ORF307 – Optimization

16. Network optimization

Ed Forum

Can you review why we get a piecewise linear value function?

Recap

Primal problem

Dual problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Given a basis matrix A_B

Primal feasible:
$$Ax = b, x \ge 0 \implies x_B = A_B^{-1}b \ge 0$$

Primal problem

Dual problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Given a basis matrix A_B

Primal feasible: $Ax = b, x \ge 0 \implies x_B = A_B^{-1}b \ge 0$

Dual feasible: $A^Ty + c \ge 0$. Set $y = -A_B^{-T}c_B$. Dual feasible if $\bar{c} = c + A^Ty \ge 0$

Primal problem

Dual problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Given a **basis** matrix A_B

Primal feasible: $Ax = b, x \ge 0 \implies x_B = A_B^{-1}b \ge 0$

$$Ax = b, x \ge 0$$

$$\Rightarrow$$

$$x_B = A_B^{-1}b \ge 0$$

Reduced costs

Dual feasible:
$$A^Ty + c \ge 0$$
.

Dual feasible:
$$A^Ty + c \ge 0$$
. Set $y = -A_B^{-T}c_B$. Dual feasible if $\bar{c} = c + A^Ty \ge 0$

Primal problem

Dual problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Given a **basis** matrix A_B

Primal feasible: $Ax = b, x \ge 0 \implies x_B = A_B^{-1}b \ge 0$

$$Ax = b, x \ge 0$$

$$\Rightarrow$$

$$x_B = A_B^{-1}b \ge 0$$

Reduced costs

Dual feasible: $A^Ty + c \ge 0$. Set $y = -A_B^{-T}c_B$. Dual feasible if $\overline{c} = c + A^Ty \ge 0$

Zero duality gap: $c^T x + b^T y = c_B^T x_B - b^T A_B^{-T} c_B = c_B x_B - c_B^T A_B^{-1} b = 0$

Primal problem

Dual problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Given a **basis** matrix A_B

Primal feasible: $Ax = b, x \ge 0 \implies x_B = A_B^{-1}b \ge 0$

$$Ax = b, x \ge 0$$

$$\Rightarrow$$

$$x_B = A_B^{-1}b \ge 0$$

Reduced costs

$$A^T y + c \ge 0$$

Set
$$y = -A_B^{-T}$$

Dual feasible:
$$A^Ty + c \ge 0$$
. Set $y = -A_B^{-T}c_B$. Dual feasible if $\overline{c} = c + A^Ty \ge 0$

Zero duality gap:
$$c^T x + b^T y = c_B^T x_B - b^T A_B^{-T} c_B = c_B x_B - c_B^T A_B^{-1} b = 0$$

The primal (dual) simplex method

Primal problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

Dual problem

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

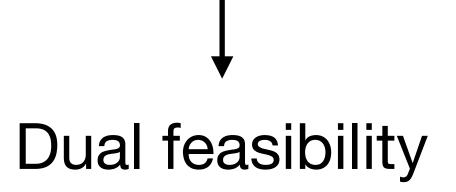
The primal (dual) simplex method

Primal problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array}$$

Primal simplex

- Primal feasibility
- Zero duality gap



Dual problem

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

The primal (dual) simplex method

Primal problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

Primal simplex

- Primal feasibility
- Zero duality gap

Dual problem

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Dual simplex

(solve dual instead)

- Dual feasibility
- Zero duality gap

Primal feasibility

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

Solution x^*, y^*

$$\begin{array}{lll} \text{minimize} & c^Tx & \text{minimize} & c^Tx + c_{n+1}x_{n+1} \\ \text{subject to} & Ax = b & \longrightarrow & \text{subject to} & Ax + A_{n+1}x_{n+1} = b \\ & x \geq 0 & & x, x_{n+1} \geq 0 \end{array}$$

Solution x^*, y^*

minimize
$$c^Tx$$
 minimize $c^Tx + c_{n+1}x_{n+1}$ subject to $Ax = b$ subject to $Ax + A_{n+1}x_{n+1} = b$ $x \ge 0$ $x, x_{n+1} \ge 0$

Solution x^*, y^*

Is the solution $(x^*,0),y^*$ optimal for the new problem?

Optimality conditions

minimize
$$c^Tx+c_{n+1}x_{n+1}$$
 subject to $Ax+A_{n+1}x_{n+1}=b$ —— Solution $(x^\star,0)$ is still **primal feasible** $x,x_{n+1}\geq 0$

Optimality conditions

minimize
$$c^Tx+c_{n+1}x_{n+1}$$
 subject to $Ax+A_{n+1}x_{n+1}=b$ ——— Solution $(x^\star,0)$ is still **primal feasible** $x,x_{n+1}\geq 0$

Is y^* still dual feasible?

$$A_{n+1}^T y^* + c_{n+1} \ge 0$$

Optimality conditions

Is y^* still dual feasible?

$$A_{n+1}^T y^* + c_{n+1} \ge 0$$

Yes Otherwise

 $(x^*,0)$ still **optimal** for new problem

Primal simplex

Optimal value function

$$p^*(u) = \min\{c^T x \mid Ax = b + u, x \ge 0\}$$

Assumption: $p^*(0)$ is finite

Properties

- $p^{\star}(u) > -\infty$ everywhere (from global lower bound)
- $p^{\star}(u)$ is piecewise-linear on its domain

Optimal value function is piecewise linear **Proof**

$$p^{\star}(u) = \min\{c^{T}x \mid Ax = b + u, \ x \ge 0\}$$

Optimal value function is piecewise linear

Proof

$$p^{\star}(u) = \min\{c^{T}x \mid Ax = b + u, \ x \ge 0\}$$

Dual feasible set

$$D = \{ y \mid A^T y + c \ge 0 \}$$

Assumption: $p^*(0)$ is finite

Optimal value function is piecewise linear

Proof

$$p^{\star}(u) = \min\{c^T x \mid Ax = b + u, \ x \ge 0\}$$

Dual feasible set

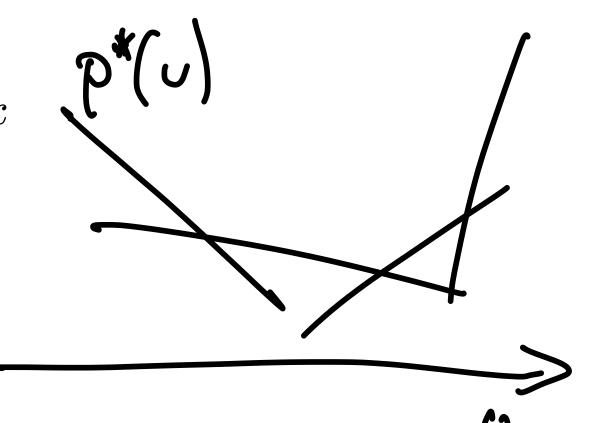
$$D = \{ y \mid A^T y + c \ge 0 \}$$

Assumption: $p^*(0)$ is finite

If
$$p^{\star}(u)$$
 finite

$$p^{\star}(u) = \max_{y \in D} -(b+u)^{T} y = \max_{k=1,...,r} -y_{k}^{T} u - b^{T} y_{k} \quad \text{(b)}$$

