### ORF307 – Optimization

19. Linear optimization review

# Today's lecture Linear optimization review

- Formulations
- Piecewise linear optimization
- Duality
- Sensitivity analysis
- Simplex method
- Interior point methods

## Formulations

### Linear optimization

minimize 
$$c^Tx$$
 subject to  $Ax \leq b$ 

- Minimization
- subject to  $Ax \leq b$  Less-than ineq. constraints
  - Dx = f Equality constraints

x is **feasible** if it satisfies the constraints  $Ax \leq b$  and Dx = f

The feasible set is the set of all feasible points

 $x^{\star}$  is **optimal** if it is feasible and  $c^Tx^{\star} \leq c^Tx$  for all feasible x

The optimal value is  $p^{\star} = c^T x^{\star}$ 

Unbounded problem:  $c^T x$  is unbounded below on the feasible set  $(p^* = -\infty)$ Infeasible problem: feasible set is empty  $(p^* = +\infty)$ 

### Feasibility problems

#### Possible results

- $p^* = 0$  if constraints are feasible (consistent). (Every feasible x is optimal)
- $p^* = \infty$  otherwise

# Standard form

#### **Definition**

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

- Minimization
- Equality constraints
- Nonnegative variables

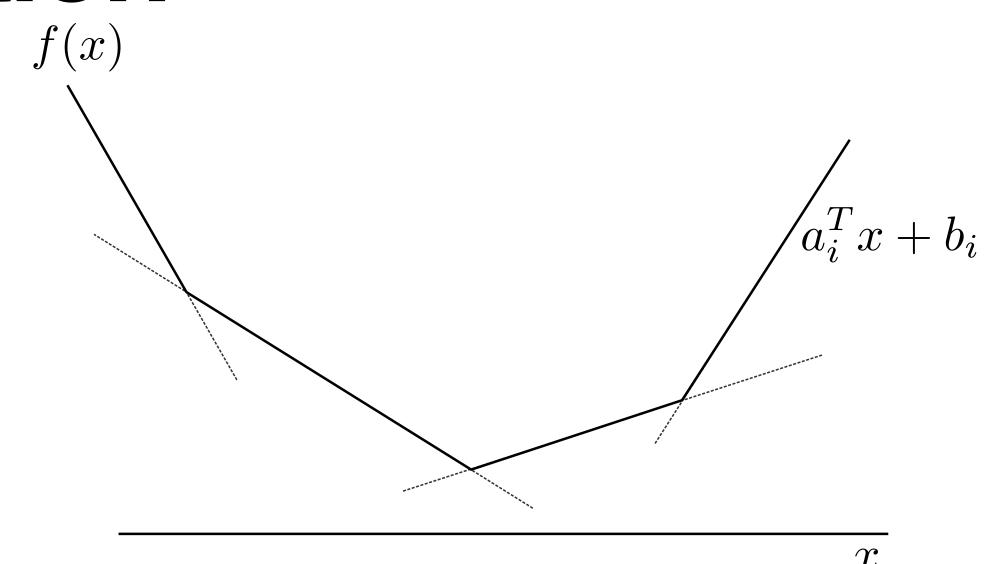
#### **Useful to**

- develop algorithms
- algebraic manipulations

# Piecewise linear optimization

### Piecewise-linear minimization

minimize 
$$f(x) = \max_{i=1,\dots,m} (a_i^T x + b_i)$$
 
$$\downarrow$$
 
$$\min imize \quad t$$
 
$$\text{subject to} \quad a_i^T x + b_i \leq t, \quad i=1,\dots,m$$



#### **Matrix notation**

 $\begin{array}{ll} \text{minimize} & \tilde{c}^T \tilde{x} \\ \text{subject to} & \tilde{A} \tilde{x} \leq \tilde{b} \end{array}$ 

$$\tilde{x} = \begin{bmatrix} x \\ t \end{bmatrix}, \quad \tilde{c} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \tilde{A} = \begin{bmatrix} a_1^T & -1 \\ \vdots & \vdots \\ a_m^T & -1 \end{bmatrix}, \quad \tilde{b} = \begin{bmatrix} -b_1 \\ \vdots \\ -b_m \end{bmatrix}$$

### 1 and infinity norms reformulations

#### 1-norm minimization:

minimize 
$$||Ax - b||_1 = \sum_{i} |(Ax - b)_i|$$

#### **Equivalent to:**

 $\begin{array}{ll} \text{minimize} & \mathbf{1}^T u \\ \text{subject to} & -u \leq Ax - b \leq u \end{array}$ 

Absolute value of every element  $(Ax - b)_i$  is bounded by a component of the **vector** u

#### ∞-norm minimization:

minimize 
$$||Ax - b||_{\infty} = \max_{i} |(Ax - b_i)_i|$$

#### **Equivalent to:**

 $\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & -t\mathbf{1} \leq Ax - b \leq t\mathbf{1} \end{array}$ 

Absolute value of every element  $(Ax-b)_i$  is bounded by the same **scalar** t

# Duality

### Lagrangian and duality

#### **Primal**

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$ 

#### **Dual function**

$$g(y) = \underset{x}{\mathsf{minimize}} \left( c^T x + y^T (Ax - b) \right)$$

$$= -b^T y + \underset{x}{\mathsf{minimize}} \left( c + A^T y \right)^T x$$

$$= \begin{cases} -b^T y & \mathsf{if } c + A^T y = 0 \\ -\infty & \mathsf{otherwise} \end{cases}$$

#### Dual

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$$

#### Lagrangian

$$L(x,y) = c^T x + y^T (Ax - b)$$

$$\nabla_x L(x, y) = c + A^T y = 0$$

### Karush-Kuhn-Tucker conditions

#### Optimality conditions for linear optimization

#### **Primal**

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax < b \end{array}$ 

#### **Dual**

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$$

**Primal feasibility** 

$$Ax \leq b$$

**Dual feasibility** 

$$\nabla_x L(x,y) = A^T y + c = 0 \quad \text{and} \quad y \ge 0$$

**Complementary slackness** 

$$y_i(Ax - b)_i = 0, \quad i = 1, \dots, m$$

### General forms

#### **Inequality form LP**

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$$

maximize 
$$-b^Ty$$
 subject to  $A^Ty+c=0$   $y\geq 0$ 

#### Standard form LP

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

#### LP with inequalities and equalities

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \\ & Dx = f \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^Ty - f^Tz \\ \text{subject to} & A^Ty + D^Tz + c = 0 \\ & y \geq 0 \end{array}$$

### Weak duality

#### **Theorem**

If x, y satisfy:

- x is a feasible solution to the primal problem
- y is a feasible solution to the dual problem

### $-b^T y \le c^T x$

#### **Proof**

We know that  $Ax \leq b$ ,  $A^Ty + c = 0$  and  $y \geq 0$ . Therefore,

$$0 \le y^{T}(b - Ax) = b^{T}y - y^{T}Ax = c^{T}x + b^{T}y$$

#### Remark

- Any dual feasible y gives a **lower bound** on the primal optimal value
- ullet Any primal feasible x gives an **upper bound** on the dual optimal value
- $c^T x + b^T y$  is the duality gap

### Weak duality

#### Corollaries

#### Unboundedness vs feasibility

- Primal unbounded  $(p^* = -\infty) \Rightarrow$  dual infeasible  $(d^* = -\infty)$
- Dual unbounded  $(d^* = +\infty) \Rightarrow$  primal infeasible  $(p^* = +\infty)$

#### **Optimality condition**

If x, y satisfy:

- x is a feasible solution to the primal problem
- y is a feasible solution to the dual problem
- The duality gap is zero, *i.e.*,  $c^Tx + b^Ty = 0$

Then x and y are optimal solutions to the primal and dual problem respectively

### Strong duality

#### **Primal**

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$ 

#### Dual

 $\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$ 

#### **Theorem**

If a linear optimization problem has an optimal solution, then

- so does its dual
- the optimal values of the primal and dual are equal

### Relationship between primal and dual

|                       | $p^{\star} = +\infty$    | $p^{\star}$ finite   | $p^{\star} = -\infty$   |
|-----------------------|--------------------------|----------------------|-------------------------|
| $d^{\star} = +\infty$ | primal inf.<br>dual unb. |                      |                         |
| $d^\star$ finite      |                          | optimal values equal |                         |
| $d^{\star} = -\infty$ | exception                |                      | primal unb.<br>dual inf |

### Complementary slackness

#### **Primal**

minimize  $c^T x$  subject to  $Ax \leq b$ 

#### **Dual**

maximize  $-b^Ty$  subject to  $A^Ty+c=0$   $y\geq 0$ 

#### **Theorem**

Primal, dual feasible x, y are optimal if and only if

$$y_i(b_i - a_i^T x) = 0, \quad i = 1, \dots, m$$

i.e., at optimum, b - Ax and y have a complementary sparsity pattern:

$$y_i > 0 \implies a_i^T x = b_i$$

$$a_i^T x < b_i \implies y_i = 0$$

### Complementary slackness

#### **Primal**

minimize  $c^T x$  subject to  $Ax \leq b$ 

#### **Dual**

maximize 
$$-b^Ty$$
 subject to  $A^Ty+c=0$   $y\geq 0$ 

#### **Proof**

The duality gap at primal feasible x and dual feasible y can be written as

$$c^{T}x + b^{T}y = (-A^{T}y)^{T}x + b^{T}y = (b - Ax)^{T}y = \sum_{i=1}^{T} y_{i}(b_{i} - a_{i}^{T}x) = 0$$

Since all the elements of the sum are nonnegative, they must all be 0



### Example

minimize 
$$-4x_1 - 5x_2$$

subject to 
$$\begin{bmatrix} -1 & 0 \\ 2 & 1 \\ 0 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 0 \\ 3 \\ 0 \\ 3 \end{bmatrix}$$

Let's **show** that feasible x = (1, 1) is optimal

Second and fourth constraints are active at  $x \longrightarrow y = (0, y_2, 0, y_4)$ 

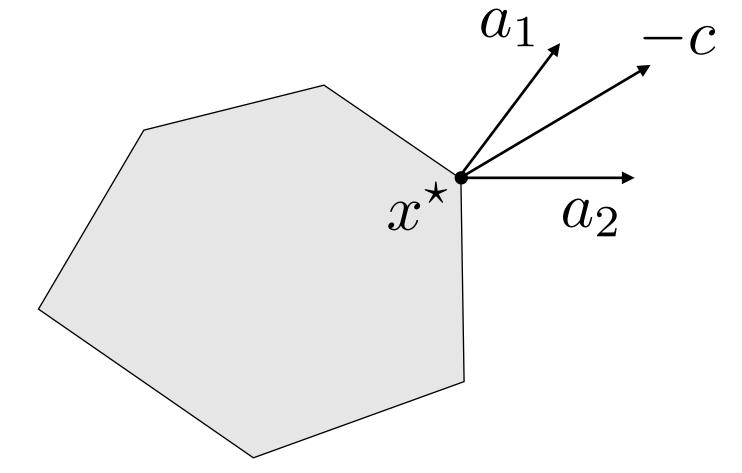
$$A^Ty=-c \quad \Rightarrow \quad egin{bmatrix} 2 & 1 \ 1 & 2 \end{bmatrix} egin{bmatrix} y_2 \ y_4 \end{bmatrix} = egin{bmatrix} 4 \ 5 \end{bmatrix} \qquad \text{and} \qquad y_2 \geq 0, \quad y_4 \geq 0$$

y=(0,1,0,2) satisfies these conditions and proves that x is optimal

Complementary slackness is useful to recover  $y^*$  from  $x^*$ 

### Geometric interpretation

Example in  ${f R}^2$ 



Two active constraints at optimum:  $a_1^T x^* = b_1, \quad a_2^T x^* = b_2$ 

Optimal dual solution y satisfies:

$$A^T y + c = 0, \quad y \ge 0, \quad y_i = 0 \text{ for } i \ne \{1, 2\}$$

In other words,  $-c = a_1y_1 + a_2y_2$  with  $y_1, y_2 \ge 0$ 

# Sensitivity analysis

### Changes in problem data

**Goal:** extract information from  $x^*, y^*$  about their sensitivity with respect to changes in problem data

#### **Modified LP**

 $\begin{array}{ll} \text{minimize} & c^Tx \\ \text{subject to} & Ax = b+u \\ & x \geq 0 \end{array}$ 

#### **Optimal value function**

$$p^*(u) = \min\{c^T x \mid Ax = b + u, \ x \ge 0\}$$

**Assumption:**  $p^*(0)$  is finite

#### **Properties**

- $p^{\star}(u) > -\infty$  everywhere (from global lower bound)
- $p^*(u)$  is piecewise-linear on its domain

### Global sensitivity

#### **Dual of modified LP**

$$\begin{array}{ll} \text{maximize} & -(b+u)^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

#### Global lower bound

Given  $y^*$  a dual optimal solution for u=0, then

$$p^{\star}(u) \ge -(b+u)^T y^{\star}$$
 (from weak duality and  $= p^{\star}(0) - u^T y^{\star}$  dual feasibility)

It holds for any u

### Local sensitivity

#### u in neighborhood of the origin

#### **Original LP**

minimize  $c^T x$ 

subject to Ax = b

$$x \ge 0$$

#### **Optimal solution**

Primal  $x_i = 0, \quad i \notin B \\ x_B^\star = A_B^{-1} b$ 

$$x_B^{\star} = A_B^{-1}b$$

Dual  $y^* = -A_B^{-T} c_B$ 

#### **Modified LP**

minimize  $c^{T}x$ 

$$c^T x$$

subject to 
$$Ax = b + u$$

$$x \ge 0$$

#### **Modified dual**

maximize  $-(b+u)^T y$ 

subject to  $A^Ty + c > 0$ 

#### **Optimal basis** does not change

#### Modified optimal solution

$$x_B^*(u) = A_B^{-1}(b+u) = x_B^* + A_B^{-1}u$$
  
 $y^*(u) = y^*$ 

### Derivative of the optimal value function

#### Modified optimal solution

$$x_B^*(u) = A_B^{-1}(b+u) = x_B^* + A_B^{-1}u$$
  
 $y^*(u) = y^*$ 

#### **Optimal value function**

$$p^{\star}(u) = c^{T}x^{\star}(u)$$

$$= c^{T}x^{\star} + c_{B}^{T}A_{B}^{-1}u$$

$$= p^{\star}(0) - y^{\star T}u \qquad \text{(affine for small } u\text{)}$$

#### Local derivative

$$\nabla p^{\star}(u) = -y^{\star}$$
 (y\* are the shadow prices)

