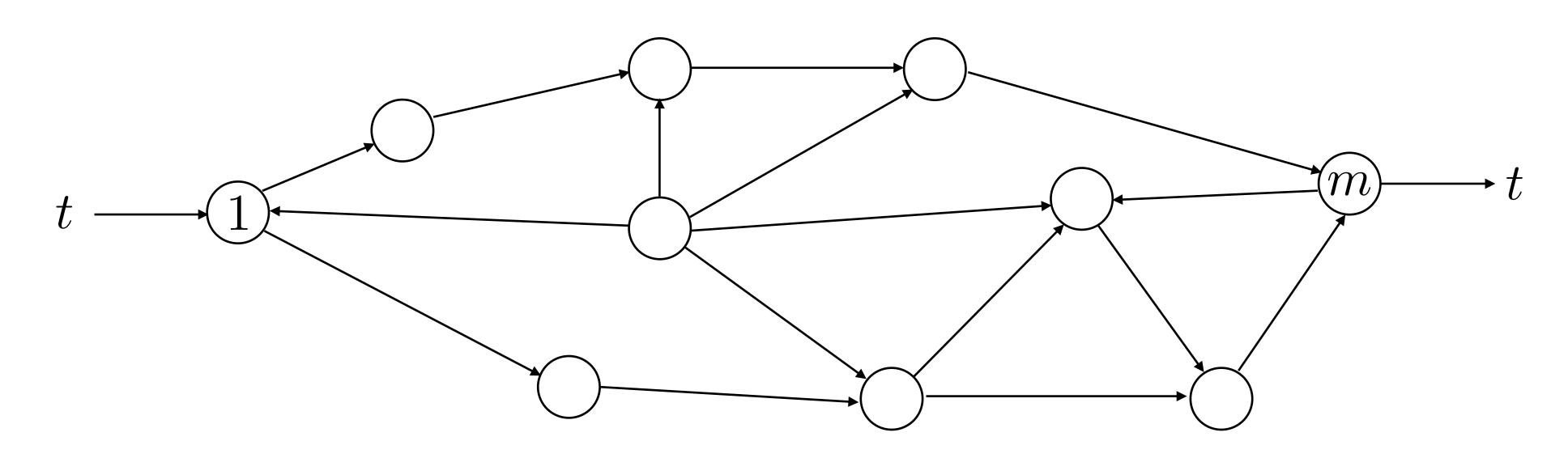
all the extreme points of P are integer vectors.

Proof

- All extreme points are basic feasible solutions with $x_B=A_B^{-1}b$ and $x_i=0,\ i\neq B$
- A_B^{-1} has integer components because of total unimodularity of A
- b has also integer components
- Therefore, also x is integral

Maximum flow problem

Goal maximize flow from node 1 (source) to node m (sink) through the network



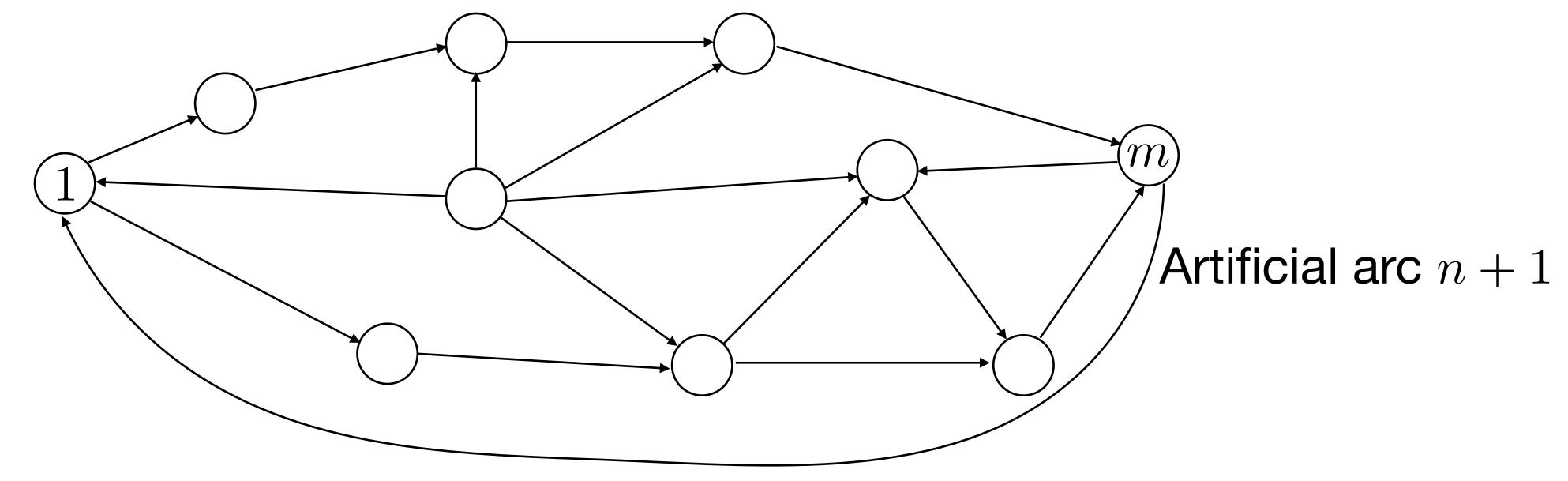
maximize

subject to
$$Ax = te$$

$$0 \le x \le u$$

$$e = (1, 0, \dots, 0, -1)$$

Maximum flow as minimum cost flow

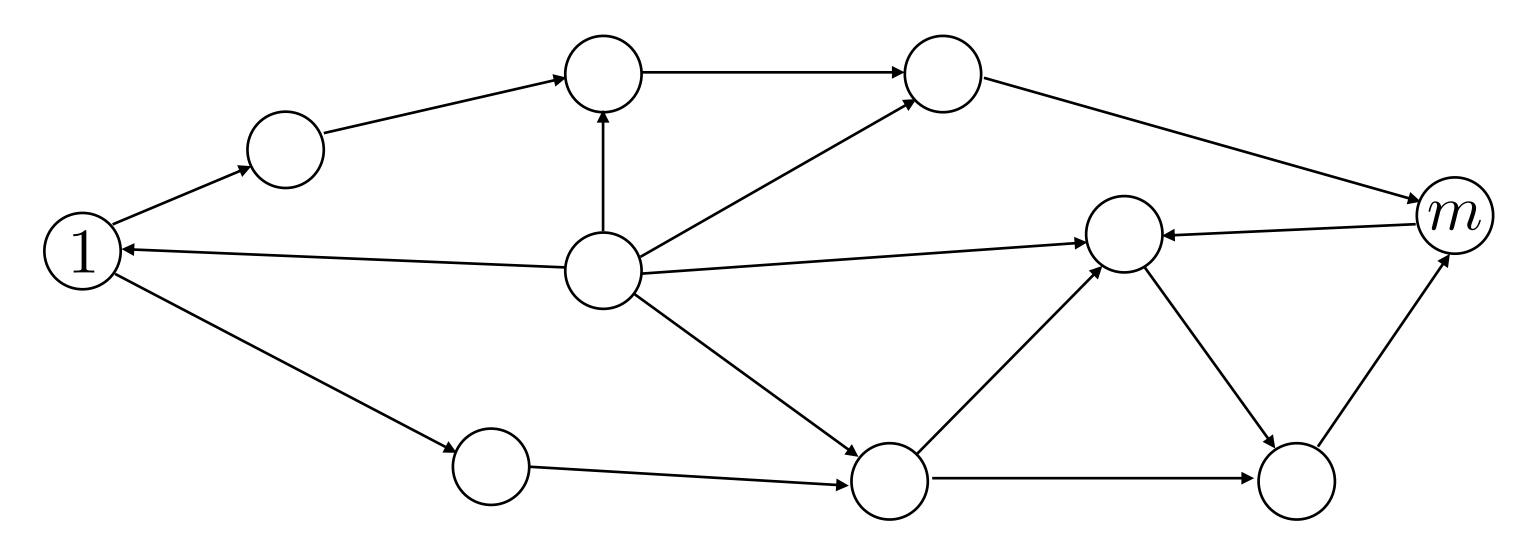


minimize
$$-t$$
 subject to $\begin{bmatrix} A & -e \end{bmatrix} \begin{bmatrix} x \\ t \end{bmatrix} = 0$

$$\begin{bmatrix} x \\ t \end{bmatrix} \leq \begin{bmatrix} u \\ \infty \end{bmatrix}$$