 y_1, \ldots, y_r are the extreme points of D



Derivative of the optimal value function

Modified optimal solution

$$x_B^*(u) = A_B^{-1}(b+u) = x_B^* + A_B^{-1}u$$

 $y^*(u) = y^*$

Derivative of the optimal value function

Modified optimal solution

$$x_B^*(u) = A_B^{-1}(b+u) = x_B^* + A_B^{-1}u$$

 $y^*(u) = y^*$

Optimal value function

$$p^{\star}(u) = c^{T}x^{\star}(u)$$

$$= c^{T}x^{\star} + c_{B}^{T}A_{B}^{-1}u$$

$$= p^{\star}(0) - y^{\star T}u \qquad \text{(affine for small } u\text{)}$$

Derivative of the optimal value function

Modified optimal solution

$$x_B^*(u) = A_B^{-1}(b+u) = x_B^* + A_B^{-1}u$$

 $y^*(u) = y^*$

Optimal value function

$$p^{\star}(u) = c^{T}x^{\star}(u)$$

$$= c^{T}x^{\star} + c_{B}^{T}A_{B}^{-1}u$$

$$= p^{\star}(0) - y^{\star T}u \qquad \text{(affine for small } u\text{)}$$

Local derivative

$$\nabla p^{\star}(u) = -y^{\star}$$
 (y* are the shadow prices)

Today's lecture

Network optimization

- Network flows
- Minimum cost network flow problem
- Network flow solutions
- Examples: maximum flow, shortest path, assignment

Network flows

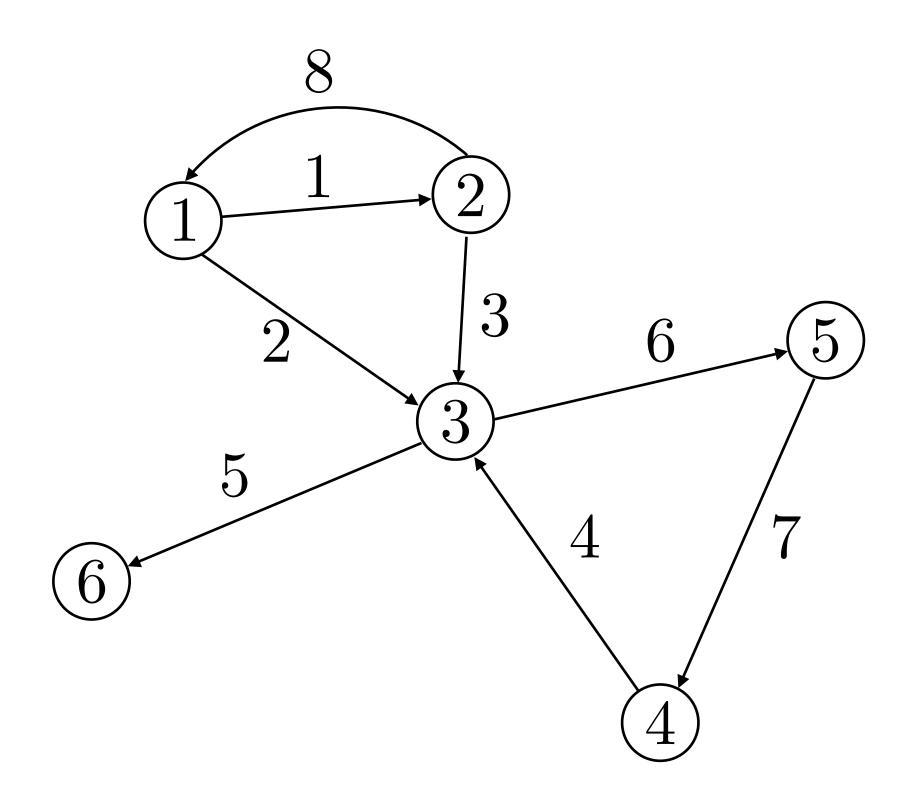
Networks

- Electrical and power networks
- Road networks
- Airline routes
- Printed circuit boards
- Social networks

Network modelling

A **network** (or *directed graph*, or *digraph*) is a set of m nodes and n directed arcs

- Arcs are ordered pairs of nodes (a, b) (leaves a, enters b)
- **Assumption** there is at most one arc from node a to node b
- There are no loops (arcs from a to a)



Arc-node incidence matrix

 $m \times n$ matrix A with entries

$$A_{ij} = \begin{cases} 1 & \text{if arc } j \text{ starts at node } i \\ -1 & \text{if arc } j \text{ ends at node } i \end{cases}$$
 otherwise

