ORF307 - Optimization

16. Network optimization

Bartolomeo Stellato — Spring 2024



Ed Forum

 Can you review why we get a piecewise linear value function?






Primal and dual basic feasible solutions

Primal problem Dual problem
minimize clx maximize —bTy
subjectto Az = subjectto ATy + ¢ >0

xr > 0

Given a basis matrix Ag

Primal feasible: Az =b, >0 = a25=A4;b>0
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Primal and dual basic feasible solutions

Primal problem Dual problem
minimize clx maximize —bTy
subjectto Az = subjectto ATy + ¢ >0

xr > 0

Given a basis matrix Ag

_ _ i Reduced costs
Primal feasible: Az =0, t >0 = xp=A502>0 /

Dual feasible: A"y +c¢>0. Sety= Ay  cp. Dualfeasibleifc =c+ ATy >0
Zero duality gap: ¢!z + by = chB — bTAchB — CpXp — ch];lb — 0

T

(by construction)



The primal (dual) simplex method
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The primal (dual) simplex method
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The primal (dual) simplex method

Primal problem
minimize ¢’z
subjectto Az =0

xr > 0

Primal simplex

* Primal feasiblility
e Zero duality gap

Dual feasibility

Dual problem

maximize —bly
subjectto Aly+c¢>0

Dual simplex
(solve dual instead)

» Dual feasibility
e Zero duality gap

Primal feasibility



Adding new variables

minimize 'z

subjectto Az =0
r > 0

Solution x*, y*



Adding new variables

T T

minimize c¢'x minimize ¢ T+ ¢ 1Tnt1
subjectto Arxr=b —> subjectto Ax+ A, 1Tn11 =0
xr > 0 Ly Ln+1 > 0

Solution z*, y*



Adding new variables

minimize ¢’z minimize  c'x + cpp1Tnid
subjectto Arxr=b —> subjectto Ax+ A, 1Tn11 =0
xr > 0 Ly Ln+1 > 0

Solution x*, y*

Is the solution (z*,0), y* optimal for the new problem?



Adding new variables

Optimality conditions

minimize clx + 1T

subjectto Az + A, 112,41 =b ——— Solution (z*,0) is still primal feasible
Ly L1 > 0



Adding new variables

Optimality conditions

minimize ¢z 4+ cp12041
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Adding new variables

Optimality conditions

minimize ¢z 4+ cp12041
subjectto Ax + A, 117,41 =b ——— Solution (*,0) is still primal feasible
Ly L1 > 0

Is y* still dual feasible?

AZ+1?J* + Cny1 2= 0

Yes Otherwise

(x*,0) still optimal for new problem Primal simplex



Optimal value function
p*(vw) =min{c' z | Az =b+u, x>0}
Assumption: p*(0) is finite

Properties

* p*(u) > —oo everywhere (from global lower bound)

» p*(u) is piecewise-linear on its domain



Optimal value function is piecewise linear

Proof

p*(vw) =min{c' z | Az =b+u, x >0}



Optimal value function is piecewise linear

Proof
Dual feasible set

p*(u) = min{c'z | Az =b+u, x> 0} D={y|A'y+c>0}

Assumption: p*(0) is finite



Optimal value function is piecewise linear

Proof
Dual feasible set

p*(vw) =min{c' z | Az =b+u, x >0} D={y| ATy +c>0}

Assumption: p*(0) is finite

If p* (u) finite

X
p*(u) = max — (b + u)Ty = max —y,fu — bTyk P ('J\
yeD k=1,...,r

v1,...,Y, are the extreme points of D




Derivative of the optimal value function

Modified optimal solution
v (u) = A (b+u) = 2% + Ag'u
y (u) =y

10



Derivative of the optimal value function

Modified optimal solution

vy (u) = Ag'(b+u) = o + Aglu

y (u) =y

Optimal value function

p*(u)

¢t x*(u)

c' ¥+ cp AL u

p*(0) —y*" u

(affine for small u)
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Derivative of the optimal value function

Modified optimal solution
v (u) = A (b+u) = 2% + Ag'u
y (u) =y

Optimal value function

p*(u) = ¢ z*(u)
=c'a* + cg ALl u

= p*(0) — y*Tu (affine for small u)