Shortest path problem

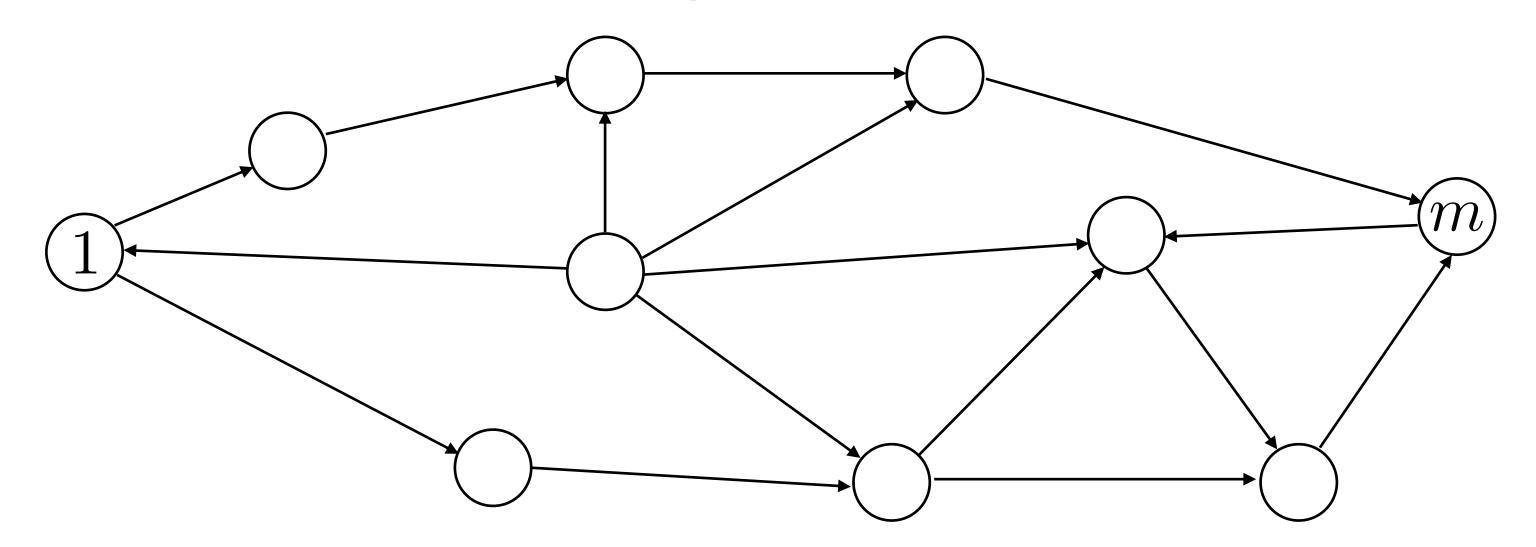
Goal Find the shortest path between nodes 1 and m



paths can be represented as vectors $x \in \{0,1\}^n$

Shortest path problem

Goal Find the shortest path between nodes 1 and m



paths can be represented as vectors $x \in \{0, 1\}^n$

Formulation

minimize $c^T x$

subject to Ax = e

$$x \in \{0, 1\}^n$$

- c_j is the "length" of arc j
- $e = (1, 0, \dots, 0, -1)$
- Variables are binary (include or not arc in path)

```
\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = e \\ & x \in \{0,1\}^n \end{array}
```


subject to
$$Ax = e$$

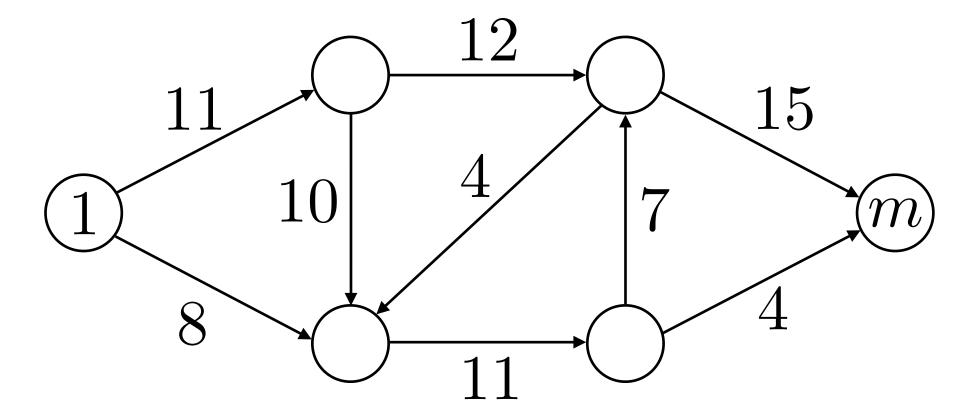
 $x \in \{0, 1\}^n$

minimize
$$c^Tx$$
 subject to $Ax = e$
$$0 < x < 1$$

minimize c^Tx minimize c^Tx subject to Ax = e subject to Ax = e $x \in \{0,1\}^n$ $0 \le x \le 1$ Extreme points satisfy $x_i \in \{0,1\}$

 $\begin{array}{lll} \text{minimize} & c^T x \\ \text{subject to} & Ax = e \\ & x \in \{0,1\}^n \end{array}$

Example (arc costs shown)



Relaxation

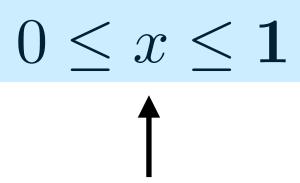
 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = e \\ \hline & 0 \leq x \leq 1 \end{array}$

Extreme points satisfy $x_i \in \{0, 1\}$

minimize c^Tx subject to Ax=e $x\in\{0,1\}^n$

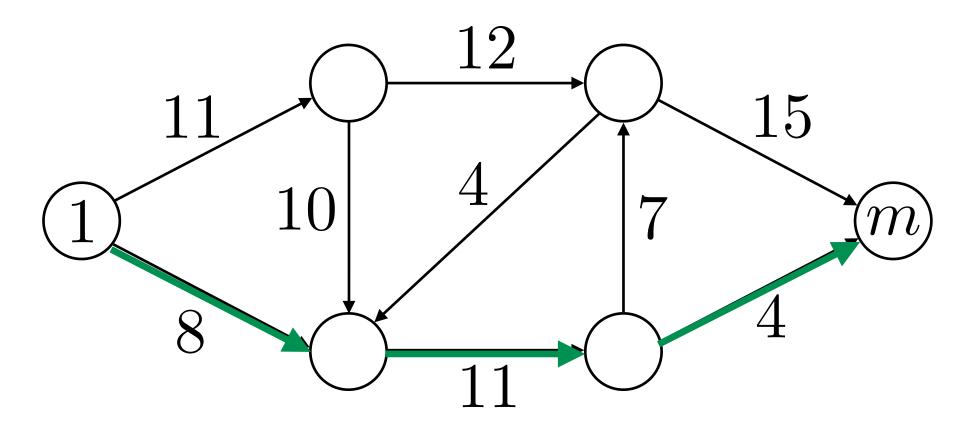
Relaxation

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = e \end{array}$



Extreme points satisfy $x_i \in \{0, 1\}$

Example (arc costs shown)



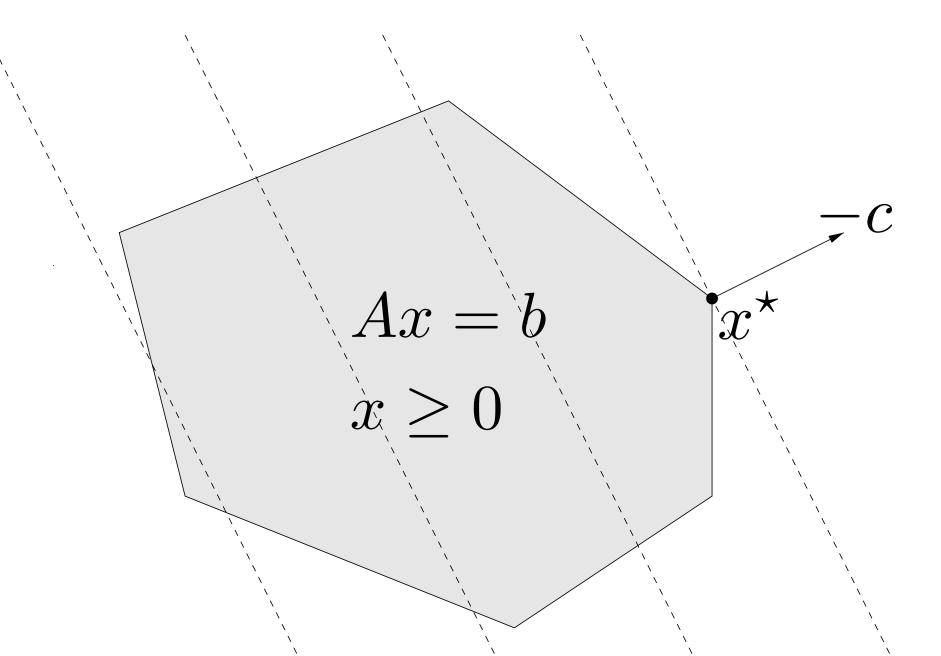
$$c = (11, 8, 10, 12, 4, 11, 7, 15, 4)$$