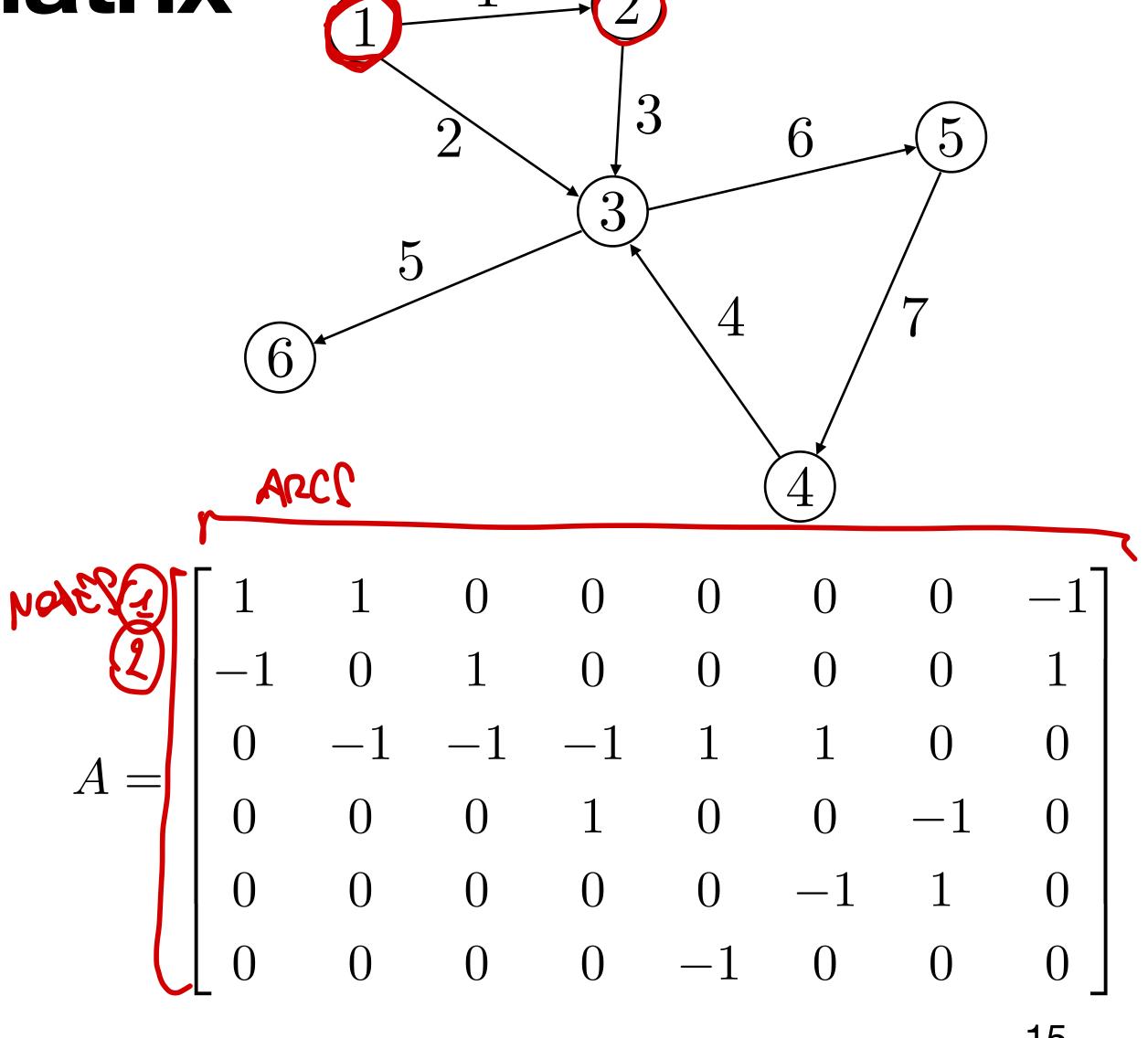
Note Each column has one -1 and one 1

Arc-node incidence matrix

 $m \times n$ matrix A with entries

$$A_{ij} = \begin{cases} 1 & \text{if arc } j \text{ starts at node } i \\ -1 & \text{if arc } j \text{ ends at node } i \end{cases}$$
 otherwise

Note Each column has one -1 and one 1



Network flow

flow vector $x \in \mathbf{R}^n$

 x_j : flow (of material, traffic, information, electricity, etc) through arc j

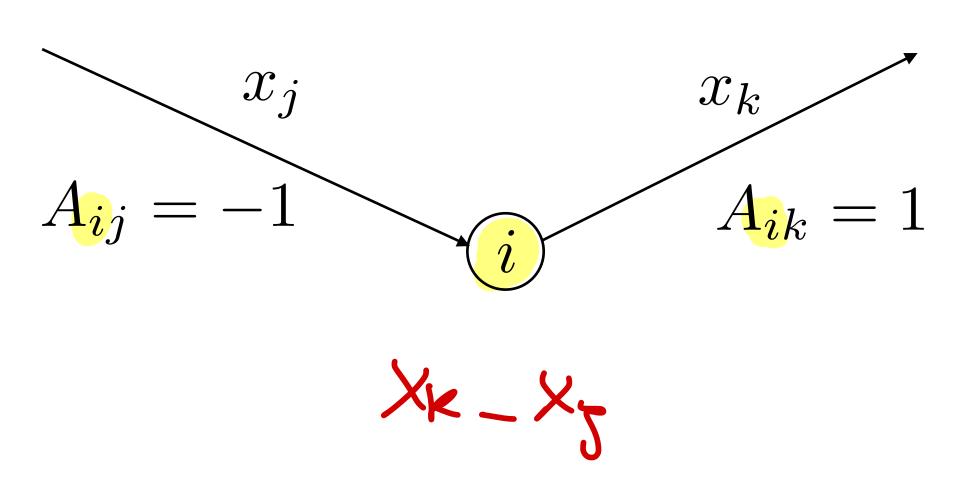
Network flow

flow vector $x \in \mathbf{R}^n$

 x_j : flow (of material, traffic, information, electricity, etc) through arc j

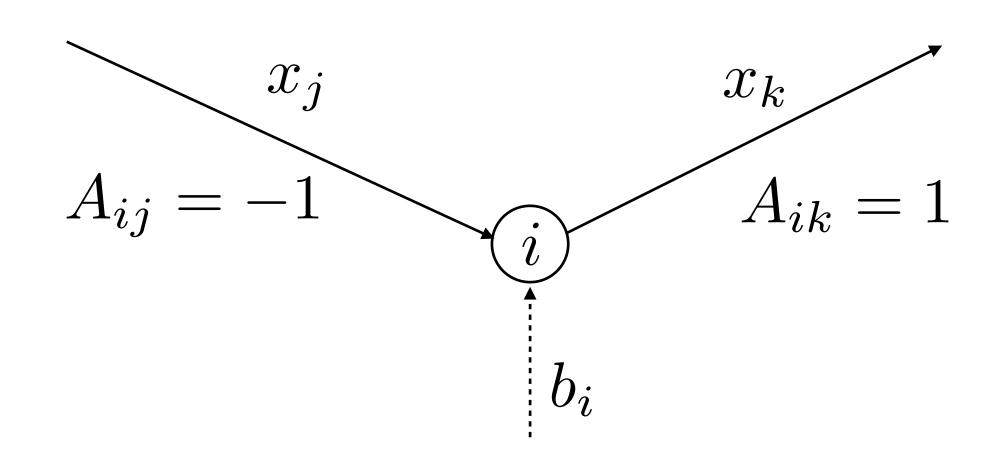
total flow leaving node i

$$\sum_{j=1}^{n} A_{ij} x_j = (Ax)_i$$



supply vector $b \in \mathbf{R}^m$

- b_i is the external supply at node i (if $b_i < 0$, it represents demand)
- We must have $\mathbf{1}^T b = 0$ (total supply = total demand)