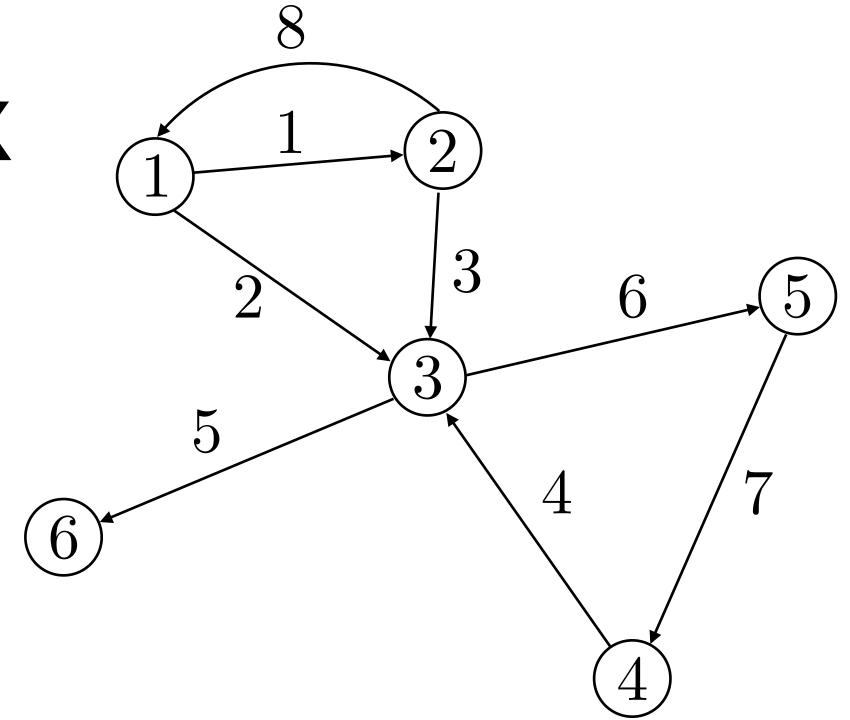
# Network flow optimization

### Arc-node incidence matrix

 $m \times n$  matrix A with entries

$$A_{ij} = \begin{cases} 1 & \text{if arc } j \text{ starts at node } i \\ -1 & \text{if arc } j \text{ ends at node } i \end{cases}$$
 otherwise

Note Each column has one -1 and one 1

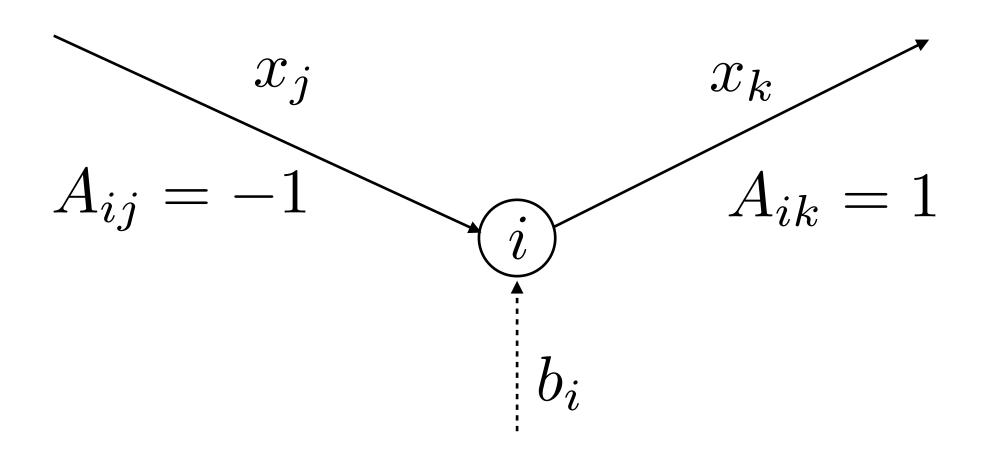


$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & -1 \\ -1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & -1 & -1 & -1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \end{bmatrix}$$

### External supply

#### supply vector $b \in \mathbf{R}^m$

- $b_i$  is the external supply at node i (if  $b_i < 0$ , it represents demand)
- We must have  $\mathbf{1}^T b = 0$  (total supply = total demand)



#### **Balance equations**

$$\sum_{j=1}^{n} A_{ij} x_j = \underbrace{(Ax)_i}_{i} = \underbrace{b_i}_{i}, \text{ for all } i$$
 Total leaving Supply flow

$$Ax = b$$

### Minimum cost network flow problem

minimize 
$$c^Tx$$
 subject to  $Ax = b$  
$$0 \le x \le u$$

- $c_i$  is unit cost of flow through arc i
- Flow  $x_i$  must be nonnegative
- $u_i$  is the maximum flow capacity of arc i
- Many network optimization problems are just special cases

### Integrality theorem

Given a polyhedron

$$P = \{ x \in \mathbf{R}^n \mid Ax = b, \quad x \ge 0 \}$$

#### where

- $\bullet$  A is totally unimodular
- ullet b is an integer vector

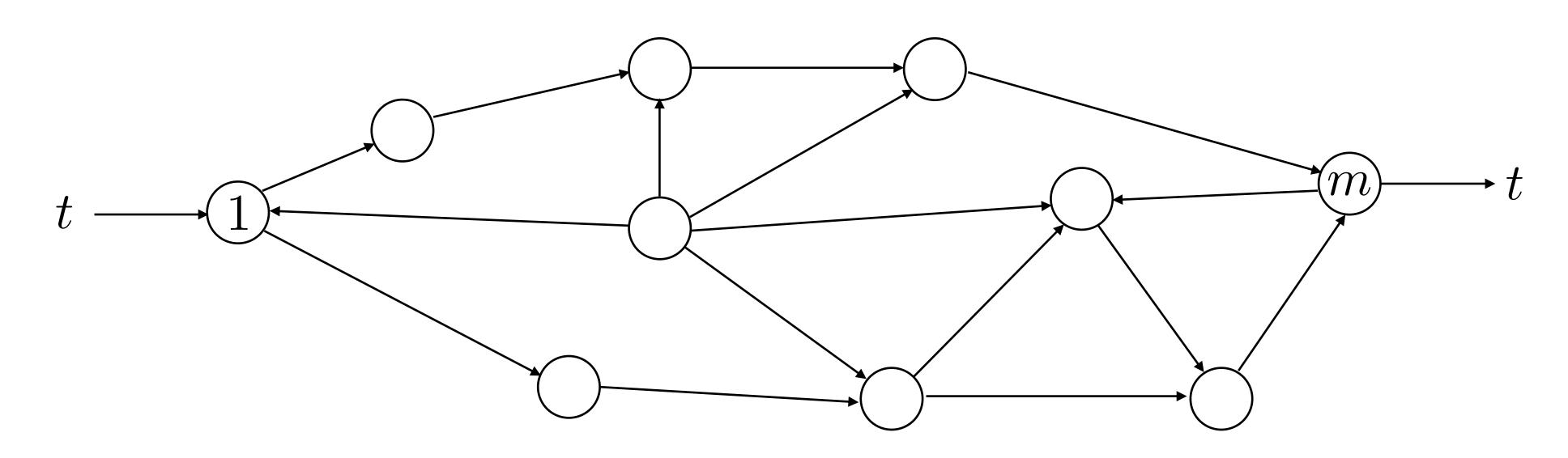
all the extreme points of P are integer vectors.