 $x^* = (0, 1, 0, 0, 0, 1, 0, 0, 1)$
 $c^T x^* = 24$

Simplex method

Optimality of extreme points

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$



- P has at least one extreme point There exists an optimal solution x^\star

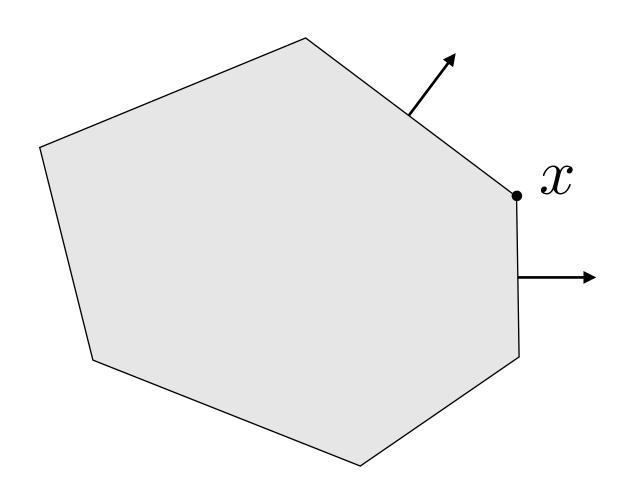
Then, there exists an optimal solution which is an **extreme point** of P

We only need to search between extreme points

Equivalence

Theorem

Given a nonempty polyhedron $P = \{x \mid Ax = b, x \geq 0\}$



Let $x \in P$

x is a vertex $\iff x$ is an extreme point $\iff x$ is a basic feasible solution

Constructing basic solution

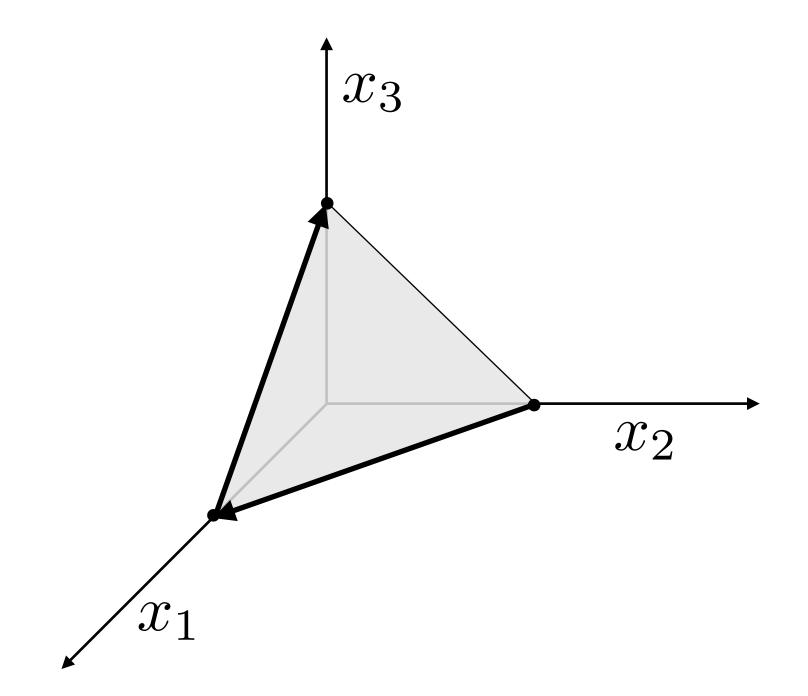
- 1. Choose any m independent columns of A: $A_{B(1)}, \ldots, A_{B(m)}$
- 2. Let $x_i = 0$ for all $i \neq B(1), ..., B(m)$
- 3. Solve Ax = b for the remaining $x_{B(1)}, \ldots, x_{B(m)}$

Basis Basis columns Basic variables
$$A_B = \begin{bmatrix} & & & & & \\ & A_{B(1)} & A_{B(2)} & \dots & A_{B(m)} \\ & & & & \end{bmatrix}, \quad x_B = \begin{bmatrix} x_{B(1)} \\ \vdots \\ x_{B(m)} \end{bmatrix} \longrightarrow \text{Solve } A_B x_B = b$$

If $x_B \ge 0$, then x is a basic feasible solution

Conceptual algorithm

- Start at corner
- Visit neighboring corner that improves the objective



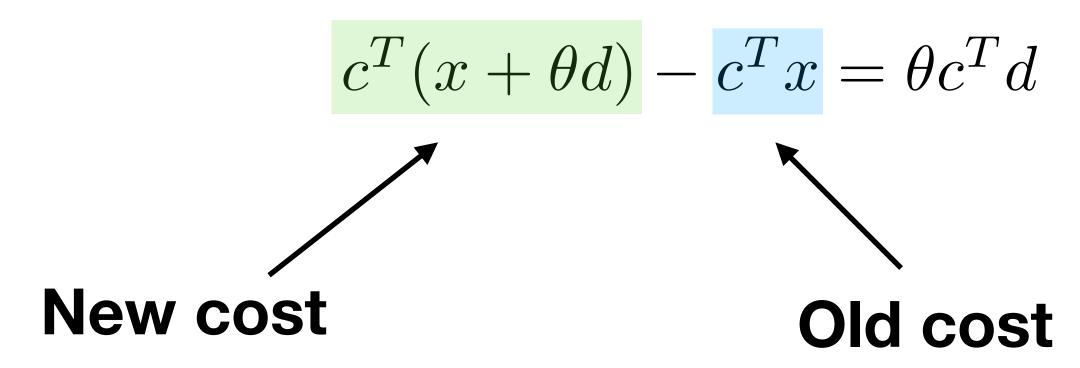
Cost improvement

$$c^T(x + \theta d) - c^T x = \theta c^T d$$

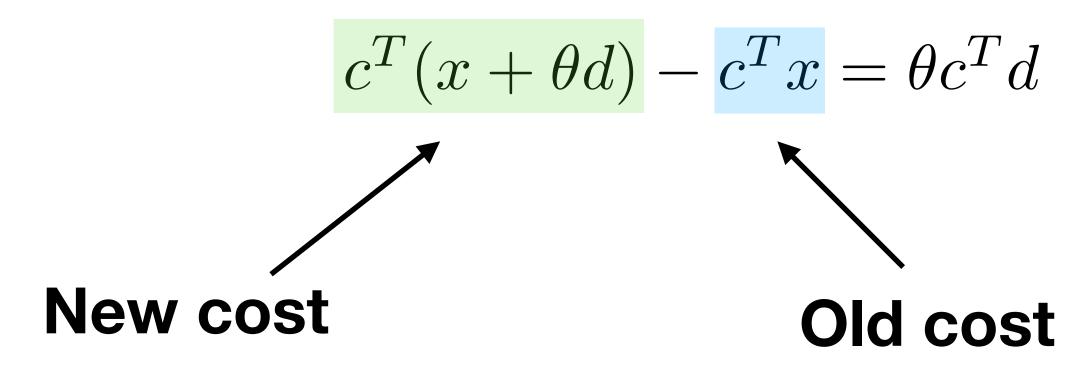
Cost improvement

$$c^T(x+\theta d)-c^Tx=\theta c^Td$$
 New cost

Cost improvement



Cost improvement



We call \bar{c}_j the **reduced cost** of (introducing) variable x_j in the basis

$$\bar{c}_j = c^T d = \sum_{i=1}^n c_i d_j = c_i + c_B^T d_B = c_i - c_B^T A_B^{-1} A_j$$

Optimality conditions

Theorem

Let x be a basic feasible solution associated with basis B Let \overline{c} be the vector of reduced costs.

If $\bar{c} \geq 0$, then x is optimal

Optimality conditions

Theorem

Let x be a basic feasible solution associated with basis B Let \overline{c} be the vector of reduced costs.