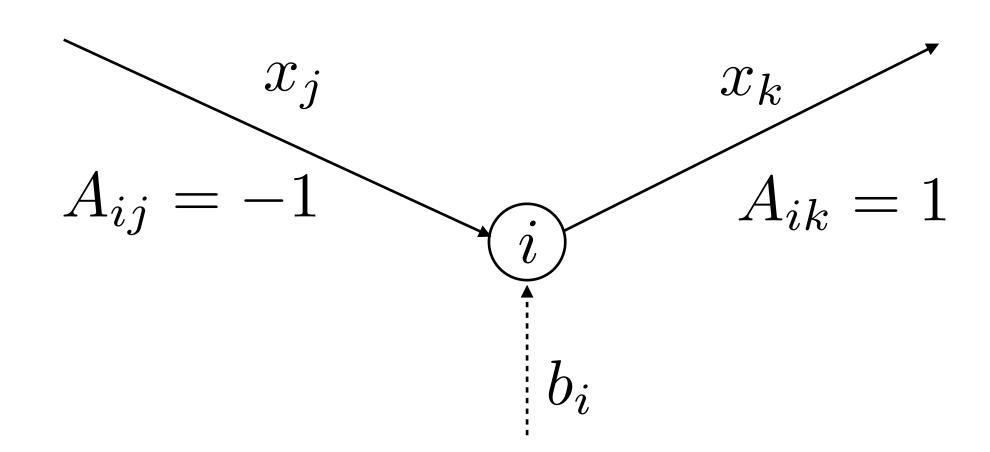


supply vector $b \in \mathbf{R}^m$

- b_i is the external supply at node i (if $b_i < 0$, it represents demand)
- We must have $\mathbf{1}^T b = 0$ (total supply = total demand)

Balance equations

$$\sum_{j=1}^{n} A_{ij}x_j = (Ax)_i = b_i, \quad \text{for all } i$$



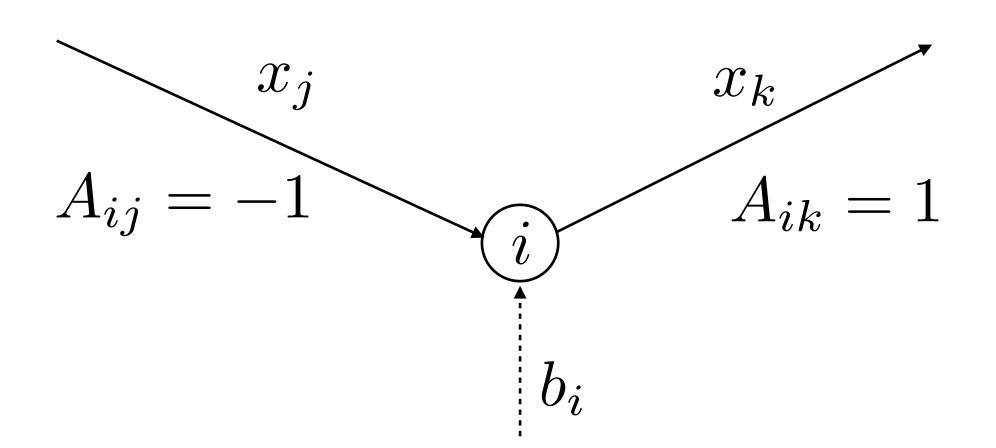
supply vector $b \in \mathbf{R}^m$

- b_i is the external supply at node i (if $b_i < 0$, it represents demand)
- We must have $\mathbf{1}^T b = 0$ (total supply = total demand)

Balance equations

$$\sum_{j=1}^n A_{ij} x_j = (Ax)_i = b_i,$$
 for all i

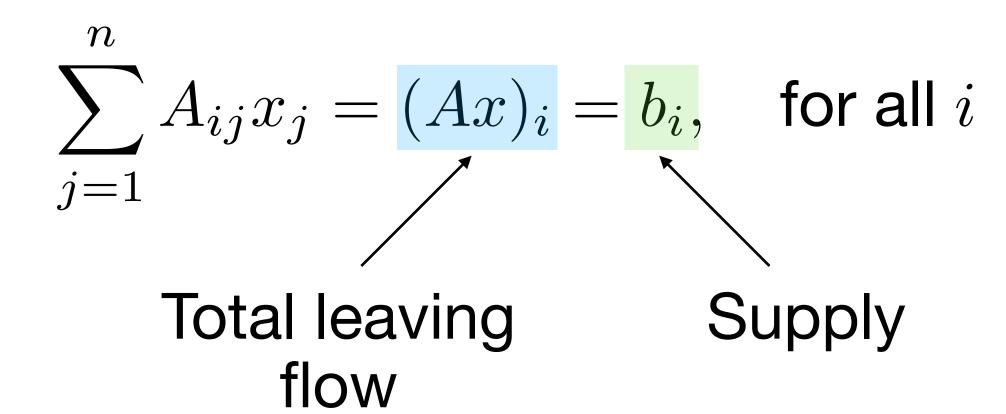
Total leaving flow

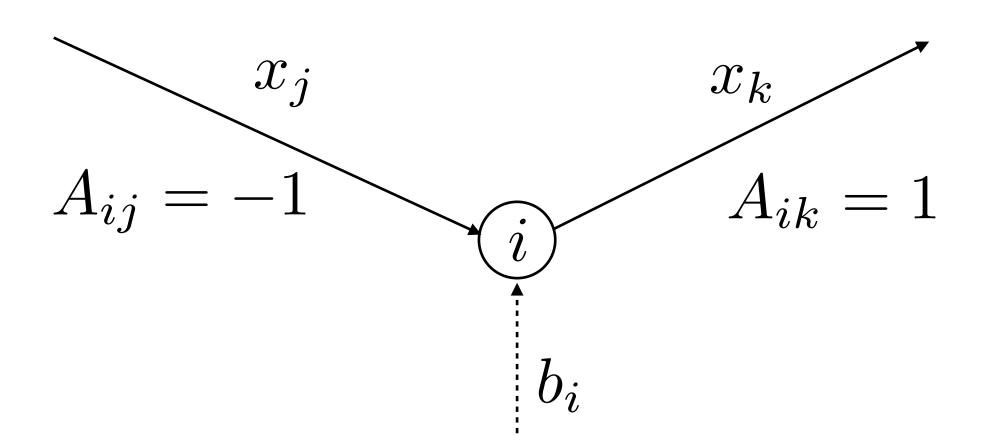


supply vector $b \in \mathbf{R}^m$

- b_i is the external supply at node i (if $b_i < 0$, it represents demand)
- We must have $\mathbf{1}^T b = 0$ (total supply = total demand)