#### **Proof**

- All extreme points are basic feasible solutions with  $x_B=A_B^{-1}b$  and  $x_i=0,\ i\neq B$
- $A_B^{-1}$  has integer components because of total unimodularity of A
- b has also integer components
- Therefore, also x is integral

### Maximum flow problem

**Goal** maximize flow from node 1 (source) to node m (sink) through the network



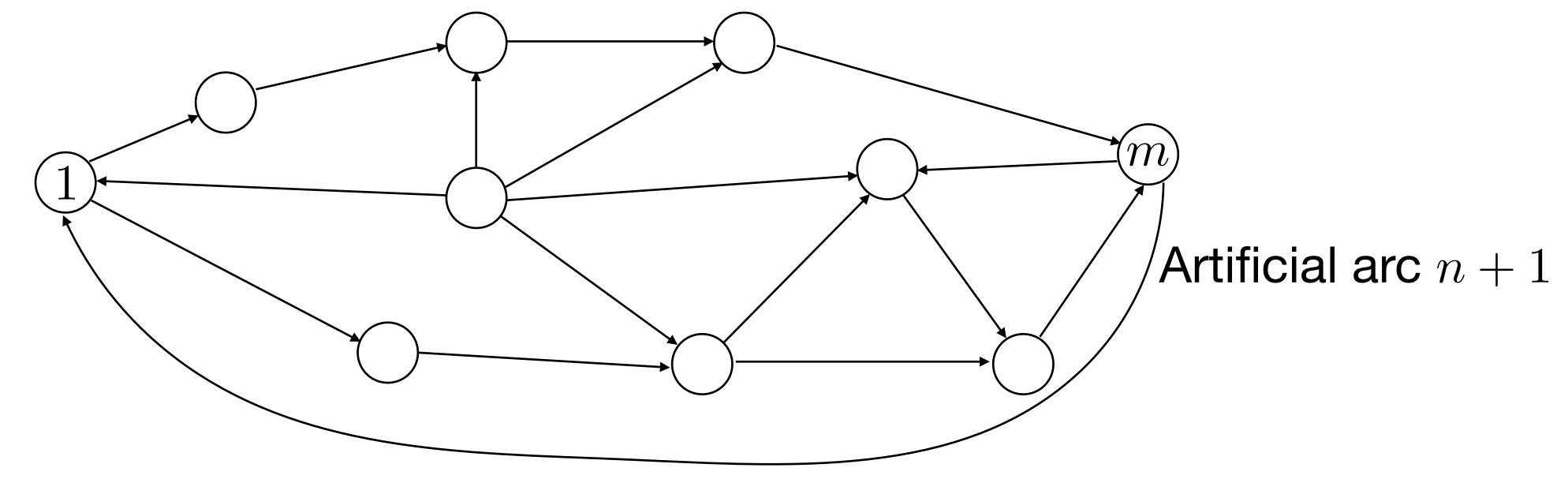
maximize

subject to 
$$Ax = te$$

$$0 \le x \le u$$

$$e = (1, 0, \dots, 0, -1)$$

### Maximum flow as minimum cost flow

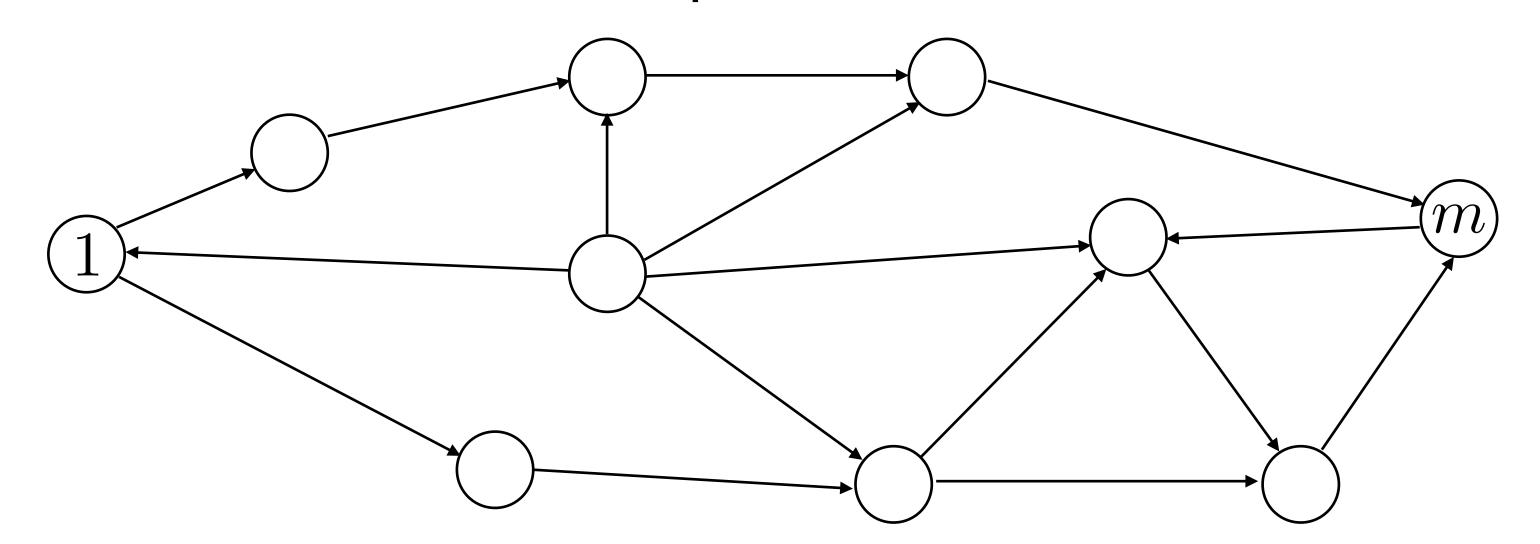


minimize 
$$-t$$
 subject to  $\begin{bmatrix} A & -e \end{bmatrix} \begin{bmatrix} x \\ t \end{bmatrix} = 0$ 

$$0 \le \begin{bmatrix} x \\ t \end{bmatrix} \le \begin{bmatrix} u \\ \infty \end{bmatrix}$$

### Shortest path problem

**Goal** Find the shortest path between nodes 1 and m



paths can be represented as vectors  $x \in \{0, 1\}^n$ 

#### **Formulation**

minimize 
$$c^T x$$

subject to 
$$Ax = e$$

$$x \in \{0, 1\}^n$$

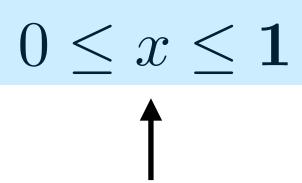
- $c_j$  is the "length" of arc j
- $e = (1, 0, \dots, 0, -1)$
- Variables are binary (include or not arc in path)

