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Today'’s lecture

Linear optimization review

 Formulations

* Plecewise linear optimization
* Duality

e Sensitivity analysis

e Simplex method

* |nterior point methods



Formulations



Linear optimization

minimize ¢!z » Minimization
subjectto Ax <b * | ess-than ineq. constraints
Dx =f * Equality constraints

z IS feasible if it satisfies the constraints Ax < band Dz = f

The feasible set is the set of all feasible points
r* is optimal if it is feasible and ¢! x* < ¢! x for all feasible z

The optimal value is p* = ¢! z*

Unbounded problem: ¢' = is unbounded below on the feasible set (p* = —o0)
Infeasible problem: feasible set is empty (p* = +00) 4



Feasibility problems

find x minimize 0
subjectto Ax <b —_ subjectto Az <b
Dx = f Dx = f

Possible results

 p* = 0 if constraints are feasible (consistent).
(Every feasible x is optimal)

» p* = oo otherwise



Standard form

Definition

minimize I r e Minimization

subjectto Az =b * Equality constraints
r >0  Nonnegative variables
Useful to

* develop algorithms

» algebraic manipulations



Plecewise linear optimization



n

Plecewise-linear minimizatio
f(x)
minimize f(z) = max (a; x + b;)

minimize t
subjectto ajz+0b; <t, i1=1,...,m

Matrix notation
minimize ¢l
subjectto A7 < b
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1 and infinity norms reformulations

1-norm minimization: 0O-norm minimization:
minimize ||Az — b||; = Z (Ax — b); minimize ||Ax — b||oc = max |(Ax — b;);]
(/
i

Equivalent to: Equivalent to:

minimize 1% minimize ¢

subjectto —u<Ar—->b<u subjectto —t1 <Az —-b<1t1
Absolute value of every element (Ax — b); is Absolute value of every element (Ax — b); is

bounded by a component of the vector « bounded by the same scalar ¢



Duality



Lagrangian and duality

Primal Dual
minimize ¢’z maximize —b"y
subjectto Az < b subjectto A'y+c¢=0
y > 0
Dual function Lagrangian
g(y) = minimize (¢' = + y' (Az — b)) L(z,y) =c =z +y"' (Az — b)

— —bly+ minimize (c+ ATy)T T

B bty ifet+Aly=0 ———  V,L(z,y)=c+ A"y =0
|- otherwise



KRarush-Kuhn-Tucker conditions

Optimality conditions for linear optimization

Primal Dual
minimize ¢!z maximize —b'y
subjectto Az < b subjectto Aly+c=0
y >0
Primal feasibility Ax < b
Dual feasibility Vol(z,y) =A'y+c=0 and y >0

Complementary slackness yi(Ar —0); =0, i=1,...,m



General forms Inequality form LP

maximize —b'y
subjectto Aly+c=0
y >0

minimize clx
subjectto Az <b

Standard form LP
maximize —bly
subjectto ATy +c¢ >0

minimize c¢lx
subjectto Az =10
r >0

LP with inequalities and equalities
minimize ¢!z maximize —b'y— 'z
subjectto Ax < b subjectto Aly+Dlz+c=0
Dx=f y > 0



Weak duality

Theorem
If x,y satisty:

» x IS a feasible solution to the primal problem T T
» y IS a feasible solution to the dual problem > b y~crx

Proof
We know that Az < b, Ay + ¢ = 0andy > 0. Therefore,

0<y' (b—Ax)=by—y Ar=c'z+b'y

Remark
» Any dual feasible y gives a lower bound on the primal optimal value

» Any primal feasible x gives an upper bound on the dual optimal value
- ¢!z 4+ bly is the duality gap
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Weak duality

Corollaries

Unboundedness vs feasibility
* Primal unbounded (p* = —o0) = dual infeasible (d* = —o0)
* Dual unbounded (d* = +o0) = primal infeasible (p* = +o0)

Optimality condition

If x, y satisfy:
» x IS a feasible solution to the primal problem
» y Is a feasible solution to the dual problem
- The duality gap is zero, i.e., cl'z + bl y =0

Then x and y are optimal solutions to the primal and dual problem respectively .