Balance equations

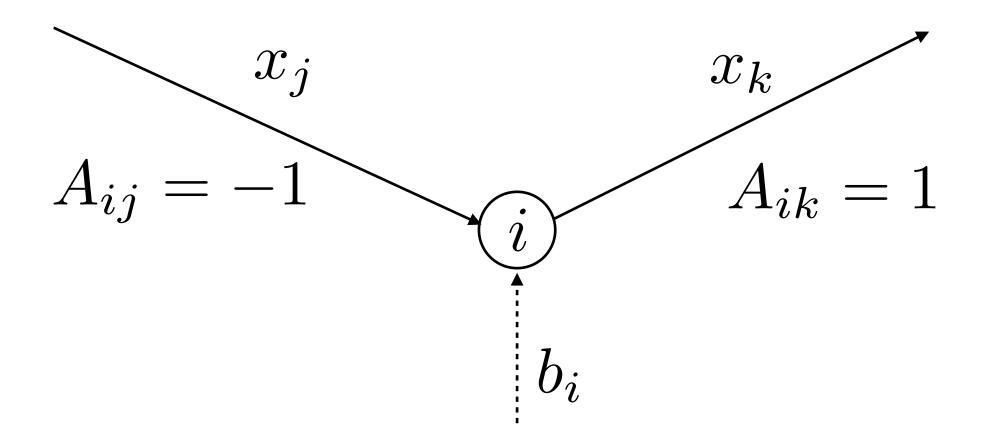




External supply

supply vector $b \in \mathbf{R}^m$

- b_i is the external supply at node i (if $b_i < 0$, it represents demand)
- We must have $\mathbf{1}^T b = 0$ (total supply = total demand)



Ax = b

Balance equations

$$\sum_{j=1}^{n} A_{ij} x_j = \underbrace{(Ax)_i}_{i} = b_i, \text{ for all } i$$

$$\text{Total leaving flow} \quad \text{Supply}$$

Minimum cost network flow problem

Minimum cost network flow problem

minimize
$$c^Tx$$
 subject to $Ax = b$
$$0 \le x \le u$$

- c_i is unit cost of flow through arc i
- Flow x_i must be nonnegative
- u_i is the maximum flow capacity of arc i
- Many network optimization problems are just special cases

Transportation

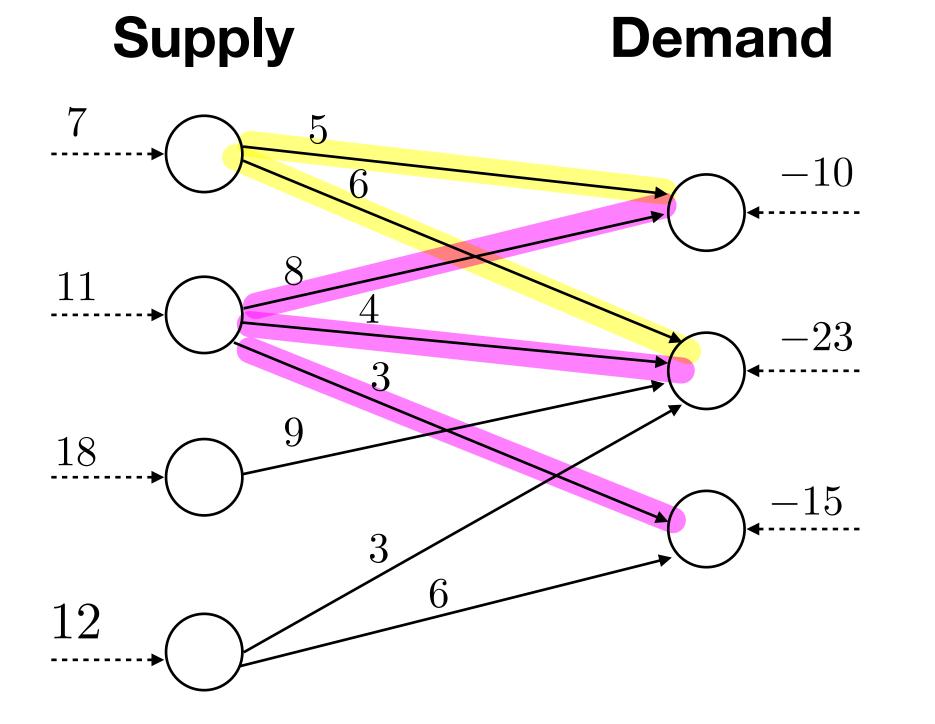
Goal ship $x \in \mathbf{R}^n$ to satisfy demand

Supply Demand -7 --10 --10 --10 --23 --15 --15

(arc costs shown) All capacities 20

Transportation

Goal ship $x \in \mathbb{R}^n$ to satisfy demand



(arc costs shown) All capacities 20

$$C = (5,6,8,4,3,9,3,6)$$

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & -1 \end{bmatrix}$$

$$b = (7, 11, 18, 12, -10, -23, -15)$$

 $u = 20 1$

Transportation

Goal ship $x \in \mathbb{R}^n$ to satisfy demand

(arc costs shown) All capacities 20

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 & -1 & 0 & 0 & -1 \end{bmatrix}$$

