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Today'’s lecture

Linear optimization review

 Formulations

* Plecewise linear optimization
* Duality

e Sensitivity analysis

e Simplex method

* |nterior point methods



Formulations



Qx> b
Linear optimization —Ja'xe-b \

minimize ¢!z e Minimization
subjectto Ax <b * | ess-than ineq. constraints
Dx =f * Equality constraints

z IS feasible if it satisfies the constraints Ax < band Dz = f

The feasible set is the set of all feasible points
r* is optimal if it is feasible and ¢! x* < ¢! x for all feasible z

The optimal value is p* = ¢! z*

Unbounded problem: ¢' = is unbounded below on the feasible set (p* = —o0)
Infeasible problem: feasible set is empty (p* = +00) 4



Feasibility problems

find x minimize 0
subjectto Ax <b —_ subjectto Az <b
Dx = f Dx = f

Possible results

 p* = 0 if constraints are feasible (consistent).
(Every feasible x is optimal)

» p* = oo otherwise



Standard form

Definition

minimize I r e Minimization

AK'S(DNB Ax-r&:’@

subjectto Ax =b * Equality constraints
350 x>0  Nonnegative variables
.t S o Useful to
Ay >0 » develop algorithms

» algebraic manipulations



Plecewise linear optimization



n

Plecewise-linear minimizatio
f(x)
minimize f(z) = max (a; x + b;)

minimize t
subjectto ajz+0b; <t, i1=1,...,m




Plecewise-linear minimization
f(x)

minimize f(z) = max (alz +b;)

minimize t
subjectto ajz+0b; <t, i1=1,...,m

0. Yo £ < b, Matrix notation
minimize ¢!z

(Q«» ~:5 [5(] subjectto A% < b

S
|

o
|

, A= NE

T = ,




1 and infinity norms reformulations

1-norm minimization:

minimize  |[Az — b1 = » |(Az —b);|

Equivalent to:
minimize 11 u
subjectto —u< Az —b<u

Absolute value of every element (Ax — b); is

bounded by a component of the vector «

oO-norm minimization:

minimize ||Az — b||oc = max |(Az — b;);)

[/

Equivalent to:
minimize t
subjectto —t1 < Ax —0b<t1

Absolute value of every element (Ax — b); is

bounded by the same scalar ¢



Duality



Lagrangian and duality

Primal
minimize c¢lzx
subjectto Az < b (c\ﬁ

Dual
maximize —bly
subjectto Aly+c=0
y >0

11



Lagrangian and duality

Primal
minimize clx
subjectto Ax <9

Dual function
g(y) = minimize (¢' = + y' (Az — b))

— —bly+ minimize (c+ ATy)T T

B —bly ife+Aty=0
| =00 otherwise

Dual
maximize —bly
subjectto Aly+c=0
y >0

11



Lagrangian and duality

Primal Dual
minimize ¢’z maximize —b"y
subjectto Az < b subjectto A'y+c¢=0
y > 0
Dual function Lagrangian
g(y) = minimize (¢' = + y' (Az — b)) L(z,y) =c =z +y"' (Az — b)

— —bly+ minimize (c+ ATy)T T

B —bly ife+Aty=0
| =00 otherwise



Lagrangian and duality

Primal Dual
minimize ¢’z maximize —b"y
subjectto Az < b subjectto A'y+c¢=0
y > 0
Dual function Lagrangian
g(y) = minimize (¢' = + y' (Az — b)) L(z,y) =c =z +y"' (Az — b)

— —bly+ minimize (c+ ATy)T T

B bty ifet+Aly=0 ———  V,L(z,y)=c+ A"y =0
|- otherwise



Karush-Kuhn-Tucker conditions

Optimality conditions for linear optimization

Primal Dual
minimize ¢!z maximize —b'y
subjectto Az < b subjectto Aly+c=0
y >0
Primal feasibility Ax < b
Dual feasibility Vol(z,y) =A'y+c=0 and y >0