If $\bar{c} \geq 0$, then x is optimal

Remark

This is a stopping criterion for the simplex algorithm.

If the neighboring solutions do not improve the cost, we are done

- 1. Compute the reduced costs \bar{c}
 - Solve $A_B^T p = c_B$
 - $\bar{c} = c A^T p$
- 2. If $\bar{c} \geq 0$, x optimal. break
- 3. Choose j such that $\bar{c}_j < 0$

- 4. Compute search direction d with $d_j=1$ and $A_Bd_B=-A_j$
- 5. If $d_B \ge 0$, the problem is **unbounded** and the optimal value is $-\infty$. **break**
- 6. Compute step length $\theta^* = \min_{\{i \in B | d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$
- 7. Define y such that $y = x + \theta^* d$
- 8. Get new basis \bar{B} (i exits and j enters)

- 1. Compute the reduced costs \bar{c}
 - Solve $A_B^T p = c_B$
 - $\bar{c} = c A^T p$
- 2. If $\bar{c} \geq 0$, x optimal. break
- 3. Choose j such that $\bar{c}_j < 0$

- 4. Compute search direction d with $d_j = 1$ and $A_B d_B = -A_j$
- 5. If $d_B \ge 0$, the problem is **unbounded** and the optimal value is $-\infty$. **break**
- 6. Compute step length $\theta^* = \min_{\{i \in B | d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$
- 7. Define y such that $y = x + \theta^* d$
- 8. Get new basis \bar{B} (i exits and j enters)

Bottleneck
Two linear systems

- 1. Compute the reduced costs \bar{c}
 - Solve $A_B^T p = c_B$
 - $\bar{c} = c A^T p$
- 2. If $\bar{c} \geq 0$, x optimal. break
- 3. Choose j such that $\bar{c}_j < 0$

- 4. Compute search direction d with $d_j = 1$ and $A_B d_B = -A_j$
- 5. If $d_B \ge 0$, the problem is **unbounded** and the optimal value is $-\infty$. **break**
- 6. Compute step length $\theta^* = \min_{\{i \in B | d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$
- 7. Define y such that $y = x + \theta^* d$
- 8. Get new basis \bar{B} (i exits and j enters)

Bottleneck
Two linear systems

$$\approx n^2$$
 per iteration (very cheap)

- 1. Compute the reduced costs \bar{c}
 - Solve $A_B^T p = c_B$
 - $\bar{c} = c A^T p$
- 2. If $\bar{c} \geq 0$, x optimal. break
- 3. Choose j such that $\bar{c}_j < 0$

- 4. Compute search direction d with $d_j=1$ and $A_Bd_B=-A_j$
- 5. If $d_B \ge 0$, the problem is **unbounded** and the optimal value is $-\infty$. **break**
- 6. Compute step length $\theta^* = \min_{\{i \in B | d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$
- 7. Define y such that $y = x + \theta^* d$
- 8. Get new basis \bar{B} (i exits and j enters)

BottleneckTwo linear systems

Matrix inversion lemma trick $\approx n^2$ per iteration

 $\approx n^2$ per iteration (very cheap)

Complexity of the simplex method

We do **not know any polynomial version of the simplex method**,
no matter which pivoting rule we pick.

Still **open research question!**

Complexity of the simplex method

We do **not know any polynomial version of the simplex method**,
no matter which pivoting rule we pick.

Still **open research question!**

Worst-case

There are problem instances where the simplex method will run an **exponential number of iterations** in terms of the dimensions, e.g. 2^n

Complexity of the simplex method

We do **not know any polynomial version of the simplex method**,
no matter which pivoting rule we pick.

Still **open research question!**

Worst-case

There are problem instances where the simplex method will run an **exponential number of iterations** in terms of the dimensions, e.g. 2^n

Good news: average-case Practical performance is very good. On average, it stops in n iterations.

Interior point method

Optimality conditions

Primal

$$\begin{array}{ll} \text{minimize} & c^Tx \\ \text{subject to} & Ax+s=b \\ & s>0 \end{array}$$

Dual

maximize
$$-b^Ty$$
 subject to $A^Ty+c=0$ $y\geq 0$

KKT conditions

$$Ax + s - b = 0$$

$$ATy + c = 0$$

$$siyi = 0, \quad i = 1,..., m$$

$$s, y \ge 0$$

$$S = \begin{bmatrix} s_1 & & & & \\ & s_2 & & & \\ & & \ddots & & \\ & & s_m \end{bmatrix} \qquad Y = \begin{bmatrix} y_1 & & & & \\ & y_2 & & & \\ & & \ddots & & \\ & & & y_m \end{bmatrix}$$

$$\implies SY1 = 0$$

Main idea

$$h(x, s, y) = \begin{bmatrix} Ax + s - b \\ A^{T}y + c \\ SY1 \end{bmatrix} = 0$$

$$S = \mathbf{diag}(s)$$

$$Y = \mathbf{diag}(y)$$

$$s, y \ge 0$$

- Apply variants of Newton's method to solve h(x, s, y) = 0
- Enforce s, y > 0 (strictly) at every iteration
- Motivation avoid getting stuck in "corners"

Main idea

$$h(x, s, y) = \begin{bmatrix} Ax + s - b \\ A^{T}y + c \\ SY1 \end{bmatrix} = 0$$

$$S = \mathbf{diag}(s)$$

$$Y = \mathbf{diag}(y)$$

$$s, y \ge 0$$

- Apply variants of Newton's method to solve h(x, s, y) = 0
- Enforce s, y > 0 (strictly) at every iteration
- Motivation avoid getting stuck in "corners"

Issue

Pure **Newton's step** does not allow significant progress towards h(x, s, y) = 0 and $x, y \ge 0$.

Smoothed optimality conditions

Optimality conditions

$$Ax + s - b = 0$$

$$A^{T}y + c = 0$$

$$s_{i}y_{i} = \tau \quad \leftarrow \quad \text{Same } \tau \text{ for every pair } s, y \geq 0$$

Same optimality conditions for a "smoothed" version of our problem

Central path

minimize
$$c^T x - \tau \sum_{i=1}^m \log(s_i)$$
 subject to
$$Ax + s = b$$

Set of points $(x^*(\tau), s^*(\tau), y^*(\tau))$ with $\tau > 0$ such that

$$Ax + s - b = 0$$

$$ATy + c = 0$$

$$siyi = \tau$$

$$s, y \ge 0$$

Central path

minimize
$$c^Tx - \tau \sum_{i=1}^m \log(s_i)$$
 subject to $Ax + s = b$

Set of points $(x^{\star}(\tau), s^{\star}(\tau), y^{\star}(\tau))$ with $\tau > 0$ such that

$$Ax + s - b = 0$$

$$A^{T}y + c = 0$$

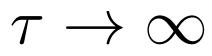
$$s_{i}y_{i} = \tau$$

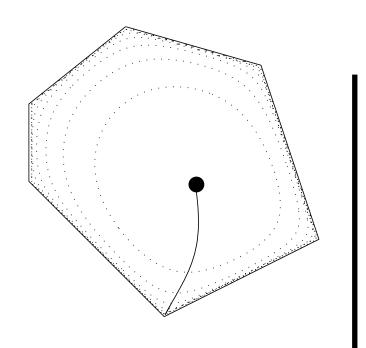
$$s, y \ge 0$$

Main idea

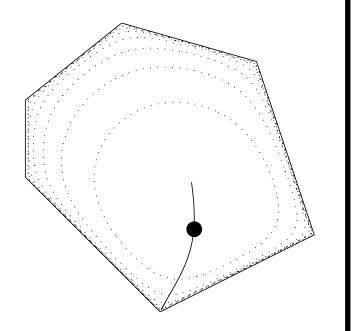
Follow central path as $\tau \to 0$

Analytic Center

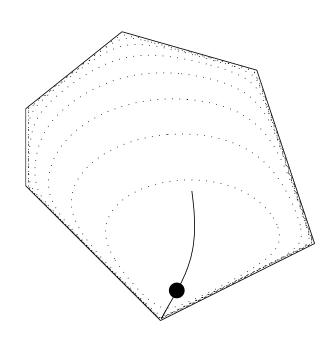




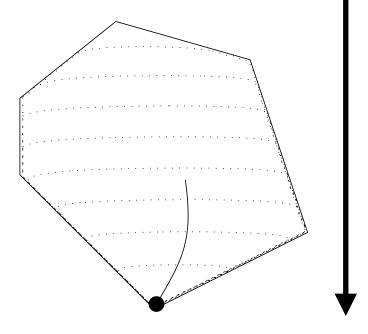
1000



1



1/5



1/100

 \mathcal{T}

49

Newton's method for smoothed optimality conditions

Smoothed optimality conditions

$$h_{ au}(x,s,y) = egin{bmatrix} Ax + s - b \ A^Ty + c \ SY\mathbf{1} - \tau\mathbf{1} \end{bmatrix} = 0$$