### Shortest path as minimum cost flow

# minimize $c^Tx$ subject to Ax=e $x\in\{0,1\}^n$

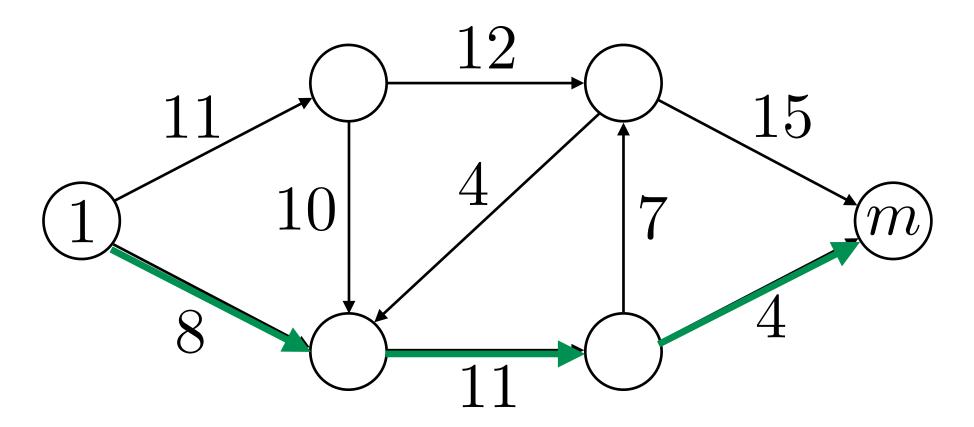
#### Relaxation

minimize  $c^T x$  subject to Ax = e



Extreme points satisfy  $x_i \in \{0, 1\}$ 

#### Example (arc costs shown)

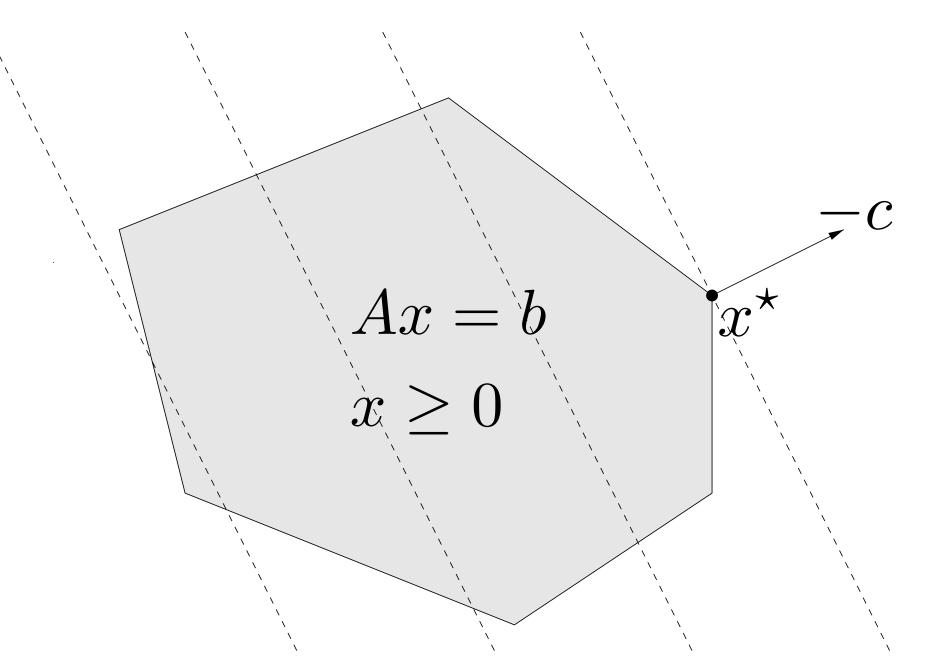


$$c = (11, 8, 10, 12, 4, 11, 7, 15, 4)$$
  
 $x^* = (0, 1, 0, 0, 0, 1, 0, 0, 1)$   
 $c^T x^* = 24$ 

# Simplex method

# Optimality of extreme points

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$



- P has at least one extreme point There exists an optimal solution  $x^\star$

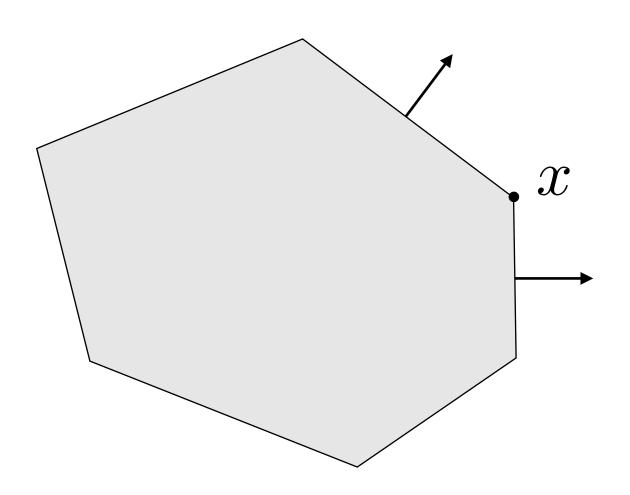
Then, there exists an optimal solution which is an **extreme point** of P

We only need to search between extreme points

# Equivalence

#### **Theorem**

Given a nonempty polyhedron  $P = \{x \mid Ax = b, x \geq 0\}$ 



Let  $x \in P$ 

x is a vertex  $\iff x$  is an extreme point  $\iff x$  is a basic feasible solution

# Constructing basic solution

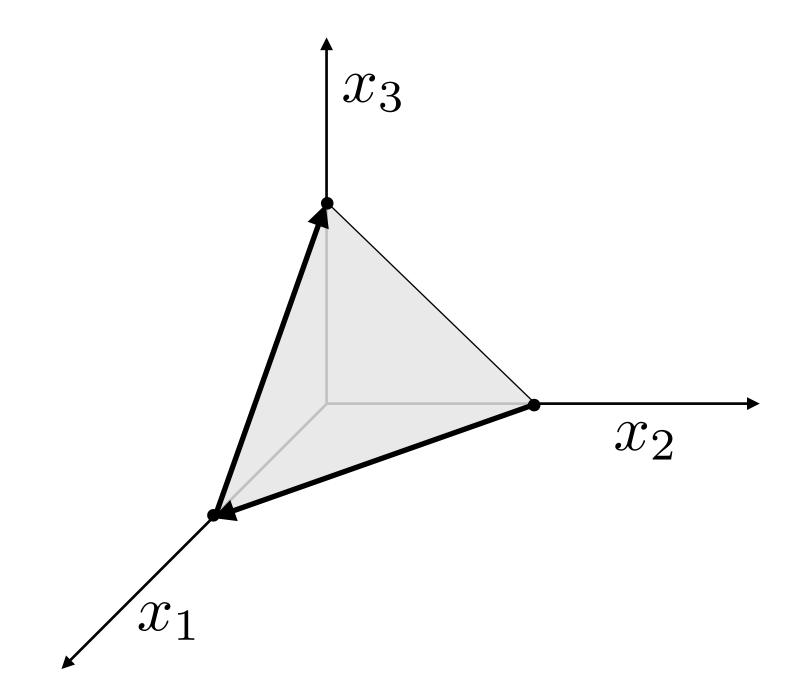
- 1. Choose any m independent columns of A:  $A_{B(1)}, \ldots, A_{B(m)}$
- 2. Let  $x_i = 0$  for all  $i \neq B(1), ..., B(m)$
- 3. Solve Ax = b for the remaining  $x_{B(1)}, \ldots, x_{B(m)}$

Basis Basis columns Basic variables 
$$A_B = \begin{bmatrix} & & & & & \\ & A_{B(1)} & A_{B(2)} & \dots & A_{B(m)} \\ & & & & \end{bmatrix}, \quad x_B = \begin{bmatrix} x_{B(1)} \\ \vdots \\ x_{B(m)} \end{bmatrix} \longrightarrow \text{Solve } A_B x_B = b$$

If  $x_B \ge 0$ , then x is a basic feasible solution

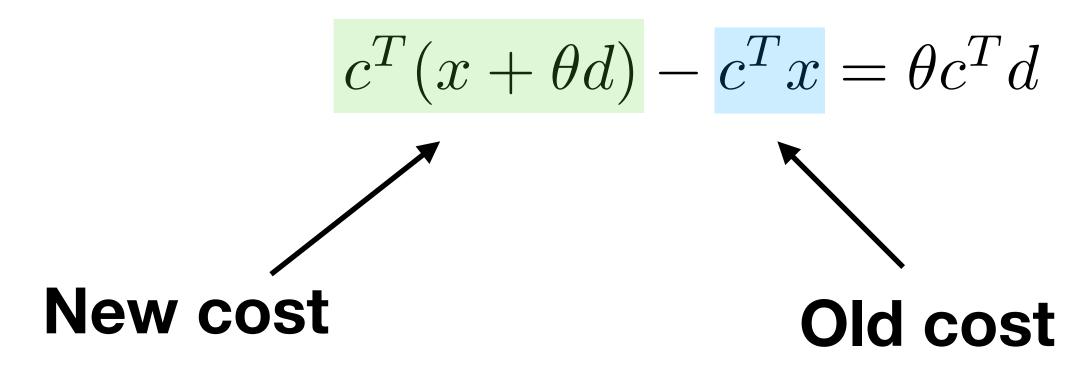
# Conceptual algorithm

- Start at corner
- Visit neighboring corner that improves the objective



# How does the cost change?

#### **Cost improvement**



We call  $\bar{c}_j$  the **reduced cost** of (introducing) variable  $x_j$  in the basis

$$\bar{c}_j = c^T d = \sum_{i=1}^n c_i d_j = c_i + c_B^T d_B = c_i - c_B^T A_B^{-1} A_j$$

# **Optimality conditions**

#### Theorem

Let x be a basic feasible solution associated with basis B Let  $\overline{c}$  be the vector of reduced costs.