Complementary slackness yi(Ar —0); =0, i=1,...,m
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General forms Inequality form LP

maximize —b'y
subjectto Aly+c=0
y >0

minimize clx
subjectto Az <b

Standard form LP
maximize —bly
subjectto ATy +c¢ >0

minimize c¢lx
subjectto Az =10
r >0

LP with inequalities and equalities
minimize ¢!z maximize —b'y— 'z
subjectto Ax < b subjectto Aly+Dlz+c=0
Dx=f y > 0



Weak duality

Theorem
If x,y satisty:

» x IS a feasible solution to the primal problem
» y IS a feasible solution to the dual problem

S

—bly<c'z

14



Weak duality

Theorem
If x,y satisty:

» x IS a feasible solution to the primal problem
» y IS a feasible solution to the dual problem

S

Proof
We know that Az < b, Ay + ¢ = 0andy > 0. Therefore,

0<y' (b—Ax)=by—y Ar=c'z+b'y

g (A% Ja) <O

—bly<c'z

14



Weak duality

Theorem
If x,y satisty:

» x IS a feasible solution to the primal problem T T
» y IS a feasible solution to the dual problem > b y~crx

Proof
We know that Az < b, Ay + ¢ = 0andy > 0. Therefore,

0<y' (b—Ax)=by—y Ar=c'z+b'y

Remark
» Any dual feasible y gives a lower bound on the primal optimal value

» Any primal feasible x gives an upper bound on the dual optimal value
- ¢!z 4+ bly is the duality gap

14



Weak duality

Corollaries

Unboundedness vs feasibility
* Primal unbounded (p* = —o0) = dual infeasible (d* = —o0)
* Dual unbounded (d* = +o0) = primal infeasible (p* = +o0)

15



Weak duality

Corollaries

Unboundedness vs feasibility
* Primal unbounded (p* = —o0) = dual infeasible (d* = —o0)
* Dual unbounded (d* = +o0) = primal infeasible (p* = +o0)

Optimality condition

If x, y satisfy:
» x IS a feasible solution to the primal problem
» y Is a feasible solution to the dual problem
- The duality gap is zero, i.e., cl'z + bl y =0

Then x and y are optimal solutions to the primal and dual problem respectively .



Strong duality

Primal Dual
minimize ¢!z maximize —bly
subjectto Az =b subjectto Aly4+c¢>0
xr > 0

Theorem

If a linear optimization problem has an optimal solution, then

* SO does Its dual

» the optimal values of the primal and dual are equal

16



Relationship between primal and dual

d* = 400

primal inf.
dual unb.

p* finite

d* finite

optimal values equal

d*

— OO

exception

primal unb.
dual inf

17



Complementary slackness

Primal Dual
minimize ¢’z maximize —b"y
subjectto  Ax < b subjectto A’y +c=0
y > 0

Theorem
Primal,dual feasible x, y are optimal if and only if

yi(lbj —a; ) =0, i=1,...,m
l.e., at optimum, b — Az and y have a complementary sparsity pattern:

Yy, >0 = CLTZE:bZ

(/

CL?ZL‘<bi = y; = 0

18



Complementary slackness

Primal Dual
minimize cla maximize —bly \
subjectto Az < b subjectto A'y+c=0 —»® Cs- Aj
B >0 —
Yy =

Proof
The duality gap at primal feasible x and dual feasible y can be written as

crx4+by=(—Ay) ' x+by=(b—Az)' y = Z yi(b; —a; ) =0
i=1

19



Complementary slackness

Primal Dual
n n " n n T
minimize Lo maximize —b"y

subjectto [Az < subjectto A"y +c=0
e
Proof

The duality gap at primal feasible x and dual feasible y can be written as

crx4+by=(—Ay) ' x+by=(b—Az)' y = Z yi(b; —a; ) =0
=125 A0
Since all the elements of the sum are nonnegative, they must all be 0

19



Complementary slackness

Primal Dual
minimize ¢’z maximize —b"y
subjectto  Ax < b subjectto A’y +c=0
y > 0