$$b = (7, 11, 18, 12, -10, -23, -15)$$

 $u = 20 1$

Minimum cost network flow

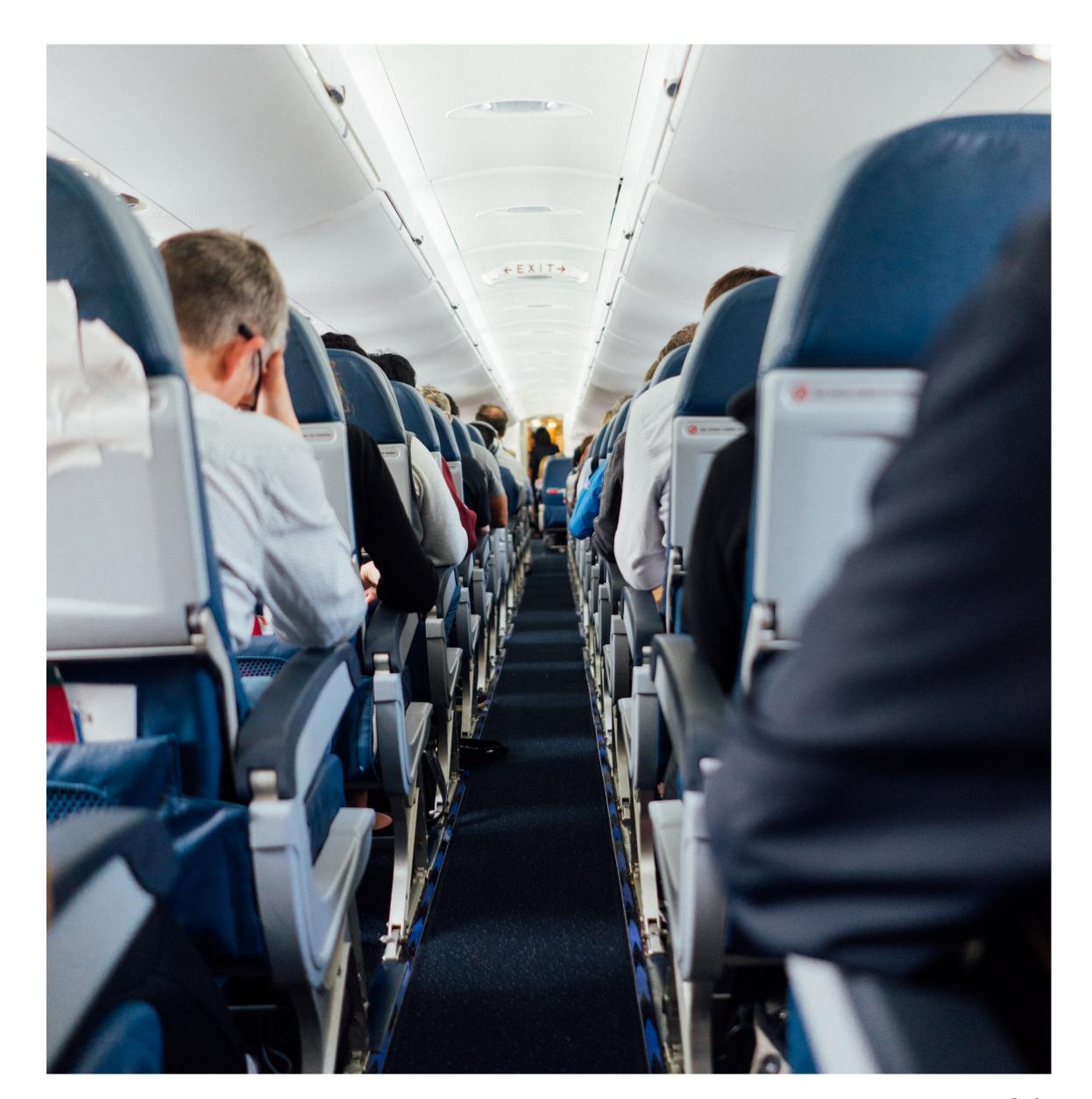
$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & 0 \leq x \leq u \end{array}$$

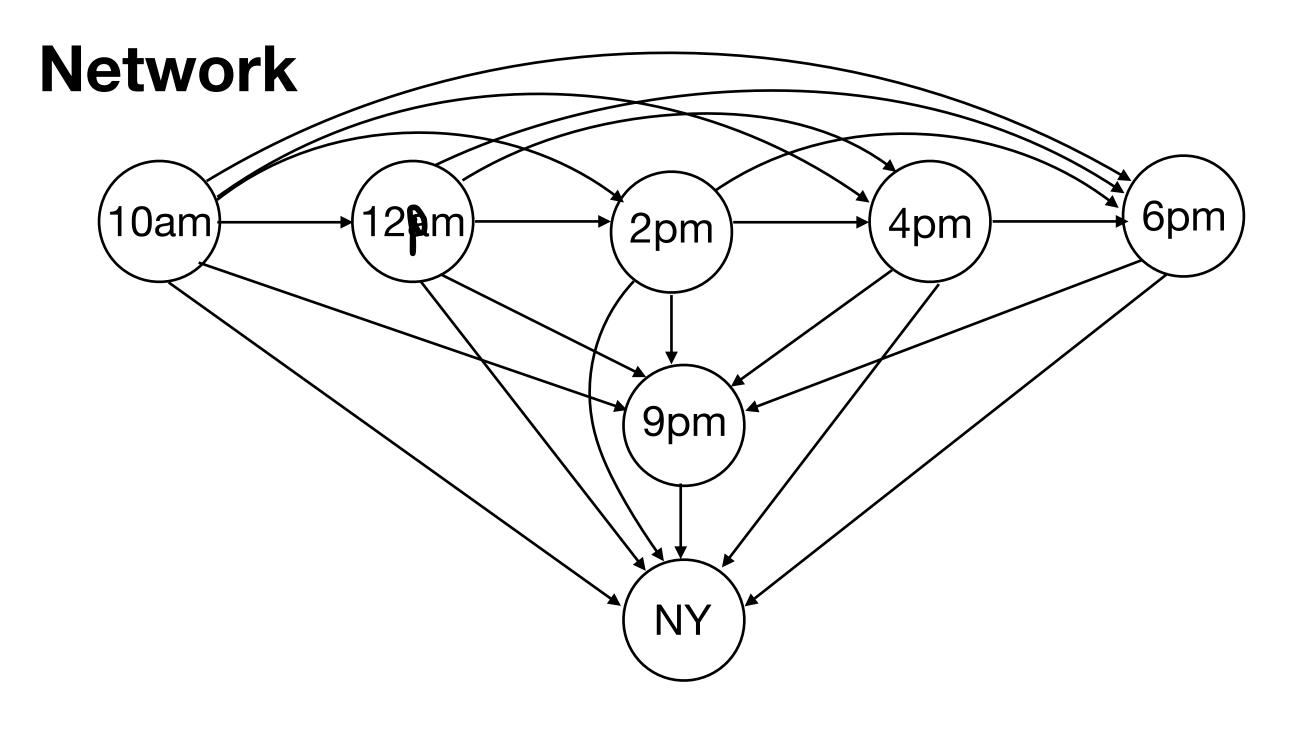
c = (5, 6, 8, 4, 3, 9, 3, 6)