If  $\bar{c} \geq 0$ , then x is optimal

#### Remark

This is a stopping criterion for the simplex algorithm.

If the neighboring solutions do not improve the cost, we are done

# Single simplex iteration

- 1. Compute the reduced costs  $\bar{c}$ 
  - Solve  $A_B^T p = c_B$
  - $\bar{c} = c A^T p$
- 2. If  $\bar{c} \geq 0$ , x optimal. break
- 3. Choose j such that  $\bar{c}_j < 0$

- 4. Compute search direction d with  $d_j=1$  and  $A_Bd_B=-A_j$
- 5. If  $d_B \ge 0$ , the problem is **unbounded** and the optimal value is  $-\infty$ . **break**
- 6. Compute step length  $\theta^* = \min_{\{i \in B | d_i < 0\}} \left( -\frac{x_i}{d_i} \right)$
- 7. Define y such that  $y = x + \theta^* d$
- 8. Get new basis  $\bar{B}$  (i exits and j enters)

Bottleneck
Two linear systems

Matrix inversion lemma trick  $\approx n^2$  per iteration

 $pprox n^2$  per iteration (very cheap)

# Complexity of the simplex method

We do **not know any polynomial version of the simplex method**,
no matter which pivoting rule we pick.

Still **open research question!** 

#### **Worst-case**

There are problem instances where the simplex method will run an **exponential number of iterations** in terms of the dimensions, e.g.  $2^n$ 

Good news: average-case Practical performance is very good. On average, it stops in n iterations.

# Interior point method

# **Optimality conditions**

#### **Primal**

$$\begin{array}{ll} \text{minimize} & c^Tx \\ \text{subject to} & Ax+s=b \\ & s>0 \end{array}$$

#### **Dual**

maximize 
$$-b^Ty$$
 subject to  $A^Ty+c=0$   $y\geq 0$ 

#### **KKT** conditions

$$Ax + s - b = 0$$

$$ATy + c = 0$$

$$siyi = 0, \quad i = 1,..., m$$

$$s, y \ge 0$$

$$S = \begin{bmatrix} s_1 & & & & \\ & s_2 & & & \\ & & \ddots & & \\ & & s_m \end{bmatrix} \qquad Y = \begin{bmatrix} y_1 & & & & \\ & y_2 & & & \\ & & \ddots & & \\ & & & y_m \end{bmatrix}$$

$$\implies SY1 = 0$$

### Main idea

$$h(x, s, y) = \begin{bmatrix} Ax + s - b \\ A^{T}y + c \\ SY1 \end{bmatrix} = 0$$

$$S = \mathbf{diag}(s)$$

$$Y = \mathbf{diag}(y)$$

$$s, y \ge 0$$

- Apply variants of Newton's method to solve h(x, s, y) = 0
- Enforce s, y > 0 (strictly) at every iteration
- Motivation avoid getting stuck in "corners"

#### Issue

Pure **Newton's step** does not allow significant progress towards h(x, s, y) = 0 and  $x, y \ge 0$ .

# Smoothed optimality conditions

#### **Optimality conditions**

$$Ax + s - b = 0$$

$$A^{T}y + c = 0$$

$$s_{i}y_{i} = \tau \quad \text{Same } \tau \text{ for every pair}$$

$$s, y \geq 0$$

Same optimality conditions for a "smoothed" version of our problem

# Central path

minimize 
$$c^Tx - \tau \sum_{i=1}^m \log(s_i)$$
 subject to 
$$Ax + s = b$$

Set of points  $(x^{\star}(\tau), s^{\star}(\tau), y^{\star}(\tau))$  with  $\tau > 0$  such that

$$Ax + s - b = 0$$

$$A^{T}y + c = 0$$

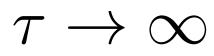
$$s_{i}y_{i} = \tau$$

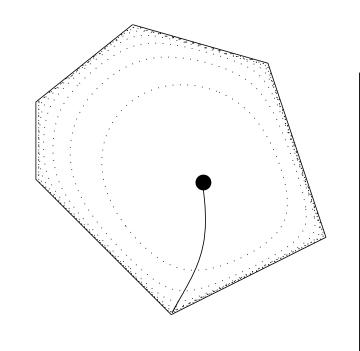
$$s, y \ge 0$$

#### Main idea

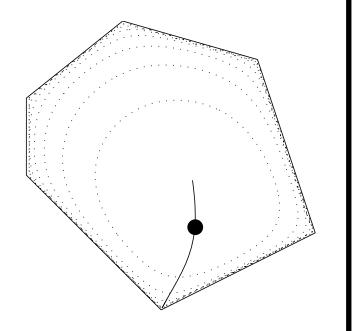
Follow central path as  $\tau \to 0$ 

# **Analytic Center**

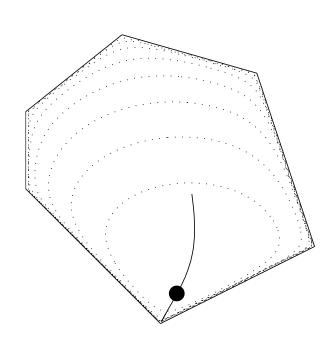




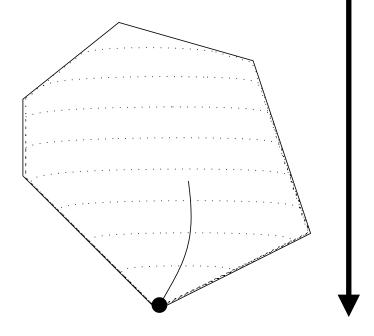
1000



1



1/5



1/100

 $\mathcal{T}$ 

49

### Newton's method for smoothed optimality conditions

#### **Smoothed optimality conditions**

$$h_{ au}(x,s,y) = egin{bmatrix} Ax + s - b \ A^Ty + c \ SY\mathbf{1} - au\mathbf{1} \end{bmatrix} = 0$$

#### Linear system

$$egin{bmatrix} 0 & A & I \ A^T & 0 & 0 \ S & 0 & Y \end{bmatrix} egin{bmatrix} \Delta y \ \Delta x \ \Delta s \end{bmatrix} = egin{bmatrix} -r_p \ -r_d \ -SY + au \mathbf{1} \end{bmatrix}$$