Proof
The duality gap at primal feasible x and dual feasible y can be written as

crx4+by=(—Ay) ' x+by=(b—Az)' y = Z yi(b; —a; ) =0
i=1

Since all the elements of the sum are nonnegative, they must all be 0

For feasible r and y complementary slackness = zero duality gap

19



Example minimize —4x1 — dxo
R 0> NSk F:D Y
o L. A
2 1 . C =€©
subject to . < ) U N
0 —1 T9 0 Cj >0
1 2 3
A b
Let’s show that feasible x = (1, 1) is optimal
A0

3} ~ 2 AW

3 &% AL INS

20



Example

minimize

subject to

—4%1 — 55172

1

Let’s show that feasible x = (1, 1) is optimal

VA
W O W O

Second and fourth constraints are activeat t —— y = (0, 92,0, y4)

Aty = —c

—

4
O

and

yZZov

yqs = 0

20



Example

minimize

subject to

—4x1 — dDxo
—1 0
2 1
0 -1
1 2

Let’s show that feasible x = (1, 1) is optimal

VA
W O W O

Second and fourth constraints are activeat t —— vy = (0, y2,0, y4)

2 1| [

Aly=— =
_1 2_ Ya

4
O

and

yQZov

yqs = 0

y = (0, 1,0, 2) satisfies these conditions and proves that z is optimal



Example

g;\ Cb& - Q}% ~C  subject to

\, ¢

\

minimize

—4%1 — 55172

—1

Let’s show that feasible x = (1, 1) is optimal

tmax. _ G
g
- M. Ay 0
561_ 3 (3>/0
<
33‘2_ 10
_3_

Second and fourth constraints are activeat t —— vy = (0, y2,0, y4)

o
Aly=— =

I 2

4
O

and Y2 Z 07 Y4 Z 0

y = (0, 1,0, 2) satisfies these conditions and proves that z is optimal

Complementary slackness is useful to recover y* from x* 20



Geometric interpretation

Example in R? “, —c

Two active constraints at optimum: aipaz* = by, agx* = by



Geometric interpretation

Example in R? “, —c

Two active constraints at optimum: aipaz* = by, agx* = by

Optimal dual solution y satisfies:
ATy_I_C:Ov y > 0, yZ:OfOrZ#{l,Q}

In other words, —c = a1y1 + asys With y1,y2 > 0
21



Sensitivity analysis



Changes in problem data

Goal: extract information from x*,y* about their sensitivity with respect to
changes in problem data

Modified LP
minimize L r Optimal value function
subjectto Ar=0b+u p*(vw) =min{c' 2 | Ax = b+ u, = > 0}

r > 0

23



Changes in problem data

Goal: extract information from x*,y* about their sensitivity with respect to
changes in problem data

Modified LP

minimize ¢ r Optimal value function
subjectto Ar=0b+u p*(vw) =min{c' 2 | Ax = b+ u, = > 0}

xr > 0

Assumption: p*(0) is finite
Properties
* p*(u) > —oo everywhere (from global lower bound)
* p*(u) is piecewise-linear on its domain 23



Global sensitivity

Dual of modified LP

maximize
subject to

—(b+u)'y
Aty +¢>0

24



Global sensitivity

Dual of modified LP
maximize —(b+u)'y
subjectto ATy +c¢ >0

Global lower bound

Given y* a dual optimal solution for u = 0, then

p*(u) > —(b+u)"y*
=p*(0) —u'y*

(from weak duality and
dual feasibility)

24



Global sensitivity

Dual of modified LP
maximize —(b+u)'y
subjectto ATy +c¢ >0

Global lower bound

Given y* a dual optimal solution for u = 0, then

p*(u) > —(b+u)"y*
=p*(0) —u'y*

It holds for any u

(from weak duality and
dual feasibility)