Newton's method for smoothed optimality conditions

Smoothed optimality conditions

$$h_{ au}(x,s,y) = egin{bmatrix} Ax + s - b \ A^Ty + c \ SY\mathbf{1} - au\mathbf{1} \end{bmatrix} = 0$$

Linear system

$$egin{bmatrix} 0 & A & I \ A^T & 0 & 0 \ S & 0 & Y \end{bmatrix} egin{bmatrix} \Delta y \ \Delta x \ \Delta s \end{bmatrix} = egin{bmatrix} -r_p \ -r_d \ -SY + au \mathbf{1} \end{bmatrix}$$

Line search to enforce x, s > 0

$$(x, s, y) \leftarrow (x, s, y) + \alpha(\Delta x, \Delta s, \Delta y)$$

Algorithm step

Linear system

$$\begin{bmatrix} 0 & A & I \\ A^T & 0 & 0 \\ S & 0 & Y \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta x \\ \Delta s \end{bmatrix} = \begin{bmatrix} -r_p \\ -r_d \\ -SY\mathbf{1} + \boldsymbol{\sigma}\mu\mathbf{1} \end{bmatrix} \qquad \text{Duality meas}$$

$$\mu = \frac{s^Ty}{m}$$

Duality measure

$$\mu = \frac{s^T y}{m}$$

Centering parameter

$$\sigma \in [0, 1]$$

Algorithm step

Linear system

$$\begin{bmatrix} 0 & A & I \\ A^T & 0 & 0 \\ S & 0 & Y \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta x \\ \Delta s \end{bmatrix} = \begin{bmatrix} -r_p \\ -r_d \\ -SY\mathbf{1} + \sigma\mu\mathbf{1} \end{bmatrix} \qquad \text{Duality meas}$$

$$\mu = \frac{s^Ty}{m}$$

Duality measure
$$\mu = \frac{s^T y}{m}$$

Centering parameter

$$\sigma \in [0,1]$$

$$\sigma = 0 \Rightarrow \text{Newton step}$$

$$\sigma = 1 \Rightarrow \text{Centering step towards } (x^*(\mu), s^*(\mu), y^*(\mu))$$

Algorithm step

Linear system

$$\begin{bmatrix} 0 & A & I \\ A^T & 0 & 0 \\ S & 0 & Y \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta x \\ \Delta s \end{bmatrix} = \begin{bmatrix} -r_p \\ -r_d \\ -SY\mathbf{1} + \sigma\mu\mathbf{1} \end{bmatrix} \qquad \text{Duality meas}$$