Line search to enforce x, s > 0

$$(x, s, y) \leftarrow (x, s, y) + \alpha(\Delta x, \Delta s, \Delta y)$$

# Algorithm step

#### Linear system

$$\begin{bmatrix} 0 & A & I \\ A^T & 0 & 0 \\ S & 0 & Y \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta x \\ \Delta s \end{bmatrix} = \begin{bmatrix} -r_p \\ -r_d \\ -SY\mathbf{1} + \sigma\mu\mathbf{1} \end{bmatrix} \qquad \text{Duality meas}$$

$$\mu = \frac{s^Ty}{m}$$

#### Duality measure

$$\mu = \frac{s^T y}{m}$$

#### Centering parameter

$$\sigma \in [0,1]$$

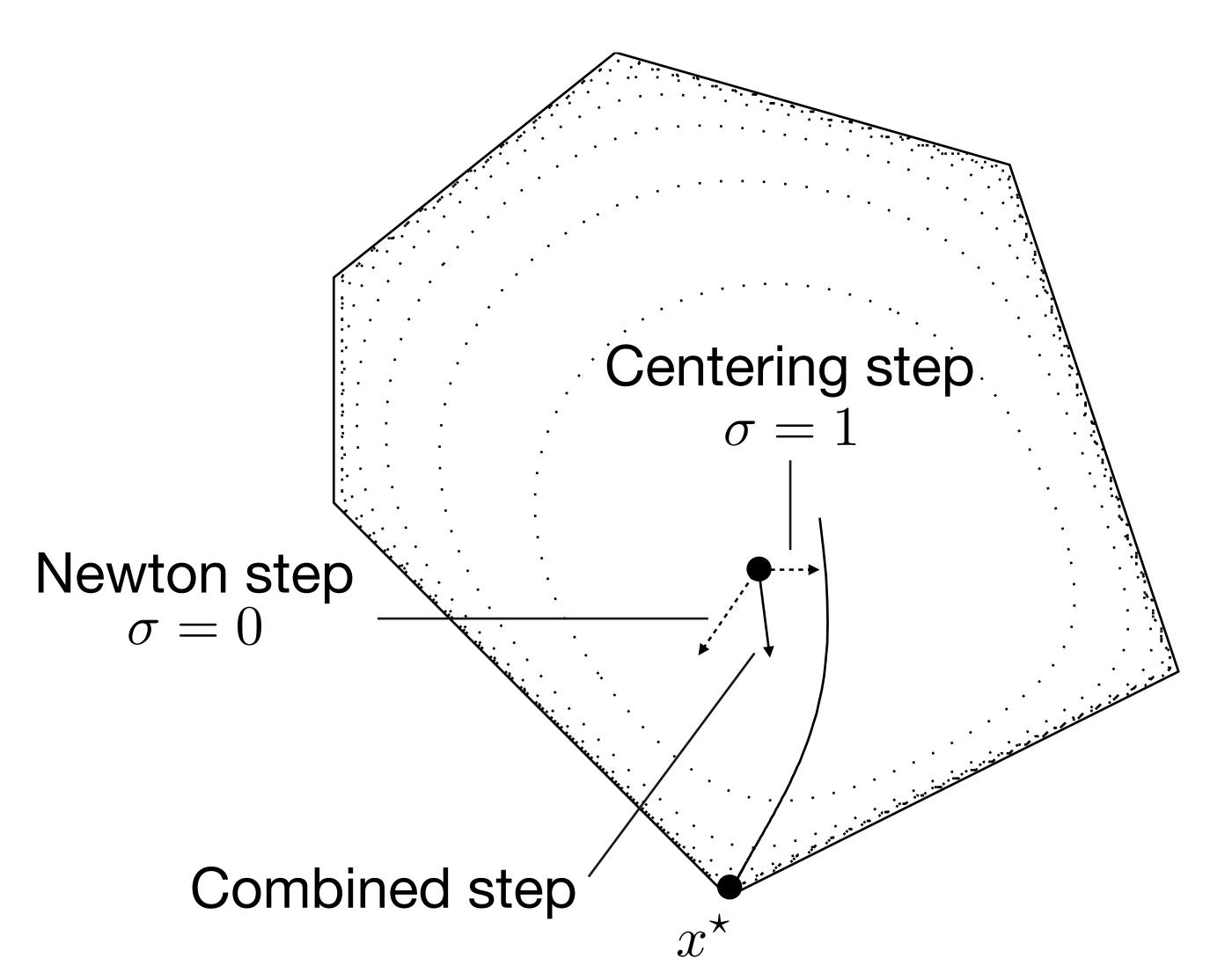
$$\sigma = 0 \Rightarrow \text{Newton step}$$

$$\sigma = 1 \Rightarrow \text{Centering step towards } (x^*(\mu), s^*(\mu), y^*(\mu))$$

Line search to enforce x, s > 0

$$(x, s, y) \leftarrow (x, s, y) + \alpha(\Delta x, \Delta s, \Delta y)$$

## Path-following algorithm idea



#### **Centering step**

Moves towards the **central path** and is usually biased towards s, y > 0. **No progress** on duality measure  $\mu$ 

#### **Newton step**

Moves towards the **zero duality** measure  $\mu$ . Quickly violates s, y > 0.

#### **Combined step**

Best of both, with longer steps.

## Convergence

#### Mehrotra's algorithm

No convergence theory ———— Examples where it **diverges** (rare!)

Fantastic convergence in practice ——— Fewer than 30 iterations

#### Theoretical iteration complexity

Alternative versions (slower than Mehrotra) converge in  $O(\sqrt{n})$  iterations

#### **Operations**

 $O(n^{3.5})$ 

#### Average iteration complexity

Average iterations complexity is  $O(\log n)$ 

$$O(n^3 \log n)$$

# Interior-point vs simplex

### Comparison between interior-point method and simplex

#### **Primal simplex**

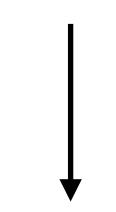
- Primal feasibility
- Zero duality gap
- Dual feasibility

#### **Dual simplex**

- Dual feasibility
- Zero duality gap
- Primal feasibility

#### Primal-dual interior-point

Interior condition



- Primal feasibility
- Dual feasibility
- Zero duality gap

**Exponential worst-case complexity** 

Requires feasible point

Can be warm-started

Polynomial worst-case complexity

Allows infeasible start

Cannot be warm-started

### Which algorithm should I use?

#### **Dual simplex**

- Small-to-medium problems
- Repeated solves with varying constraints

#### Interior-point (barrier)

- Medium-to-large problems
- Sparse structured problems

How do solvers with multiple options decide?

Concurrent Optimization

Why not both? (crossover)