24



Local sensitivity

uw In neighborhood of the origin

Original LP Optimal solution
minimize clx Primal zi =0, 1 ¢ b
subjectto Az =06 —— T = Aélb

r >0 Dual y* = —Ag5" cp

25



Local sensitivity

uw In neighborhood of the origin

Original LP Optimal solution
minimize <Lz orimal ¢ 0, 1¢D
subjectto Ar=6 ——m T = A;b

r >0 Dual y* = —Ag5" cp
Modified LP Modified dual
minimize c¢'x maximize —(b+u)'y

subjectto Az =0+ u subjectto ATy +c >0
xr > 0

Optimal basis
does not change

25



Local sensitivity

uw In neighborhood of the origin

Original LP Optimal solution
minimize ¢’z Primal ri=0, i¢B
subjectto Ar=6 ——m TR = Aélb

r >0 Dual y* = —Ag5" cp
Modified LP Modified dual
minimize ¢’z maximize —(b+u)"y
subjectto Az = b+ u subjectto ATy +c >0
x > 0

Modified optimal solution
rp(u) = A (b+u) = 2 + A5l u
y (u) =y

Optimal basis
does not change

25



Derivative of the optimal value function

Modified optimal solution
v (u) = A (b+u) = 2% + Ag'u
y (u) =y

20



Derivative of the optimal value function

Modified optimal solution

vy (u) = Ag'(b+u) = o + Aglu

y (u) =y

Optimal value function

p*(u)

¢t x*(u)

c' ¥+ cp AL u

p*(0) —y*" u

(affine for small u)

20



Derivative of the optimal value function

Modified optimal solution
v (u) = A (b+u) = 2% + Ag'u

\ e\ y*(u) = y°
\ s<* Optimal value function

p*(u) = ¢ z*(u)
=c'a* + cg ALl u

= p*(0) — y*Tu (affine for small u)

— Local derivative

Vp*(u) = —y* (y* are the shadow prices) o



Network flow optimization



Arc-node incidence matrix

m X n matrix A with entries

1 If arc 7 starts at node
A;; = ¢ —1 Ifarcjends at node :
0 otherwise

Note Each column has
one —1 and one 1



Arc-node incidence matrix

m X n matrix A with entries

1 If arc 7 starts at node

Aij — —1
0 otherwise

Note Each column has
one —1 and one 1

If arc j ends at node 1

—1

o O = O O

o = O O

o O O O =




External supply

supply vector b € R™

» b; IS the external supply at node ¢
(if b; < O, it represents demand)
» We must have 1715 = 0

(total supply = total demand)

29



External supply

supply vector b € R™

» b; IS the external supply at node ¢
(if b; < O, it represents demand)
» We must have 1715 = 0

(total supply = total demand)

Balance equations

ZAijxj — (ACC)Z — bz', for all ¢
j=1

29



External supply

supply vector b € R™

» b; IS the external supply at node ¢
(if b; < O, it represents demand)
» We must have 1715 = 0

(total supply = total demand)

Balance equations

ZAijxj — (ACC)Z — bz', for all ¢
j=1

Total leaving
flow

29



External supply

supply vector b € R™

» b; IS the external supply at node ¢
(if b; < O, it represents demand)
» We must have 1715 = 0

(total supply = total demand)

Balance equations

ZAZJQJJ — — b;, foralli

7=1 / \

Total leaving Supply
flow

29



External supply

supply vector b € R™

» b; IS the external supply at node ¢
(if b; < O, it represents demand)
» We must have 1715 = 0

(total supply = total demand)

Balance equations

ZAZJQJJ — — b;, foralli

7=1 / \

Total leaving Supply
flow

Axr =0

29



Minimum cost network flow problem

minimize c¢lx
subjectto Ax =10
0<zxx<u

* ¢; Is unit cost of flow through arc :
* Flow x; must be nonnegative
» u; I1s the maximum flow capacity of arc ¢

» Many network optimization problems are just special cases

30



Integrality theorem

Given a polyhedron P={zxeR"|Az =0, x>0}

where

» A Is totally unimodular
* b IS an integer vector

all the extreme points of P
are integer vectors.

31



Integrality theorem
Given a polyhedron P={zceR"|Az =0, x>0}

where
» A Is totally unimodular all the extreme points of P
* b IS an Integer vector are integer vectors.