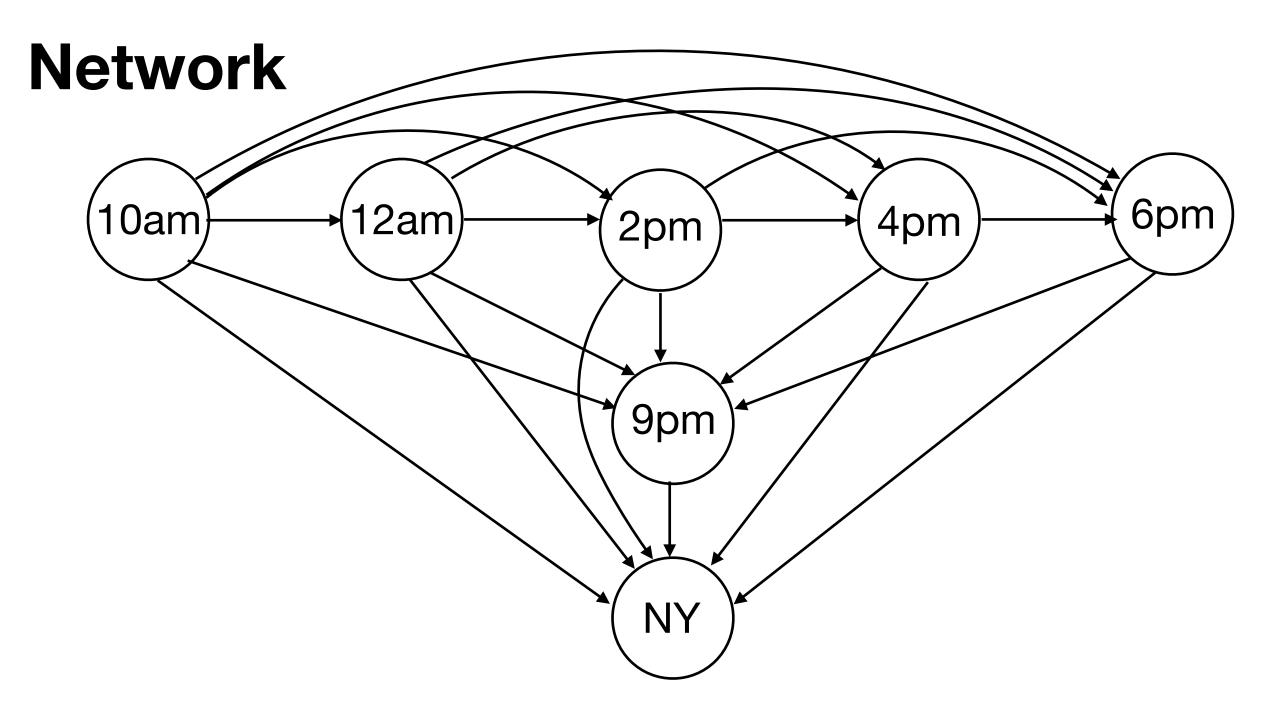
$$x^* = (7, 0, 3, 0, 8, 18, 5, 7)$$

Airline passenger routing

- United Airlines has 5 flights per day from BOS to NY (10am, 12pm, 2pm, 4pm, 6pm)
- Flight capacities
 (100, 100, 100, 150, 150)
- Costs: \$50/hour of delay
- Last option: 9pm flight with other company (additional cost \$75)
- Today's reservations (110, 118, 103, 161, 140)