Local derivative

Vp*(u) = —y* (y* are the shadow prices) '



Today'’s lecture

Network optimization

e Network flows
 Minimum cost network flow problem
e Network flow solutions

 Examples: maximum flow, shortest path, assignment

11



Network flows




Networks

* Electrical and power networks
 Road networks

* Airline routes

* Printed circuit boards

e Social networks

)
Wi ;‘NH’"‘

4y "

!
‘
11
i w




Network modelling

A network (or directed graph, or digraph)
IS a set of m nodes and n directed arcs

» Arcs are ordered pairs of nodes (a, b)
(leaves a, enters b)

» Assumption there is at most one arc
from node a to node b

» There are no loops (arcs from a to a)

14



Arc-node incidence matrix

m X n matrix A with entries

1 If arc 7 starts at node
A;; = ¢ —1 Ifarcjends at node :
0 otherwise

Note Each column has
one —1 and one 1



@/

m X n matrix A with entries

1 If arc j starts at node :&—_—ﬁ
A;; =< —1 ifarc j ends at node : No\ 1T 1 0 0 0 0 0 -1
0 otherwise Yl-1 o 1 0 0o 0 0 1
A (|0 -1 -1 -1 1 1 0 0
Note Each column has o o0 O 1 0 0 -1 o0
one —1 and one 1 o o0 o0 o0 o0 -1 1 ©
‘0 0 0 0 -1 0 0 0

S
Arc-node incidence matrix |
2 @3/6@
5
4 7




Network flow

flow vector r € R"®

z ;. flow (of material, traffic, information, electricity, etc)
through arc j

16



Network flow

flow vector r € R"®

z ;. flow (of material, traffic, information, electricity, etc)
through arc j

total flow leaving node ¢

> Aijzj = (Ax);
j=1

16



External supply

supply vector b € R™

» b; IS the external supply at node ¢
(if b; < O, it represents demand)
» We must have 1715 = 0

(total supply = total demand)
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supply vector b € R™

» b; IS the external supply at node ¢
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Balance equations

ZAijxj — (ACC)Z — bz', for all ¢
j=1
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External supply

supply vector b € R™

» b; IS the external supply at node ¢
(if b; < O, it represents demand)
» We must have 1715 = 0

(total supply = total demand)

Balance equations

ZAZJQJJ — — b;, foralli
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Total leaving Supply
flow
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External supply

supply vector b € R™

» b; IS the external supply at node ¢
(if b; < O, it represents demand)
» We must have 1715 = 0

(total supply = total demand)

Balance equations

ZAZJQJJ — — b;, foralli

7=1 / \

Total leaving Supply
flow

Axr =0

17



Minimum cost network flow problem



Minimum cost network flow problem

minimize c¢lx
subjectto Ax =10
0<zxx<u

* ¢; Is unit cost of flow through arc :
* Flow x; must be nonnegative
» u; I1s the maximum flow capacity of arc ¢

» Many network optimization problems are just special cases

19



Example

Transportation

Goal ship £ € R"™ to satisfy demand

Supply Demand

(arc costs shown)
All capacities 20

20



Example

Transportation

Goal ship £ € R"™ to satisfy demand

Demand

Supply

(arc costs shown)
All capacities 20

c=(5,6,844{3,9,3,6)

b= (7,11,18,12, —10, —23, —15)

u=201

1

o O O O

0

o O =

o O O T O

o O O O O

o O = O O

o R O O O

20

o O = O O O

—1




c=(5,6,8,4,3,9,3,6)

1 1 0 0 0 0 0

Example C 0 1 1 1 0 o
Transportation o 0 0 0 0 1 0
A=10 0 0 0 0 0 1

Goal ship x € R" to satisfy demand 10 -1 0 0 0 0
Supply Demand 0 -1 0 -1 0 -1 -1

0 0 0O 0 -1 0 0

b= (7,11,18,12,—-10,—23, —15)
u=201

Minimum cost network flow

minimize ¢!z

subjectto Az =0
0<zx<u

(arc costs shown)
All capacities 20 r* = (7,0,3,0,8,18,5,7) 20

o O = O O O




Example

Airline passenger routing

* United Airlines has 5 flights per day
from BOS to NY
(10am, 12pm, 2pm, 4pm, 6pm)