Proof

» All extreme points are basic feasible solutions
with xg = Az'band z; =0, i # B
- A" has integer components because of total unimodularity of A
* b has also integer components
 Therefore, also z Is integral B

31



Maximum flow problem

Goal maximize flow from node 1 (source)
to node m (sink) through the network

/\@

subject to A:C — te e=(1,0,...,0,—1)
0<x<u

32



Maximum flow as minimum cost flow

oY i

p
\ Artificial arc n + 1

minimize  —t
: i 1 XL
subjectto |A —e¢ T 0
L _u_
)< <




Shortest path problem

Goal Find the shortest path between nodes 1 and m

/<> - paths can be represented
\/\ as vectors z € {0,1}"

34



Shortest path problem

Goal Find the shortest path between nodes 1 and m

/<> - paths can be represented
\/\ as vectors z € {0,1}"

Formulation . ¢; is the “length” of arc j
minimize ¢!z » ¢e=(1,0,...,0,—1)
subjectto Az = e - Variables are binary

r € {0,11" (include or not arc in path)

34



Shortest path as minimum cost flow

minimize ¢!z
subjectto Ax =ce¢
re{0,1}"

35



Shortest path as minimum cost flow

Relaxation
minimize ¢!z minimize ¢!z
subjectto Ax =-e¢ EE— subjectto Ax =-e

r e {0,1}" 0<z<1

35



Shortest path as minimum cost flow

Relaxation
minimize ¢’z minimize c'x
subjectto Ax =-e¢ EE— subjectto Ax =-e
r e {0,1}" 0<zx<1

T

Extreme points
satisfy x; € {0,1}

35



Shortest path as minimum cost flow

Relaxation
minimize ¢’z minimize ¢’z
subjectto Az =ce¢ — subjectto Az =ce¢

r e {0,1}" 0<zx<1
T

Extreme points

tisty x; 1
Example (arc costs shown) satisfy z; € 10, 1}

12
11 / () 15
a2 T

11




Shortest path as minimum cost flow

Relaxation
minimize c¢lx minimize c¢lx
subjectto Az =ce¢ — subjectto Az =ce¢

r e {0,1}" 0<zx<1

Extreme points
satisfy x; € {0,1}

Example (arc costs shown)

c=(11,8,10,12,4,11,7,15,4)
z* =(0,1,0,0,0,1,0,0,1)

=924

35



Simplex method



Optimality of extreme points

minimize ¢!z
subjectto Ax =0
xr > 0

i P has at least one extreme point
» There exists an optimal solution =*

Then, there exists an optimal solution which is an extreme point of P

We only need to search between extreme points

37



Equivalence

Theorem

Given a nonempty polyhedron P = {z | Ax = b, x > 0}

Let z € P

r 1S a vertex <« x Is an extreme point «<— =z is a basic feasible solution

38



Constructing basic solution

1. Choose any m independent columns of A: Ag(1y,..., Apm)
2. Letx;, =0foralli# B(1),...,B(m)
3. Solve Ax = b for the remaining (1), .., TB(m)

Basis Basis columns Basic variables

matrix r - i i

| | | B()
AB — AB(l) AB(Q) Co AB(m) y LB = — Solve ABCCB = b

- | | ZB(m).

If t5 > 0, then z Is a basic feasible solution
39



Conceptual algorithm

e Start at corner

* Visit neighboring corner that
Improves the objective

40



How does the cost change?

Cost improvement
cl(x+0d) — ¢tz = 0c'd

41



How does the cost change?

Cost improvement
cl (x+0d) — c'z = 0c'd

/

New cost

41



How does the cost change?

Cost improvement
cl(x+0d) —c'z = 0c'd

N

New cost Old cost

41



How does the cost change?

Cost improvement
cl(x+0d) —c'z = 0c'd

N

New cost Old cost

We call ¢; the reduced cost of
(introducing) variable z; in the basis

n
;i =c d= E cid; =c; +cgdp =cj —cgAg A,
i=1

41



Optimality conditions

Theorem

Let £ be a basic feasible solution associated with basis B
Let ¢ be the vector of reduced costs.