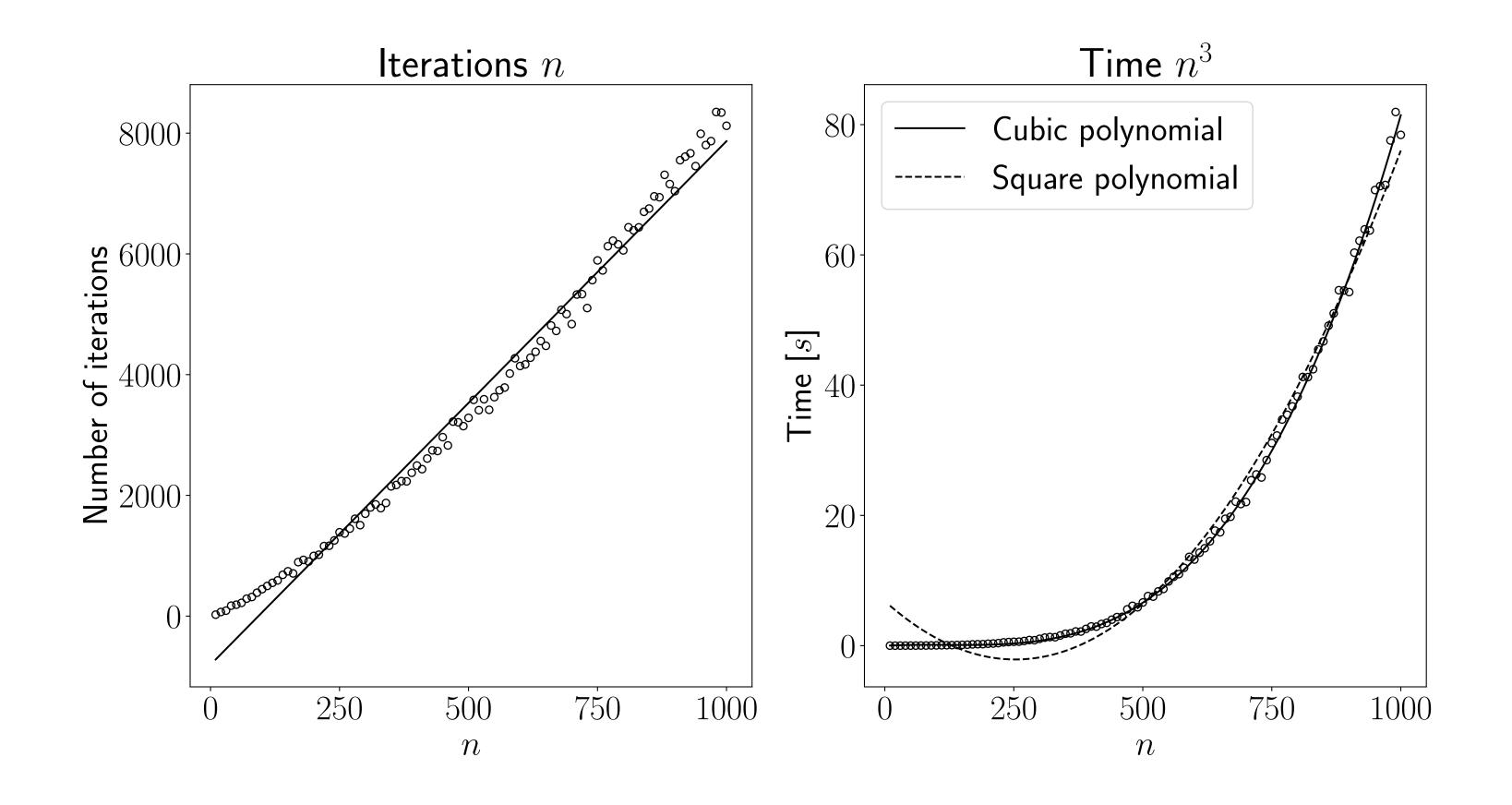
Interior-point —— Few simplex steps

# Average simplex complexity

**Random LPs** 

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$ 

n variables 3n constraints



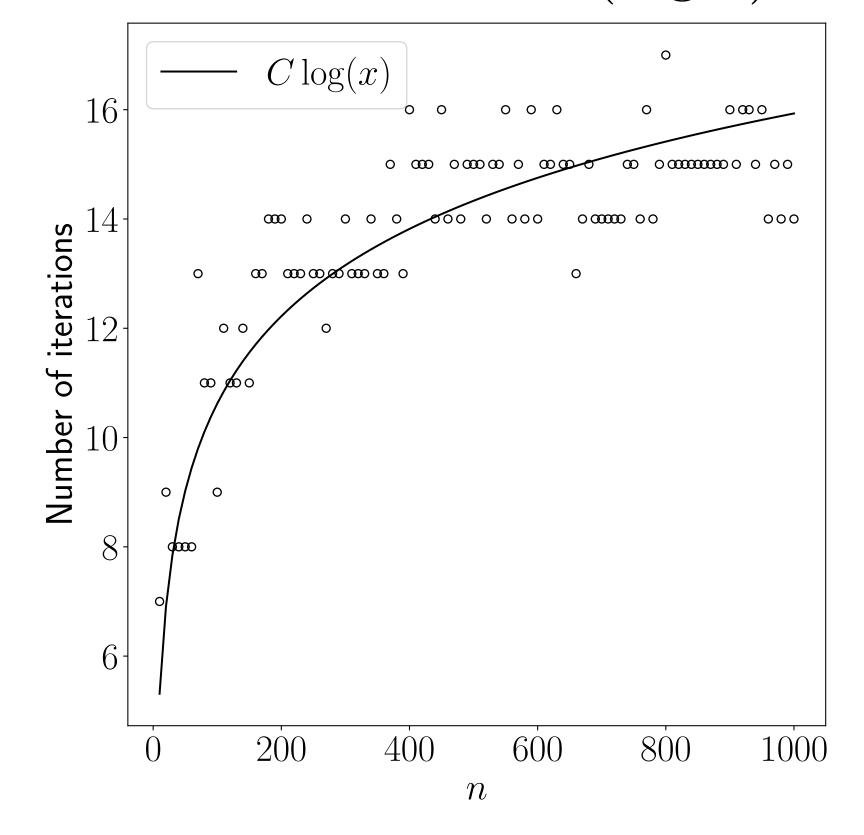
# Average interior-point complexity

**Random LPs** 

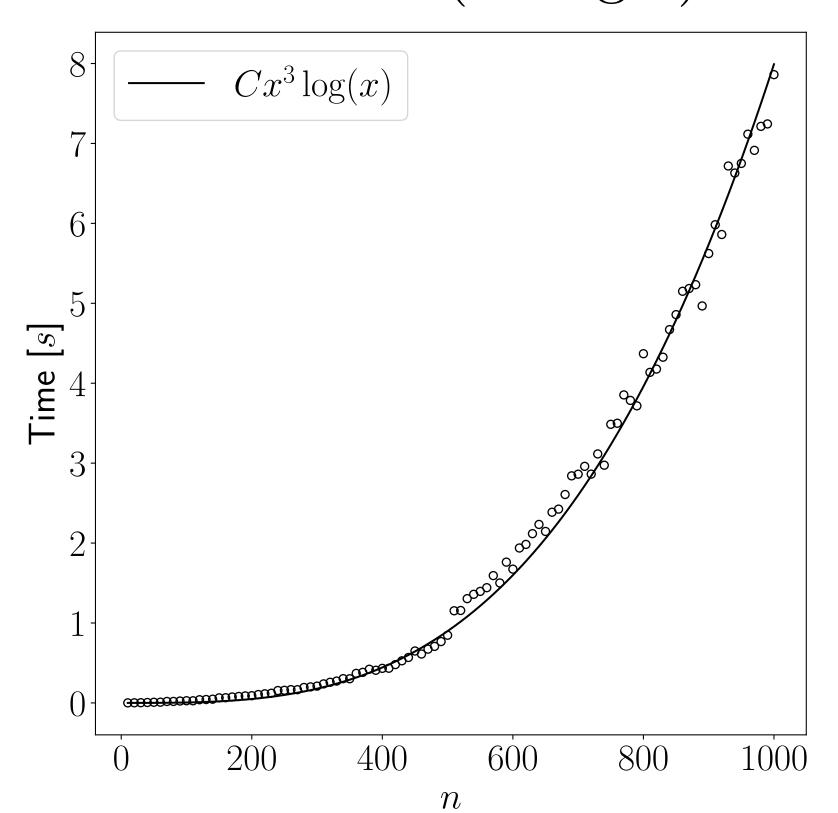
 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$ 

n variables 3n constraints

**Iterations:**  $O(\log n)$ 



Time:  $O(n^3 \log n)$ 



# Questions

### Next lecture

Integer optimization