* Flight capacities
(100, 100, 100, 150, 150)

e Costs: $50/hour of delay

e |ast option: 9pm flight with other
company (additional cost $75)

 [oday’s reservations
(110, 118, 103, 161, 140)




Airline passenger routing

Network

()

22



Airline passenger routing

Network

5

Decisions
z ;. passengers flowing on arc j

22



Decisions

Airline passenger rOUting r;: passengers flowing on arc j

Network

Costs
c;: cost of moving passenger on arc j

/ \
. 0ar ‘ . \ « Between flights: $50/hour
Oam 4pm : ys
» To 9pm flight: $75 additional
\. » To NY: $0 (as scheduled)

22



Decisions

Airline passenger rOUting r;: passengers flowing on arc j

Network

Costs
c;: cost of moving passenger on arc j

/ \
. 0ar ‘ . \ « Between flights: $50/hour
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» To 9pm flight: $75 additional
\. » To NY: $0 (as scheduled)

@ Supplies

b; reserved passengers for flight ;
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* NY supply: - total reserved passeng.
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Decisions

Airline passenger rOUting r;: passengers flowing on arc j

Network

Costs
c;: cost of moving passenger on arc j

/ \
. 0ar ‘ . \ « Between flights: $50/hour
Oam 4pm : ys
» To 9pm flight: $75 additional
\. » To NY: $0 (as scheduled)

@ Supplies

b; reserved passengers for flight ;
* 9pm flight: ; =0
* NY supply: - total reserved passeng.

Capacities
w; Maximum passengers over arc j

 Between flights: u; = o

» To NY: u; = flight capacity
22



Airline passenger routing

Network

10am

/ \
& 4\
pm
'@
Network flow formulation
minimize ¢!z

subjectto Az =10
0<x<u

Decisions
z ;. passengers flowing on arc j

Costs
c;: cost of moving passenger on arc j

+ Between flights: $50/hour
» To 9pm flight: $75 additional
* To NY: $0 (as scheduled)

Supplies
b; reserved passengers for flight ;

* 9pm flight: ; =0
* NY supply: - total reserved passeng.

Capacities
w; Maximum passengers over arc j

 Between flights: u; = o

» To NY: u; = flight capacity
22



Network flow solutions




Remove arc capacities

Goal: create equivalent network without arc capacities

minimize ¢!z

subjectto Az =0
0<x<u

24



Remove arc capacities

Goal: create equivalent network without arc capacities

minimize ¢’z minimize 6~Ti ~ Standard form
subjectto Ax =10 —_— subjectto Ax =b LP with arc-node
0< 1< u >0 iIncidence matrix

24



Remove arc capacities

ldea: slack variables

$j§uj‘ = I; T S; = Uy, SjZO

Nodes/arcs
Interpretation

"
O—0
b Th

25



Remove arc capacities

ldea: slack variables

wj<uj = I; T S; = Uy, Sj>0

+x;...= by
Network structure lost
no longer one —1 = L. = bg
and one 1 per column T+ 8 = u,

Nodes/arcs
Interpretation

"
O—0
b Th

25



$j<Uj m—

e T XL =
Network structure lost -
no longer one —1 R R
and one 1 per column T+ 8; = u,

Network structure
recovered

(hew node and new arc)

Remove arc capacities

ldea: slack variables

Nodes/arcs
Interpretation

N
O—0O
b, b,

25



Equivalent uncapacitated network flow

minimize 'z

subjectto Az =0
r > 0

» A still an arc-node incidence matrix
« Can we say something about the extreme points?