If ¢ > 0, then z Is optimal

42



Optimality conditions

Theorem

Let £ be a basic feasible solution associated with basis B
Let ¢ be the vector of reduced costs.

If ¢ > 0, then z Is optimal

Remark
This is a stopping criterion for the simplex algorithm.

If the neighboring solutions do not improve the cost, we are done

42



Single simplex iteration

1. Compute the reduced costs ¢

» Solve Agp = CB
»c=c— Alp

2. If ¢ > 0, x optimal. break

3. Choose j such that ¢c; < 0

4.

. Compute step length 6 =  min ( xZ)

Compute search direction d with
dj — 1 and ABdB — —Aj

. If dg > 0, the problem is unbounded

and the optimal value Is —oo. break

{1€B|d; <0} dz

. Define y such that y = = + 6*d

. Get new basis B (i exits and j enters)

43



Single simplex iteration

1. Compute the reduced costs ¢

» Solve Agp = CB
»c=c— Alp

2. If ¢ > 0, x optimal. break

3. Choose j such that ¢c; < 0

Bottleneck
Two linear systems

4.

. Compute step length 6 =  min ( xZ)

Compute search direction d with
dj — 1 and ABdB — —Aj

. If dg > 0, the problem is unbounded

and the optimal value Is —oo. break

{1€B|d; <0} dz

. Define y such that y = = + 6*d

. Get new basis B (i exits and j enters)

43



Single simplex iteration

1. Compute the reduced costs ¢

» Solve Agp — CRB
»c=c— Alp

2. If ¢ > 0, x optimal. break

3. Choose j such that ¢c; < 0

Bottleneck
Two linear systems

4.

——

. Compute step length 6 =  min ( xZ)

Compute search direction d with
dj — 1 and ABdB — —Aj

. If dg > 0, the problem is unbounded

and the optimal value Is —oo. break

{1€B|d; <0} dz

. Define y such that y = = + 6*d

. Get new basis B (i exits and j enters)

Matrix inversion lemma trick
~ n° per iteration
(very cheap)

43



Single simplex iteration

1. Compute the reduced costs ¢

» Solve Agp — CRB
»c=c— Alp

2. If ¢ > 0, x optimal. break

3. Choose j such that ¢c; < 0

Bottleneck

Two linear systems

4.

——

. Compute step length 6 =  min ( xZ)

Compute search direction d with
dj — 1 and ABdB — —Aj

. If dg > 0, the problem is unbounded

and the optimal value Is —oo. break

{1€B|d; <0} dz

. Define y such that y = = + 6*d

. Get new basis B (i exits and j enters)

Matrix inversion lemma trick
~ n° per iteration
(very cheap)

How many iterations do we need? 43



Complexity of the simplex method

We do not know any polynomial | _
version of the simplex method, ———  Still open research question!

no matter which pivoting rule we pick.

44



Complexity of the simplex method

We do not know any polynomial | _
version of the simplex method, ———  Still open research question!

no matter which pivoting rule we pick.

Worst-case

There are problem instances where the simplex method will run an exponential
number of iterations in terms of the dimensions, e.g. 2"

44



Complexity of the simplex method

We do not know any polynomial | _
version of the simplex method, ———  Still open research question!

no matter which pivoting rule we pick.

Worst-case

There are problem instances where the simplex method will run an exponential
number of iterations in terms of the dimensions, e.g. 2"

Good news: average-case

Practical performance is very good. On average, it stops in n iterations.
44



Interior point method



Optimality conditions

Primal

minimize ¢!l x

subjectto Az +s=5b
s >0
KKT conditions
Ar +s—b =0
Aly+c=0
Siyi:()a 221,

s,y >0

Dual

maximize —bly

subjectto A‘y+c=0

y >0
_3/1
S2 Y2
Y =
Sm _ Ym |

— SY1=0

46



Main idea

h(z,s,y)=| Aly+c
SY1

s,y >0

Ar+s—b

S = diag(s)
Y = diag(y)