$$\mu = \frac{s^Ty}{m}$$

Duality measure

$$\mu = \frac{s^T y}{m}$$

Centering parameter

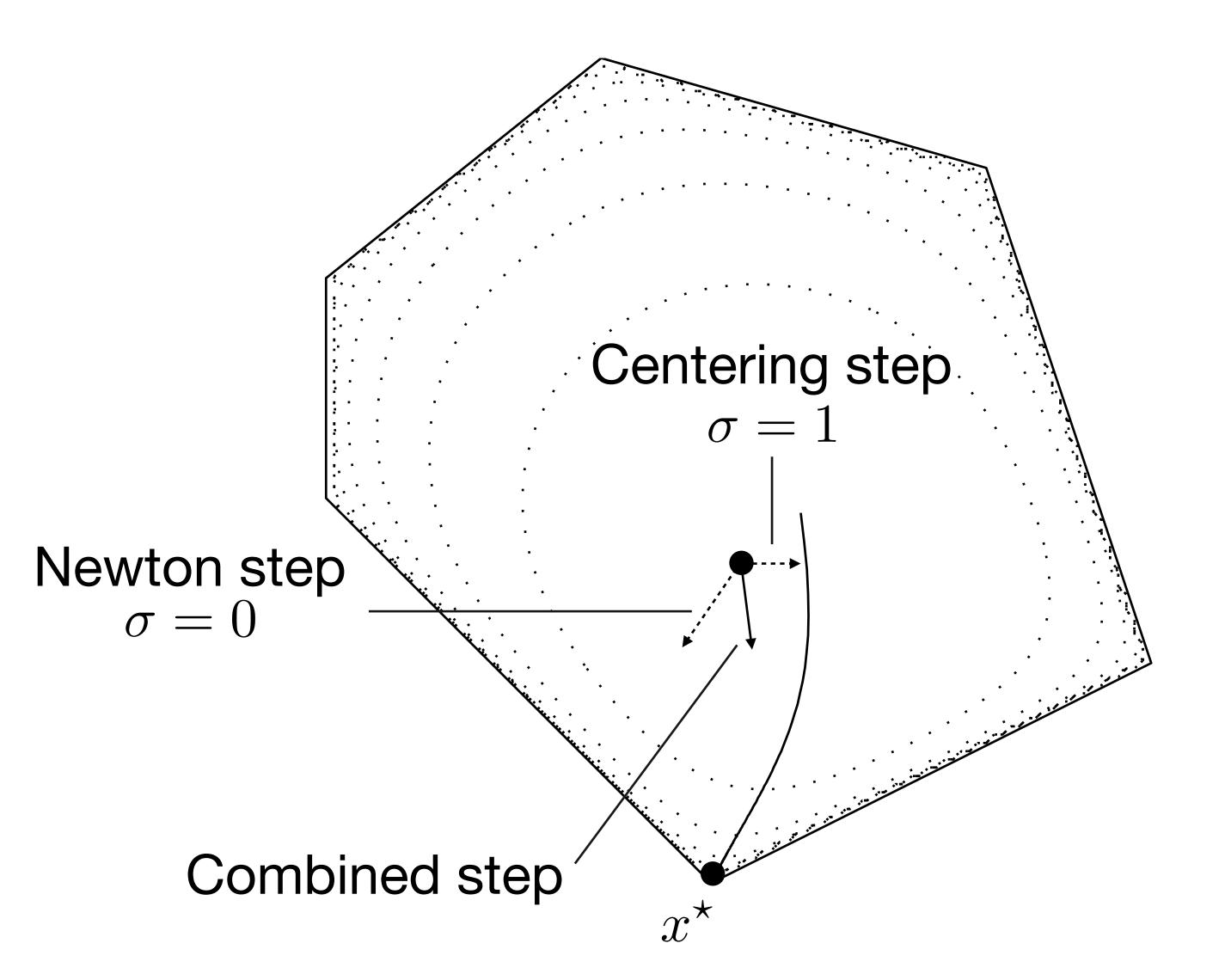
$$\sigma \in [0,1]$$

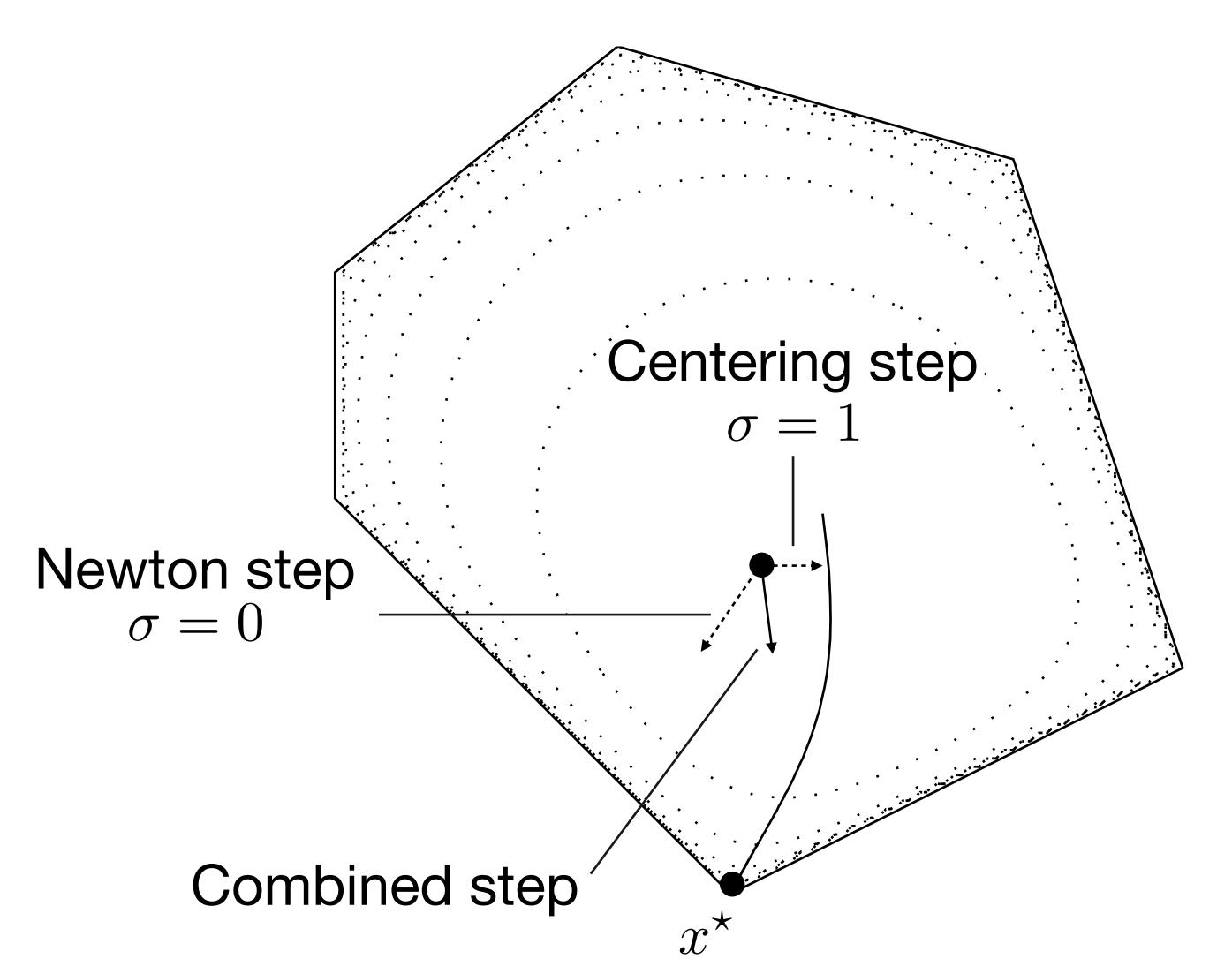
$$\sigma = 0 \Rightarrow \text{Newton step}$$

$$\sigma = 1 \Rightarrow \text{Centering step towards } (x^*(\mu), s^*(\mu), y^*(\mu))$$

Line search to enforce x, s > 0

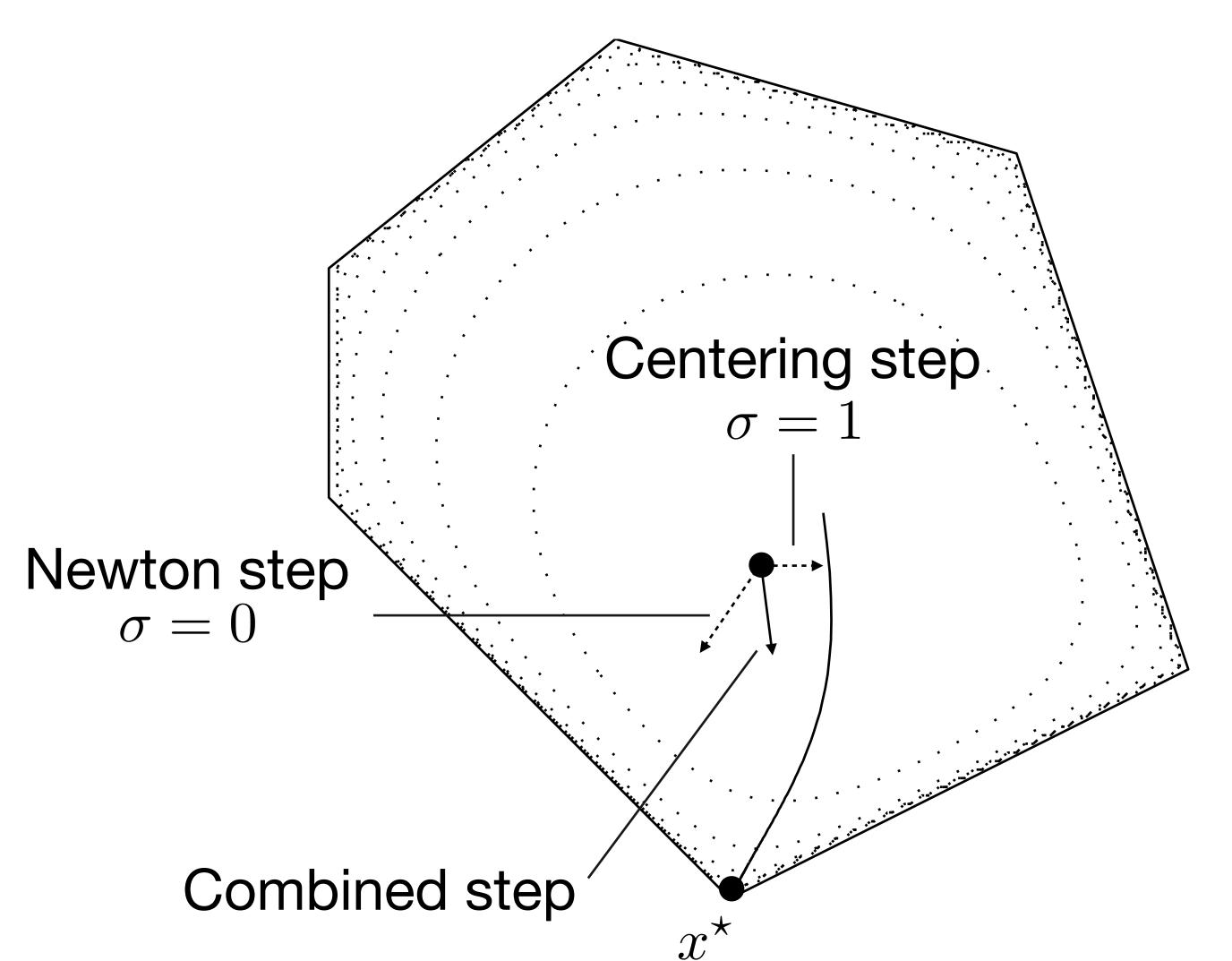
$$(x, s, y) \leftarrow (x, s, y) + \alpha(\Delta x, \Delta s, \Delta y)$$





Centering step

Moves towards the **central path** and is usually biased towards s,y>0. **No progress** on duality measure μ