Strong duality

Primal Dual
minimize ¢!z maximize —bly
subjectto Az =b subjectto Aly4+c¢>0
xr > 0

Theorem

If a linear optimization problem has an optimal solution, then

* SO does Its dual

» the optimal values of the primal and dual are equal

16



Relationship between primal and dual

d* = 400

primal inf.
dual unb.

p* finite

d* finite

optimal values equal

d*

— OO

exception

primal unb.
dual inf
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Complementary slackness

Primal Dual
minimize ¢’z maximize —b"y
subjectto  Ax < b subjectto A’y +c=0
y > 0

Theorem
Primal,dual feasible x, y are optimal if and only if

yi(lbj —a; ) =0, i=1,...,m
l.e., at optimum, b — Az and y have a complementary sparsity pattern:

Yy, >0 = CLTZE:bZ

(/

CL?ZL‘<bi = y; = 0
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Complementary slackness

Primal Dual
minimize ¢’z maximize —b"y
subjectto  Ax < b subjectto A’y +c=0
y > 0

Proof
The duality gap at primal feasible x and dual feasible y can be written as

crx4+by=(—Ay) ' x+by=(b—Az)' y = Z yi(b; —a; ) =0
i=1

Since all the elements of the sum are nonnegative, they must all be 0

For feasible r and y complementary slackness = zero duality gap

19



Example

minimize

subject to

—4x1 — dDxo
—1 0
2 1
0 -1
1 2

Let’s show that feasible x = (1, 1) is optimal

VA
W O W O

Second and fourth constraints are activeat t —— vy = (0, y2,0, y4)

2 1| [

Aly=— =
_1 2_ Ya

4
O

and

yQZov

yqs = 0

y = (0, 1,0, 2) satisfies these conditions and proves that z is optimal

Complementary slackness is useful to recover y* from z*



Geometric interpretation

Example in R? “, —c

Two active constraints at optimum: aipaz* = by, agx* = by

Optimal dual solution y satisfies:
ATy_I_C:Ov y > 0, yZ:OfOrZ#{l,Q}

In other words, —c = a1y1 + asys With y1,y2 > 0
21



Sensitivity analysis



Changes in problem data

Goal: extract information from x*,y* about their sensitivity with respect to
changes in problem data

Modified LP

minimize ¢ r Optimal value function
subjectto Ar=0b+u p*(vw) =min{c' 2 | Ax = b+ u, = > 0}

xr > 0

Assumption: p*(0) is finite
Properties
* p*(u) > —oo everywhere (from global lower bound)
* p*(u) is piecewise-linear on its domain 23



Global sensitivity

Dual of modified LP
maximize —(b+u)'y
subjectto ATy +c¢ >0

Global lower bound

Given y* a dual optimal solution for u = 0, then

p*(u) > —(b+u)"y*
=p*(0) —u'y*

It holds for any u

(from weak duality and
dual feasibility)

24



Local sensitivity

uw In neighborhood of the origin

Original LP Optimal solution
minimize ¢’z Primal ri=0, i¢B
subjectto Ar=6 ——m TR = Aélb

r >0 Dual y* = —Ag5" cp
Modified LP Modified dual
minimize ¢’z maximize —(b+u)"y
subjectto Az = b+ u subjectto ATy +c >0
x > 0

Modified optimal solution
rp(u) = A (b+u) = 2 + A5l u
y (u) =y

Optimal basis
does not change

25



Derivative of the optimal value function

Modified optimal solution
v (u) = A (b+u) = 2% + Ag'u
y (u) =y

Optimal value function

p*(u) = ¢ z*(u)
=c'a* + cg ALl u

= p*(0) — y*Tu (affine for small u)

Local derivative

Vp*(u) = —y* (y* are the shadow prices) o



Network flow optimization



Arc-node incidence matrix

m X n matrix A with entries

1 If arc 7 starts at node

Aij — —1
0 otherwise

Note Each column has
one —1 and one 1

If arc j ends at node 1

—1

o O = O O

o = O O

o O O O =




External supply

supply vector b € R™

» b; IS the external supply at node ¢
(if b; < O, it represents demand)
» We must have 1715 = 0

(total supply = total demand)

Balance equations

ZAZJQJJ — — b;, foralli

7=1 / \

Total leaving Supply
flow

Axr =0
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Minimum cost network flow problem

minimize c¢lx
subjectto Ax =10
0<zxx<u

* ¢; Is unit cost of flow through arc :
* Flow x; must be nonnegative
» u; I1s the maximum flow capacity of arc ¢

» Many network optimization problems are just special cases

30



Integrality theorem
Given a polyhedron P={zceR"|Az =0, x>0}

where
» A Is totally unimodular all the extreme points of P
* b IS an Integer vector are integer vectors.