20



Total unimodularity

A matrix is totally unimodular if all its minors are —1,0 or 1
(minor is the determinant of a square submatrix of A)

27



Total unimodularity

A matrix is totally unimodular if all its minors are —1,0 or 1

(minor is the determinant of a square submatrix of A)

example: a node-arc incidence
matrix of a directed graph

27



Total unimodularity

A matrix is totally unimodular if all its minors are —1,0 or 1
(minor is the determinant of a square submatrix of A)

example: a node-arc incidence n o o 1 0 1 0
matrix of a directed graph o 1 0 -1 -1 0

properties

- the entries of A;; (i.e., its minors of order 1) are —1,0, or 1
» The inverse of any nonsingular square submatrix
of A has entries +1, —1, or

27



Integrality theorem

Given a polyhedron P={zxeR"|Az =0, x>0}

where

» A Is totally unimodular
* b IS an integer vector

all the extreme points of P
are integer vectors.

28



Integrality theorem
Given a polyhedron P={zceR"|Az =0, x>0}

where
» A Is totally unimodular all the extreme points of P
* b IS an Integer vector are integer vectors.

Proof

» All extreme points are basic feasible solutions
with xg = Az'band z; =0, i # B
- A" has integer components because of total unimodularity of A
* b has also integer components
 Therefore, also z Is integral B

28



Implications for network and combinatorial optimization

Minimum cost network flow
minimize ¢’z
subjectto Az =10 —_—
0<x<u

If b and « are integral
solutions =* are integral

29



Implications for network and combinatorial optimization

Minimum cost network flow
T

minimize c¢'«x _
hiectto Ar — b If b and u are integral
SUbJect 10 Ar = solutions =* are integral
0<x<u
Integer linear programs Very difficult in general

(more on this in a few weeks)

minimize ¢z

subjectto Az =0
0<zx<u
x e 4"

29



Implications for network and combinatorial optimization

Minimum cost network flow
T

minimize c¢'«x _
hiectto Ar — b If b and u are integral
SUbJect 10 Ar = solutions =* are integral
0<x<u
Integer linear programs Very difficult in general

(more on this in a few weeks)

minimize ¢z

subjectto Az =0
0<zx<u
x e 4"

If A totally unimodular

and b, u Integral, we can

relax integrality and solve

a fast LP instead 29



Examples



Maximum flow problem

Goal maximize flow from node 1 (source)
to node m (sink) through the network

/\@

subject to A:C — te e=(1,0,...,0,—1)
0<x<u

31



Maximum flow as minimum cost flow

oY i

p
\ Artificial arc n + 1

_C = |0
minimize  —t j
. i 1 | 4
subjectto |A —e¢ T 0
X _u_
0< <




(arc capacities shown)
12
11 v ‘ 15

o w0 o
Q 4
11

Maximum flow example

33



(arc capacities shown)
12
11 v ‘ 15

a 1w o Tm

First flow 1
11

Maximum flow example

11
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(arc capacities shown)
12
11 / ‘ 15

a 1w o Tm

First flow 1
11

Maximum flow example

11

4/11

Second flow
11/12

11 33



(arc capacities shown)
12
11 / ‘ 15

a 1w o Tm

First flow 1

Maximum flow example

11

11

Third flow

4/11

Second flow

11/12

11 33



(arc capacities shown)
12
11 / ‘ 15

a 1w o Tm

First flow 1

Maximum flow example

11

11

Third flow

4/11

Second flow

11/12

4/11

Total flow: 19
11 13




Shortest path problem

Goal Find the shortest path between nodes 1 and m

/<> - paths can be represented
\/\ as vectors z € {0,1}"

34



Shortest path problem

Goal Find the shortest path between nodes 1 and m

/<> - paths can be represented
\/\ as vectors z € {0,1}"

Formulation . ¢; is the “length” of arc j
minimize ¢!z » ¢e=(1,0,...,0,—1)
subjectto Az = e - Variables are binary

r € {0,11" (include or not arc in path)

34



Shortest path as minimum cost flow

minimize ¢!z
subjectto Ax =ce¢
re{0,1}"

35



Shortest path as minimum cost flow

Relaxation
minimize ¢!z minimize ¢!z
subjectto Ax =-e¢ EE— subjectto Ax =-e

r e {0,1}" 0<z<1
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Shortest path as minimum cost flow

Relaxation
minimize ¢’z minimize c'x
subjectto Ax =-e¢ EE— subjectto Ax =-e
r e {0,1}" 0<zx<1

T

Extreme points
satisfy x; € {0,1}
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Shortest path as minimum cost flow