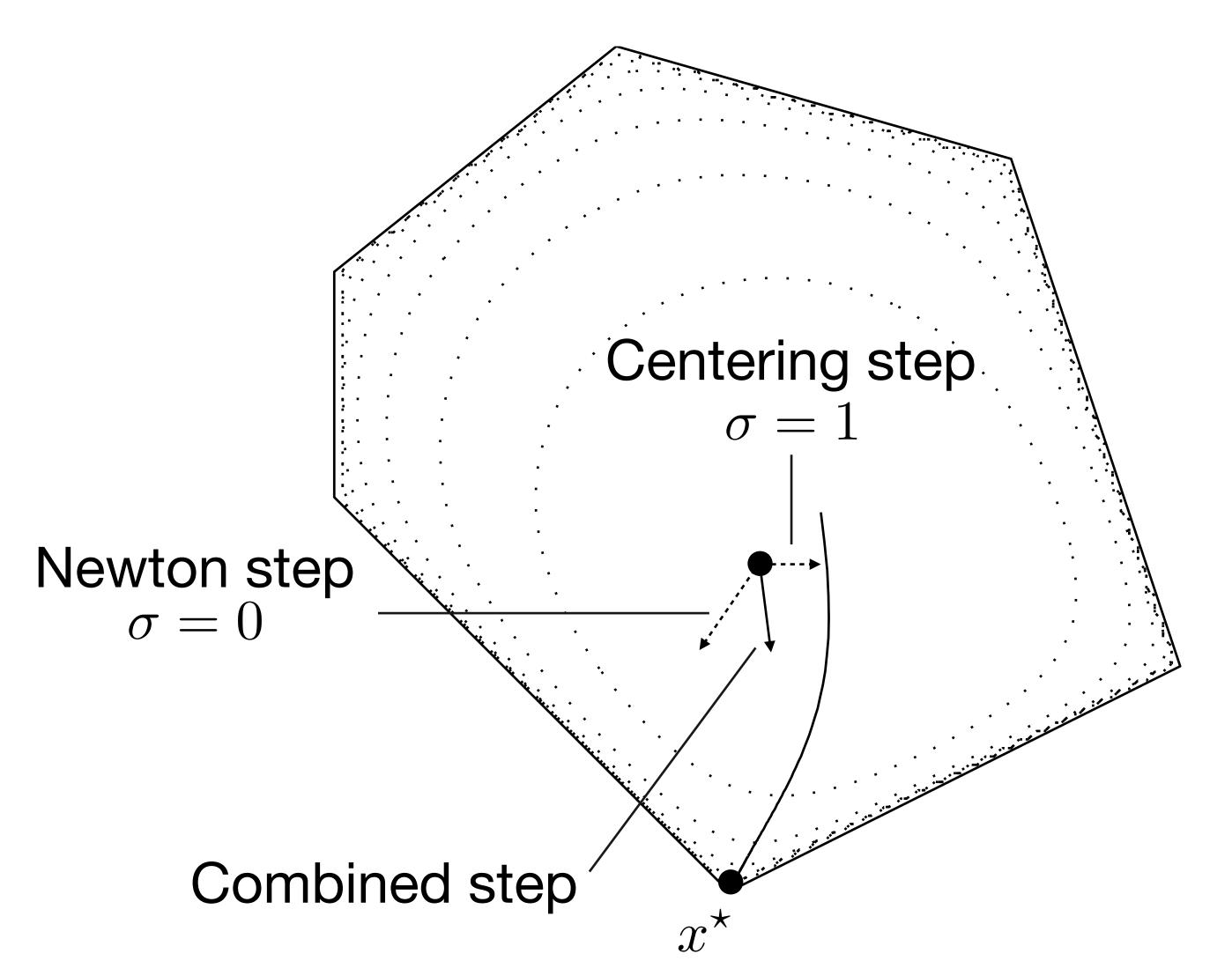


Centering step

Moves towards the **central path** and is usually biased towards s,y>0. **No progress** on duality measure μ

Newton step

Moves towards the **zero duality** measure μ . Quickly violates s, y > 0.



Centering step

Moves towards the **central path** and is usually biased towards s,y>0. **No progress** on duality measure μ

Newton step

Moves towards the **zero duality** measure μ . Quickly violates s, y > 0.

Combined step

Best of both, with longer steps.

Mehrotra's algorithm

No convergence theory ———— Examples where it **diverges** (rare!)

Mehrotra's algorithm

No convergence theory ————— Examples where it **diverges** (rare!)

Fantastic convergence in practice ——— Fewer than 30 iterations

Mehrotra's algorithm

No convergence theory ————— Examples where it **diverges** (rare!)

Fantastic convergence in practice ———— Fewer than 30 iterations

Theoretical iteration complexity

Alternative versions (slower than Mehrotra) converge in $O(\sqrt{n})$ iterations

Mehrotra's algorithm

No convergence theory ———— Examples where it **diverges** (rare!)

Fantastic convergence in practice ——— Fewer than 30 iterations

Theoretical iteration complexity

Alternative versions (slower than Mehrotra) converge in $O(\sqrt{n})$ iterations

Average iteration complexity

Average iterations complexity is $O(\log n)$

Mehrotra's algorithm

No convergence theory ———— Examples where it **diverges** (rare!)

Fantastic convergence in practice ——— Fewer than 30 iterations

Theoretical iteration complexity

Alternative versions (slower than Mehrotra) converge in $O(\sqrt{n})$ iterations

Operations

 $O(n^{3.5})$

Average iteration complexity

Average iterations complexity is $O(\log n)$

$$O(n^3 \log n)$$

Interior-point vs simplex

Primal simplex

Primal feasibility

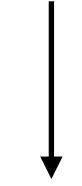
- Zero duality gap
- Dual feasibility

Primal simplex

- Primal feasibility
- Zero duality gap
- Dual feasibility

Dual simplex

Dual feasibility



- Zero duality gap
- Primal feasibility

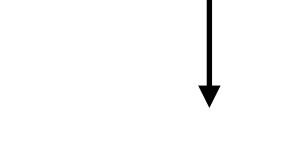
Primal simplex

Primal feasibility

- Zero duality gap
- Dual feasibility

Dual simplex

Dual feasibility



- Zero duality gap
- Primal feasibility

Exponential worst-case complexity

Requires feasible point

Can be warm-started

Primal simplex

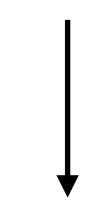
- Primal feasibility
- Zero duality gap
- Dual feasibility

Dual simplex

- Dual feasibility
- Zero duality gap
- Primal feasibility

Primal-dual interior-point

Interior condition



- Primal feasibility
- Dual feasibility
- Zero duality gap

Exponential worst-case complexity

Requires feasible point

Can be warm-started

Primal simplex

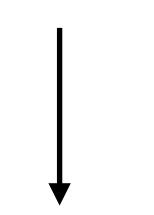
- Primal feasibility
- Zero duality gap
- Dual feasibility

Dual simplex

- Dual feasibility
- Zero duality gap
- Primal feasibility

Primal-dual interior-point

Interior condition



- Primal feasibility
- Dual feasibility
- Zero duality gap

Exponential worst-case complexity

Requires feasible point

Can be warm-started

Polynomial worst-case complexity

Allows infeasible start

Cannot be warm-started

Which algorithm should I use?

Dual simplex

- Small-to-medium problems
- Repeated solves with varying constraints

Interior-point (barrier)

- Medium-to-large problems
- Sparse structured problems

How do solvers with multiple options decide?

Concurrent Optimization

Why not both? (crossover)