Proof

» All extreme points are basic feasible solutions
with xg = Az'band z; =0, i # B
- A" has integer components because of total unimodularity of A
* b has also integer components
 Therefore, also z Is integral B

31



Maximum flow problem

Goal maximize flow from node 1 (source)
to node m (sink) through the network

/\@

subject to A:C — te e=(1,0,...,0,—1)
0<x<u

32



Maximum flow as minimum cost flow

oY i

p
\ Artificial arc n + 1

minimize  —t
: i 1 XL
subjectto |A —e¢ T 0
L _u_
)< <




Shortest path problem

Goal Find the shortest path between nodes 1 and m

/<> - paths can be represented
\/\ as vectors z € {0,1}"

Formulation . ¢; is the “length” of arc j
minimize ¢!z » ¢e=(1,0,...,0,—1)
subjectto Az = e - Variables are binary

r € {0,11" (include or not arc in path)

34



Shortest path as minimum cost flow

Relaxation
minimize c¢lx minimize c¢lx
subjectto Az =ce¢ — subjectto Az =ce¢

r e {0,1}" 0<zx<1

Extreme points
satisfy x; € {0,1}

Example (arc costs shown)

c=(11,8,10,12,4,11,7,15,4)
z* =(0,1,0,0,0,1,0,0,1)

=924

35



Simplex method



Optimality of extreme points

minimize ¢!z
subjectto Ax =0
xr > 0

i P has at least one extreme point
» There exists an optimal solution =*

Then, there exists an optimal solution which is an extreme point of P

We only need to search between extreme points

37



Equivalence

Theorem

Given a nonempty polyhedron P = {z | Ax = b, x > 0}

Let z € P

r 1S a vertex <« x Is an extreme point «<— =z is a basic feasible solution

38



Constructing basic solution

1. Choose any m independent columns of A: Ag(1y,..., Apm)
2. Letx;, =0foralli# B(1),...,B(m)
3. Solve Ax = b for the remaining (1), .., TB(m)

Basis Basis columns Basic variables

matrix r - i i

| | | B()
AB — AB(l) AB(Q) Co AB(m) y LB = — Solve ABCCB = b

- | | ZB(m).

If t5 > 0, then z Is a basic feasible solution
39



Conceptual algorithm

e Start at corner

* Visit neighboring corner that
Improves the objective

40



How does the cost change?

Cost improvement
cl(x+0d) —c'z = 0c'd

N

New cost Old cost

We call ¢; the reduced cost of
(introducing) variable z; in the basis

n
;i =c d= E cid; =c; +cgdp =cj —cgAg A,
i=1

41



Optimality conditions

Theorem

Let £ be a basic feasible solution associated with basis B
Let ¢ be the vector of reduced costs.

If ¢ > 0, then z Is optimal

Remark
This is a stopping criterion for the simplex algorithm.

If the neighboring solutions do not improve the cost, we are done

42



Single simplex iteration

1. Compute the reduced costs ¢

» Solve Agp — CRB
»c=c— Alp

2. If ¢ > 0, x optimal. break

3. Choose j such that ¢c; < 0

Bottleneck

Two linear systems

4.

——

. Compute step length 6 =  min ( xZ)

Compute search direction d with
dj — 1 and ABdB — —Aj

. If dg > 0, the problem is unbounded

and the optimal value Is —oo. break

{1€B|d; <0} dz

. Define y such that y = = + 6*d

. Get new basis B (i exits and j enters)

Matrix inversion lemma trick
~ n° per iteration
(very cheap)

How many iterations do we need? 43



Complexity of the simplex method

We do not know any polynomial | _
version of the simplex method, ———  Still open research question!

no matter which pivoting rule we pick.