» Apply variants of Newton’s method to solve h(x, s,y) = 0

» Enforce s,y > 0 (strictly) at every iteration
- Motivation avoid getting stuck in “corners”

47



Main idea

h(z,s,y)=| Aly+c
SY1

s,y >0

Ar+s—b

S = diag(s)
Y = diag(y)

» Apply variants of Newton’s method to solve h(x, s,y) = 0

» Enforce s,y > 0 (strictly) at every iteration
- Motivation avoid getting stuck in “corners”

Issue

Pure Newton’s step does not allow significant progress towards

h(z,s,y) =0and xz,y > 0.
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Smoothed optimality conditions

Optimality conditions

Ar+s—b=0

Aty+c=0
S;y; =T <+—— Same 7 for every pair

s,y >0

Same optimality conditions for a “smoothed” version of our problem
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Central path

minimize c¢lx— 71 Zzl log(s;)
subjectto Az +s=50

Set of points (z*(7), s*(7),y* (7))
with 7 > 0 such that

Ar+s—b=0
Aty +c=0
SiYi = T

s,y > 0
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Analytic

Central path Center 1000
T — OO
minimize ¢’z — 7> " log(s;)
subjectto Az +s=50 |
Set of points (z*(7), s*(7),y* (7))
with 7 > 0 such that
Ar+s5s—-0=0 1/5
Aty +c=0
SiYi = T
s,y > 0
Main idea 1/100
T 49

Follow central pathas  — 0



Newton’s method for smoothed optimality conditions

Smoothed optimality conditions

he(x,s,y)=| Aly4+c | =0
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Newton’s method for smoothed optimality conditions

Smoothed optimality conditions

he(z,s,y) =

Linear system

0 A I
AT 0 0
S 0 Y

Axr+s—0b
Aly+c | =0
SY1—71
s,y >0
Ay —T) )
Ax| = —7ry
As —SY + 71

Line search to enforce x,s > 0
(,8,y) < (@, 5,y) + a(Az, As, Ay)
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Algorithm step

Linear system

0 A I| |Ay —r, Duality measure
A0 0| |Az| = —Tg = sty
S 0 Y| |As —SY1+oul m

Centering parameter
o€ |0,1]
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Algorithm step

Linear system

0 A I| |Ay —r, Duality measure
A0 0| |Az| = —Tg = sty
S 0 Y| |As —SY1+oul m

Centering parameter =0 = Newton step
o€ 0,1 c=1 = (Centering step towards (x* (), s* (1), y* (1))
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Algorithm step

Linear system

0 A I| |Ay —r, Duality measure
A0 0| |Az| = —Tg = sty
S 0 Y| |As —SY1+oul m

Centering parameter =0 = Newton step
o€ 0,1 c=1 = (Centering step towards (x* (), s* (1), y* (1))

Line search to enforce x,s > 0
(z,8,y) < (z,5,y) + a(Az, As, Ay) 1



Path-following algorithm idea
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Path-following algorithm idea

Centering step
Moves towards the central path
T and is usually biased towards s,y > 0.
R SRR No progress on duality measure u

~Centering step. "}
| o9 G

Newton step <, -

Combined step



Path-following algorithm idea

Newton step . -

-y

~Centering step. "}

o=1

|

o =0

Combined step

’I

Centering step

Moves towards the central path
and Is usually biased towards s,y > 0.
No progress on duality measure u

Newton step

Moves towards the zero duality
measure .. Quickly violates s,y > 0.
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Path-following algorithm idea

Newton step .

-y

~Centering step. "}

o=1

|

o =0

Combined step

’I

Centering step

Moves towards the central path
and Is usually biased towards s,y > 0.
No progress on duality measure u

Newton step

Moves towards the zero duality
measure .. Quickly violates s,y > 0.

Combined step
Best of both, with longer steps.
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Convergence

Mehrotra’s algorithm

No convergence theory ——— Examples where it diverges (rare!)
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Convergence

Mehrotra’s algorithm

No convergence theory ——— Examples where it diverges (rare!)