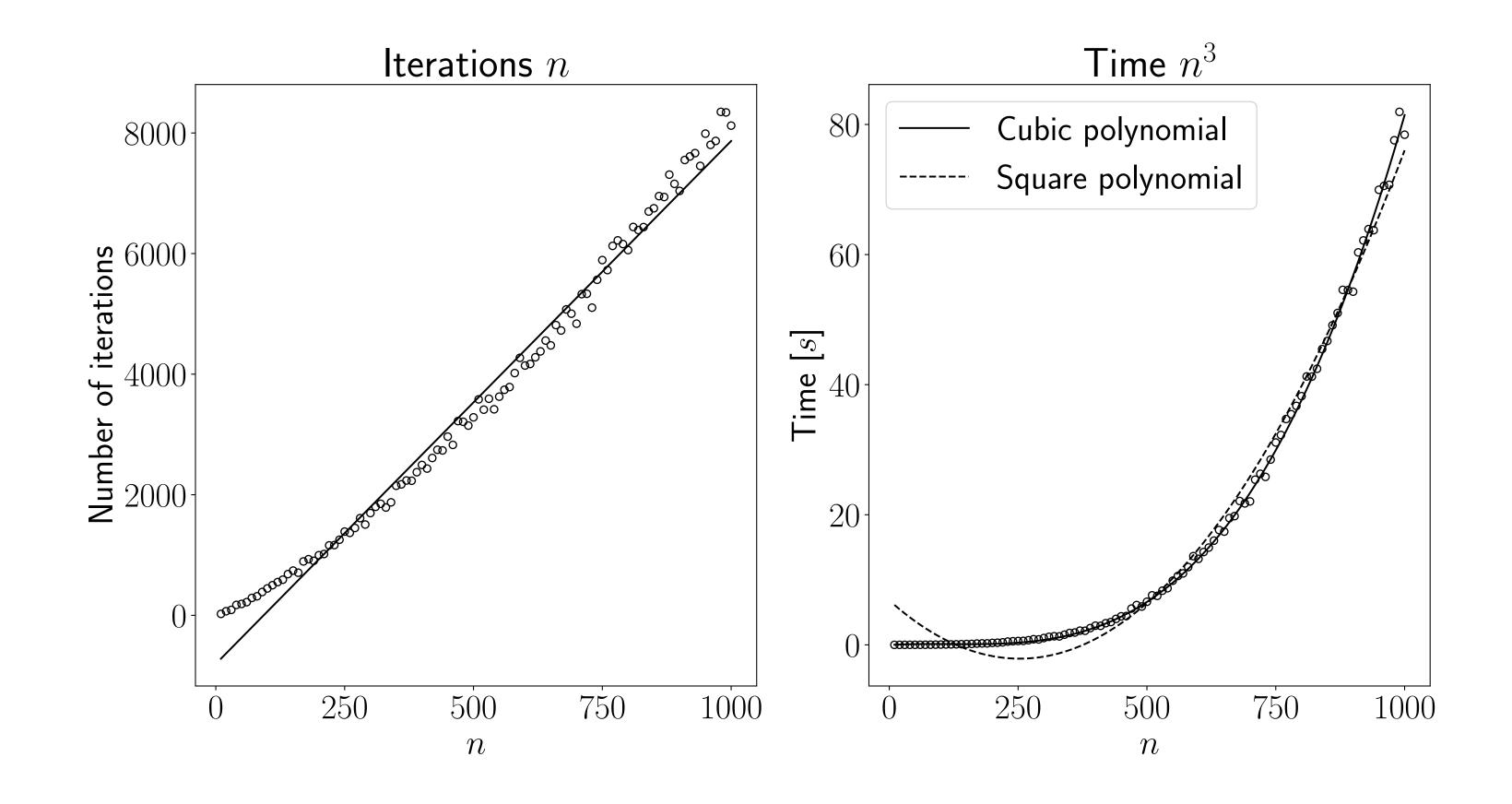
Interior-point —— Few simplex steps

Average simplex complexity

Random LPs

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$

n variables 3n constraints



Average interior-point complexity

Random LPs

minimize $c^T x$

n variables

subject to $Ax \leq b$ 3n constraints

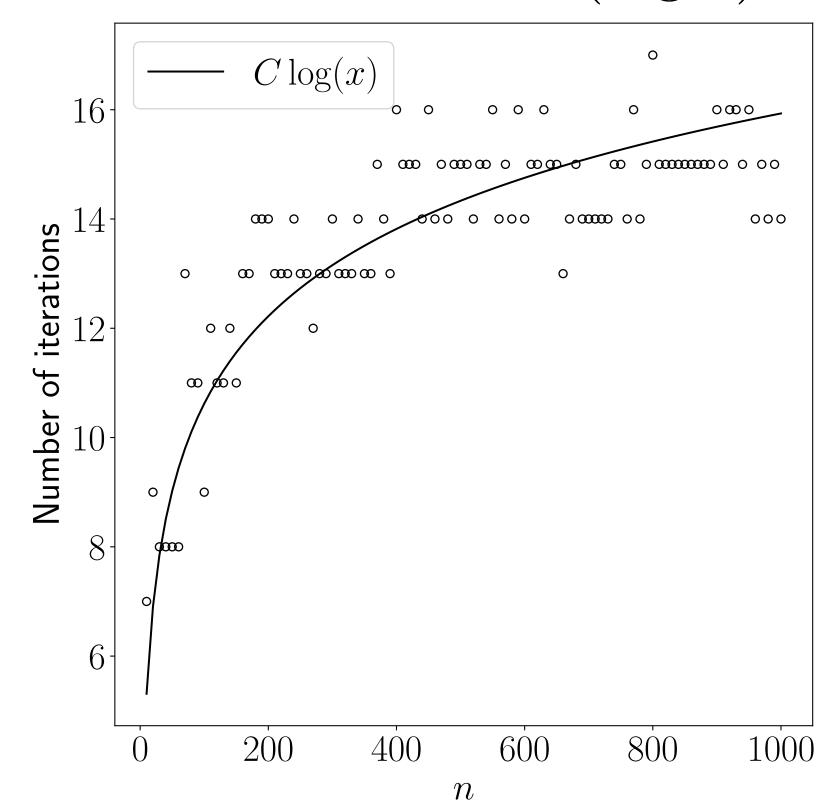
Average interior-point complexity

Random LPs

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$

n variables 3n constraints

Iterations: $O(\log n)$



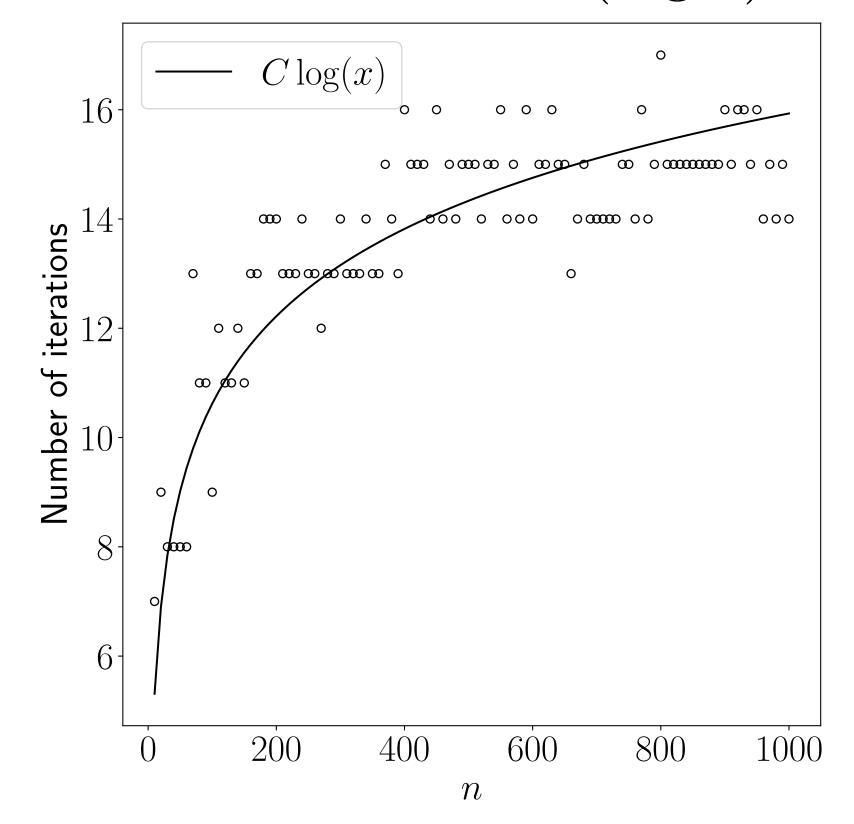
Average interior-point complexity

Random LPs

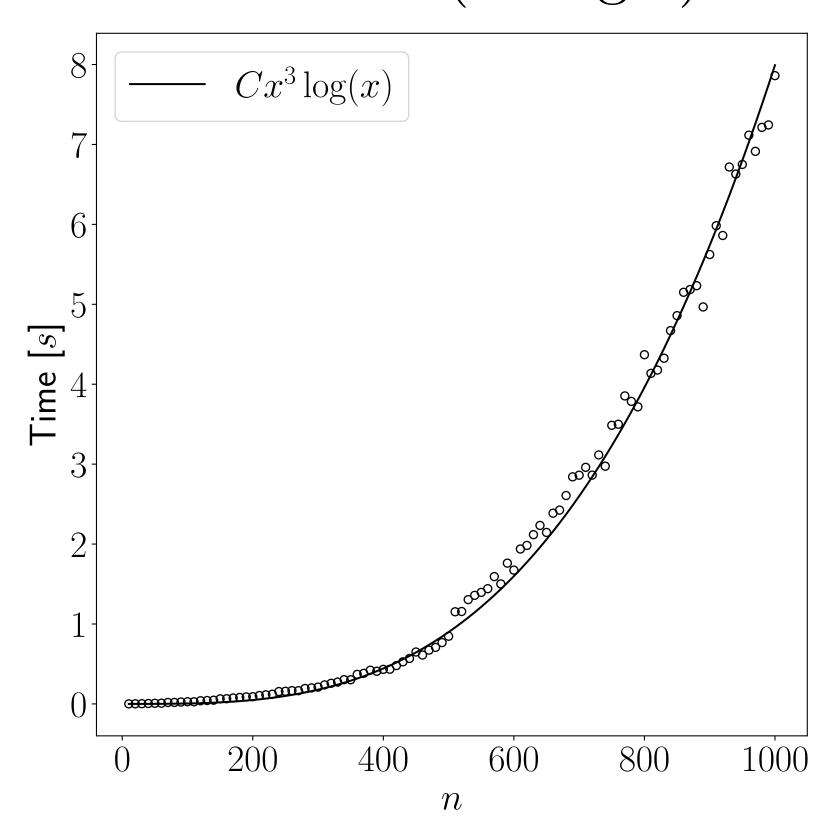
 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$

n variables 3n constraints

Iterations: $O(\log n)$



Time: $O(n^3 \log n)$



Questions

Next lecture

Integer optimization