Worst-case

There are problem instances where the simplex method will run an exponential
number of iterations in terms of the dimensions, e.g. 2"

Good news: average-case

Practical performance is very good. On average, it stops in n iterations.
44



Interior point method



Optimality conditions

Primal

minimize ¢!l x

subjectto Az +s=5b
s >0
KKT conditions
Ar +s—b =0
Aly+c=0
Siyi:()a 221,

s,y >0

Dual

maximize —bly

subjectto A‘y+c=0

y >0
_3/1
S2 Y2
Y =
Sm _ Ym |

— SY1=0

46



Main idea

h(z,s,y)=| Aly+c
SY1

s,y >0

Ar+s—b

S = diag(s)
Y = diag(y)

» Apply variants of Newton’s method to solve h(x, s,y) = 0

» Enforce s,y > 0 (strictly) at every iteration
- Motivation avoid getting stuck in “corners”

Issue

Pure Newton’s step does not allow significant progress towards

h(z,s,y) =0and xz,y > 0.

47



Smoothed optimality conditions

Optimality conditions

Ar+s—b=0

Aty+c=0
S;y; =T <+—— Same 7 for every pair

s,y >0

Same optimality conditions for a “smoothed” version of our problem

48



Analytic

Central path Center 1000
T — OO
minimize ¢’z — 7> " log(s;)
subjectto Az +s=50 |
Set of points (z*(7), s*(7),y* (7))
with 7 > 0 such that
Ar+s5s—-0=0 1/5
Aty +c=0
SiYi = T
s,y > 0
Main idea 1/100
T 49

Follow central pathas  — 0



Newton’s method for smoothed optimality conditions

Smoothed optimality conditions

he(z,s,y) =

Linear system

0 A I
AT 0 0
S 0 Y

Axr+s—0b
Aly+c | =0
SY1—71
s,y >0
Ay —T) )
Ax| = —7ry
As —SY + 71

Line search to enforce x,s > 0
(,8,y) < (@, 5,y) + a(Az, As, Ay)

50



Algorithm step

Linear system

0 A I| |Ay —r, Duality measure
A0 0| |Az| = —Tg = sty
S 0 Y| |As —SY1+oul m

Centering parameter =0 = Newton step
o€ 0,1 c=1 = (Centering step towards (x* (), s* (1), y* (1))

Line search to enforce x,s > 0
(z,8,y) < (z,5,y) + a(Az, As, Ay) 1



Path-following algorithm idea

Newton step .

-y

~Centering step. "}

o=1

|

o =0

Combined step

’I

Centering step

Moves towards the central path
and Is usually biased towards s,y > 0.
No progress on duality measure u

Newton step

Moves towards the zero duality
measure .. Quickly violates s,y > 0.

Combined step
Best of both, with longer steps.

52



Convergence

Mehrotra’s algorithm

No convergence theory ——— Examples where it diverges (rare!)

Fantastic convergence in practice — Fewer than 30 iterations

Theoretical iteration complexity Operations
Alternative versions (slower than Mehrotra) e
— O(n”°)

converge in O(4/n) iterations

Average iteration complexity
Average iterations complexity is O(log n) — O(n”logn)

53



Interior-point vs simplex



Comparison between interior-point method and simplex

Primal simplex Dual simplex Primal-dual interior-point

. Primal feasibility ~ « Dual feasibility * Interior condition

| |

. Primal feasibility

 Zero duality gap » Zero duality gap . Dual feasibility

» Dual feasibility * Primal feasibility . Zero duality gap
Exponential worst-case complexity Polynomial worst-case complexity
Requires feasible point Allows Infeasible start

Can be warm-started Cannot be warm-started e



Which algorithm should | use?

Dual simplex Interior-point (barrier)

o Small-to-medium problems  Medium-to-large problems
 Repeated solves with varying constraints e Sparse structured problems

How do solvers with multiple options decide?

Concurrent Optimization

Why not both? (crossover)

Interior-point —  Few simplex steps

56


https://www.gurobi.com/documentation/9.0/refman/concurrent_optimizer.html

Average simplex complexity

Random LPs minimize ¢!« n variables
subjectto Az <b 3n constraints
lterations n Time n°
3000 i —— Cubic polynomial °
-------- Square polynomial

0 6000
iq"c:: 4000-
£
= 2000

O_

0 250 500 750 1000 0 250 500 750 1000

n n



Average interior-point complexity
Random LPs

—_
D

Number of iterations

0

@)

minimize
subject to

Iterations: O(logn)

—_
I

—_
DO

—_
-

— C(C'log(x)

oo

0 200 400

(1

600

300

1000

CTZE

Ax < b

n variables
3n constraints

Time: O(n”logn)

| —— C2?log(z)

600 00 1000
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Questions



Next lecture

* Integer optimization

60