Fantastic convergence in practice — Fewer than 30 iterations

Theoretical iteration complexity
Alternative versions (slower than Mehrotra)

converge in O(4/n) iterations
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Convergence

Mehrotra’s algorithm

No convergence theory ——— Examples where it diverges (rare!)

Fantastic convergence in practice — Fewer than 30 iterations

Theoretical iteration complexity
Alternative versions (slower than Mehrotra)

converge in O(4/n) iterations

Average iteration complexity
Average iterations complexity is O(logn)
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Convergence

Mehrotra’s algorithm

No convergence theory ——— Examples where it diverges (rare!)

Fantastic convergence in practice — Fewer than 30 iterations

Theoretical iteration complexity Operations
Alternative versions (slower than Mehrotra) e
— O(n”°)

converge in O(4/n) iterations

Average iteration complexity
Average iterations complexity is O(log n) — O(n”logn)

53



Interior-point vs simplex



Comparison between interior-point method and simplex
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Comparison between interior-point method and simplex

Primal simplex

+ Primal feasibility

|

» Zero duality gap
» Dual feasibility
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Comparison between interior-point method and simplex

Primal simplex Dual simplex

* Primal feasiblility * Dual feasibility

|

» Zero duality gap » Zero duality gap
» Dual feasibility * Primal feasibility
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Comparison between interior-point method and simplex

Primal simplex Dual simplex

* Primal feasiblility * Dual feasibility
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» Zero duality gap » Zero duality gap
» Dual feasibility * Primal feasibility

Exponential worst-case complexity
Requires feasible point

Can be warm-started e



Comparison between interior-point method and simplex

Primal simplex Dual simplex Primal-dual interior-point

. Primal feasibility ~ « Dual feasibility * Interior condition

| |

* Primal feasiblility
* Dual feasiblility
e Zero duality gap

» Zero duality gap » Zero duality gap
» Dual feasibility * Primal feasibility

Exponential worst-case complexity
Requires feasible point

Can be warm-started e



Comparison between interior-point method and simplex

Primal simplex Dual simplex Primal-dual interior-point

. Primal feasibility ~ « Dual feasibility * Interior condition

| |

. Primal feasibility

 Zero duality gap » Zero duality gap . Dual feasibility

» Dual feasibility * Primal feasibility . Zero duality gap
Exponential worst-case complexity Polynomial worst-case complexity
Requires feasible point Allows Infeasible start

Can be warm-started Cannot be warm-started e



Which algorithm should | use?

Dual simplex Interior-point (barrier)

o Small-to-medium problems  Medium-to-large problems
 Repeated solves with varying constraints e Sparse structured problems

How do solvers with multiple options decide?

Concurrent Optimization

Why not both? (crossover)

Interior-point —  Few simplex steps
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Average simplex complexity

Random LPs minimize ¢!« n variables
subjectto Az <b 3n constraints
lterations n Time n°
3000 i —— Cubic polynomial °
-------- Square polynomial

0 6000
iq"c:: 4000-
£
= 2000

O_

0 250 500 750 1000 0 250 500 750 1000

n n



Average interior-point complexity

Random LPs

minimize
subject to

CTZE

Ax < b

n variables
3n constraints
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Average interior-point complexity

Random LPs minimize ¢’ n variables
subjectto Az <b 3n constraints

Iterations: O(logn)

— C(C'log(x)

oo

— — — —
- N) SEN @)

Number of iterations

0

@)

0 200 400 600 00 1000
n



Average interior-point complexity
Random LPs

—_
D

Number of iterations

0

@)

minimize
subject to

Iterations: O(logn)

—_
I

—_
DO

—_
-

— C(C'log(x)

oo

0 200 400

(1

600

300

1000

CTZE

Ax < b

n variables
3n constraints

Time: O(n”logn)

| —— C2?log(z)

600 00 1000
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Questions



Next lecture

* Integer optimization
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