Relaxation
minimize ¢’z minimize ¢’z
subjectto Az =ce¢ — subjectto Az =ce¢

r e {0,1}" 0<zx<1
T

Extreme points

tisty x; 1
Example (arc costs shown) satisfy z; € 10, 1}

12
11 / () 15
a2 T

11




Shortest path as minimum cost flow

Relaxation
minimize ¢’z minimize ¢’z
subjectto Az =ce¢ — subjectto Az =ce¢

r e {0,1}" 0<zx<1
1

Extreme points
satisfy x; € {0,1}

Example (arc costs shown)

= (11,8,10,12,4,11,7,15,4)
r* =(0,1,0,0,0,1,0,0,1)

ot =y 23

35



Assignment problem

Goal match N persons to N tasks

» Each person assigned to one task, each task to one person
- (;; Cost of matching person ¢ to task

36



Assignment problem

Goal match N persons to N tasks

» Each person assigned to one task, each task to one person
- (;; Cost of matching person ¢ to task

LP formulation

N
minimize Z Cii X

2,=1

N
subjectto  » Xjz=1, =1,....N
1=1

N
> Xijj=1, i=1,...,N
j=1

X;; €10,1}

36



Assignment problem

Goal match N persons to N tasks

» Each person assigned to one task, each task to one person

- (;; Cost of matching person ¢ to task

LP formulation

N
minimize Z Cii X

2,=1

N
SUbjeCttO ZXij:l’ ]:1,,N
1=1

N
» Xij=1, i=1,...,N
j=1

X;; €10,1}

How do you define
the network?

36



Task assignment as
minimum cost network flow

Person Task

(arc costs shown)

37



Task assignment as
minimum cost network flow

Person Task

(arc costs shown)

c = (516/2,8,1,3,4,3,9)

1 4 a1 o
0 0 0 1
4_|0 0 0 o
-1 0 0 -1

0 -1 0 0

0 0 -1 0

b= (1.1,1,-1,—-1,—1)

o O = O

—1
0

o O O = O

o = O O

37

o O = O O




Task assignment as
minimum cost network flow

Person Task

(arc costs shown)

c=(5,6,2,8,1,3,4,3,9)

1 1 1 0 0 0 0
0 0 0 1 1 1 0
4_|0 0 0 0o 0o o0 1
-1 0 0 -1 0 0 -1

0 -1 0 0 -1 0 0

0 0 -1 0 0 -1 0

b=(1,1,1,—1,—1,—1)

o = O O

o O = O O

Minimum cost network flow

minimize ¢z

subjectto Az =0
D< <1

37




c=(5,6,2,8,1,3,4,3,9)

Task assignment as 1 1 1 0
minimum cost network flow 0 0 0 1
A — 0 0 0 0

—1 0 0 —1

Person Task 0O —1 0 0
—1 0

1 ______ 5 —1 i 0 0
S b= (1,1,1,-1, -1, —1)

Extreme points

(arc costs shown) satisfy z; € {0, 1}

0 0 0
1 1 0
0 0 1
0 0 -1
—1 0 0
0O -1 0

o = O O

o O = O O

Minimum cost network flow

minimize

CTﬂf

subjectto Az =0

—_—

D0<xr<I1

37




Task assignment as
minimum cost network flow

Person

(arc costs shown)

c=(5,6,2,8,1,3,4,3,9)

1 1 0 0 0 0
0 0 1 1 1 0
0 0 0 0 0 1
0 0O -1 0 0 -1
-1 0 0O -1 0 0

0O -1 0 0O -1 0

b=(1,1,1,—-1,—1,—1)
Minimum cost network flow

minimize ¢z

subjectto Az =0

Extreme points

satisfy x; € {0,1}

D0<xr<I1

Optimal solution
v* =(0,0,1,0,1,0,0,0,1)
cla* =17

o = O O

37

o O = O O




Network optimization

Today, we learned to:

Model flows across networks
Formulate minimum cost network flow problems
Analyze network flow problem solutions (integrality theorem)

Formulate maximum-flow, shortest path, and assignment problems as
minimum cost network flows
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Next lecture

* |nterior point algorithms
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