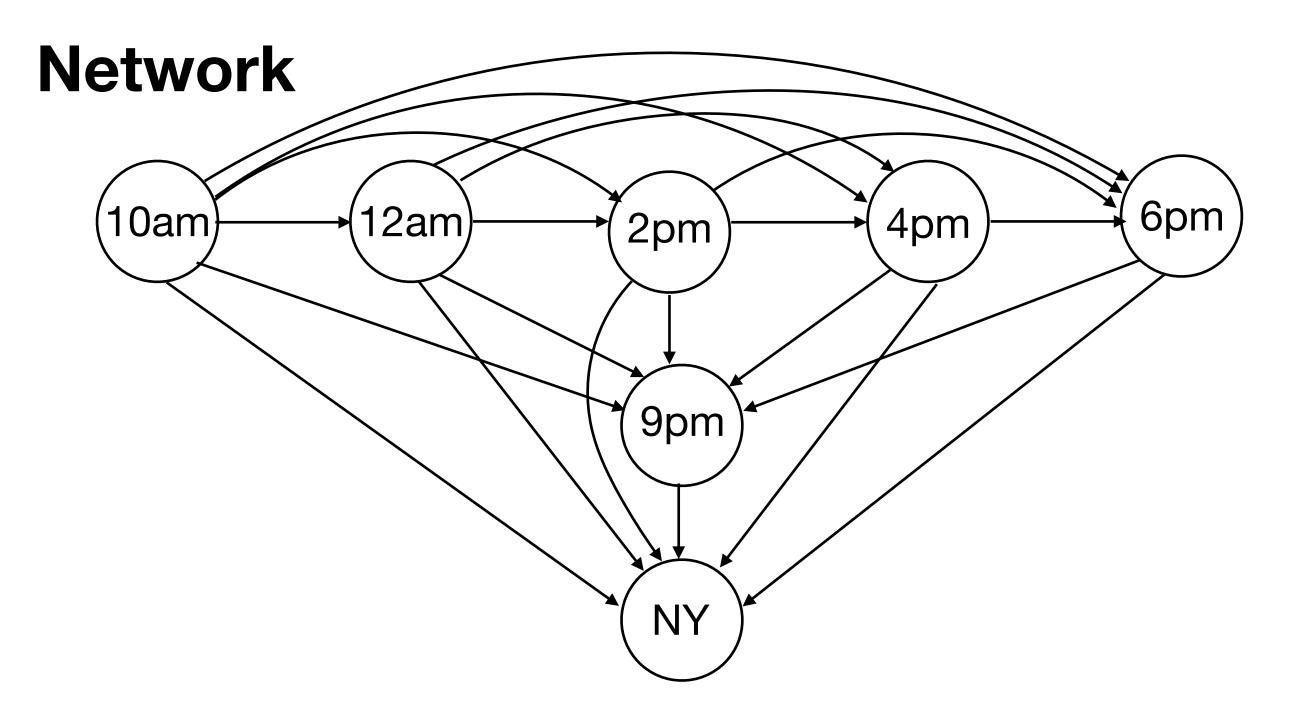






Decisions

 x_j : passengers flowing on arc j



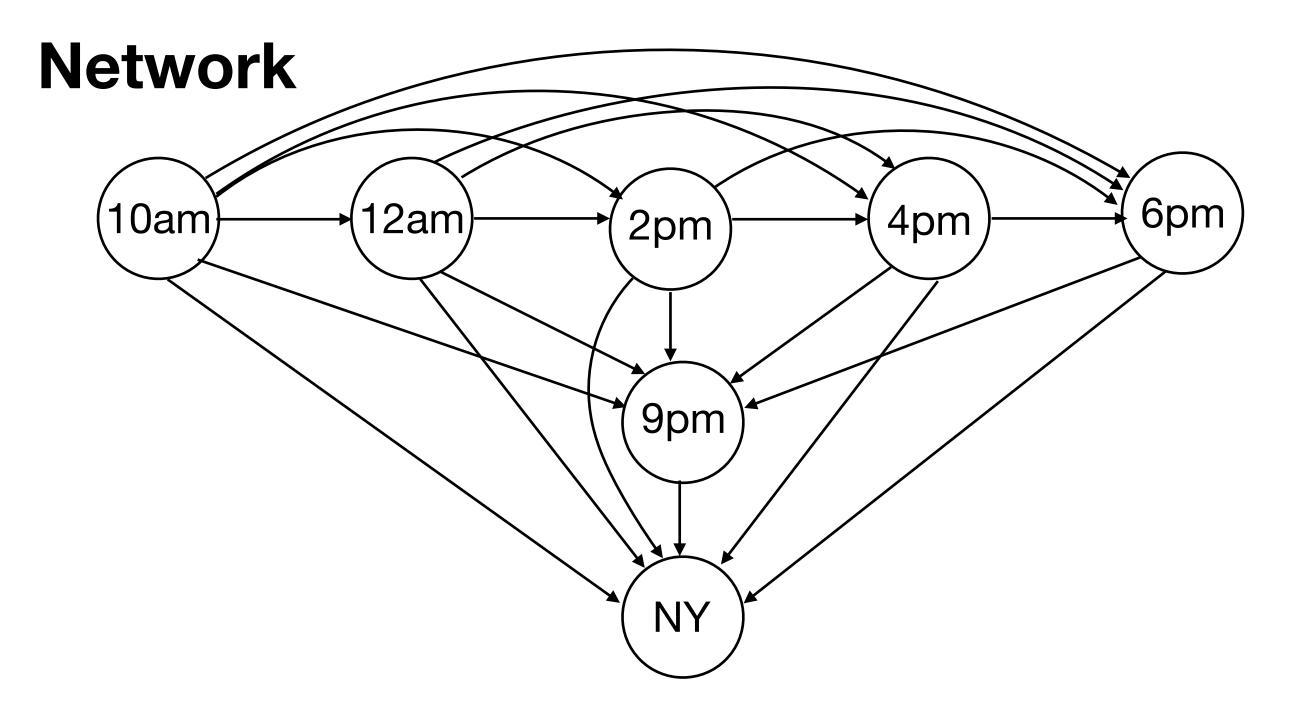
Decisions

 x_j : passengers flowing on arc j

Costs

 c_i : cost of moving passenger on arc j

- Between flights: \$50/hour
- To 9pm flight: \$75 additional
- To NY: \$0 (as scheduled)



Decisions

 x_j : passengers flowing on arc j

Costs

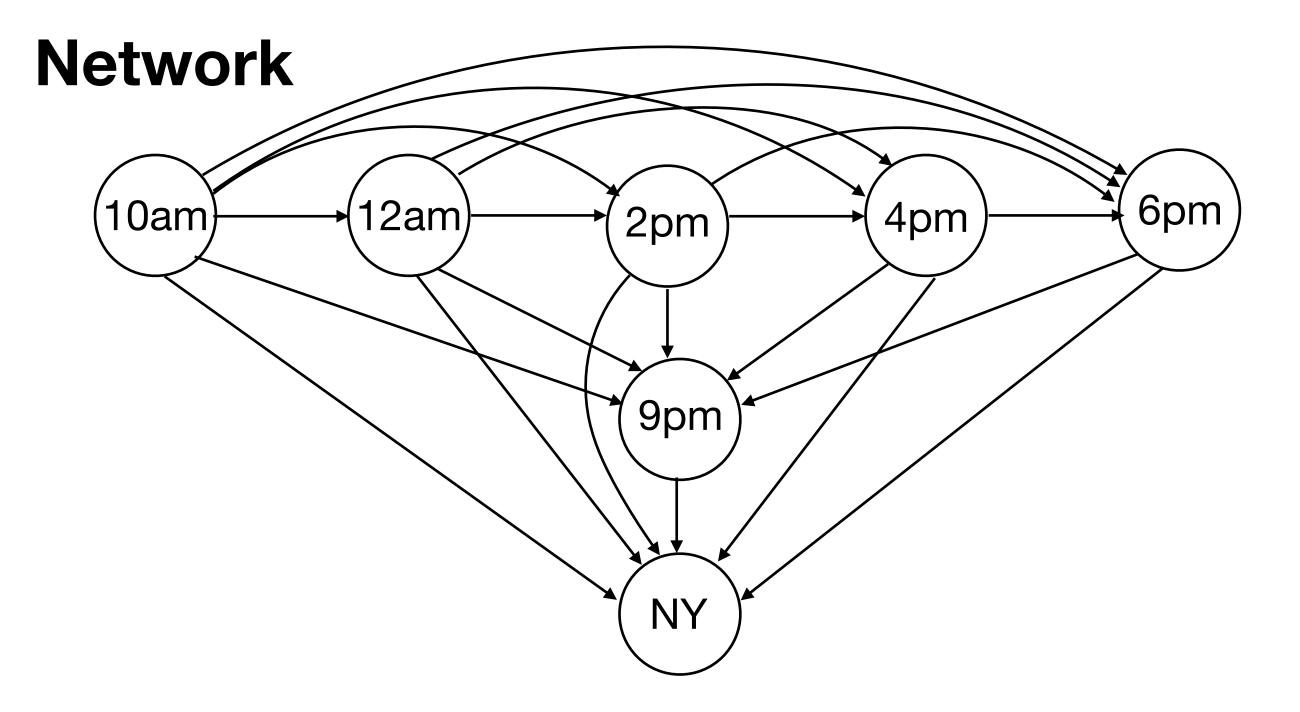
 c_j : cost of moving passenger on arc j

- Between flights: \$50/hour
- To 9pm flight: \$75 additional
- To NY: \$0 (as scheduled)

Supplies

 b_i reserved passengers for flight i

- 9pm flight: $b_i = 0$
- NY supply: total reserved passeng.



Decisions

 x_j : passengers flowing on arc j

Costs

 c_j : cost of moving passenger on arc j

- Between flights: \$50/hour
- To 9pm flight: \$75 additional
- To NY: \$0 (as scheduled)

Supplies

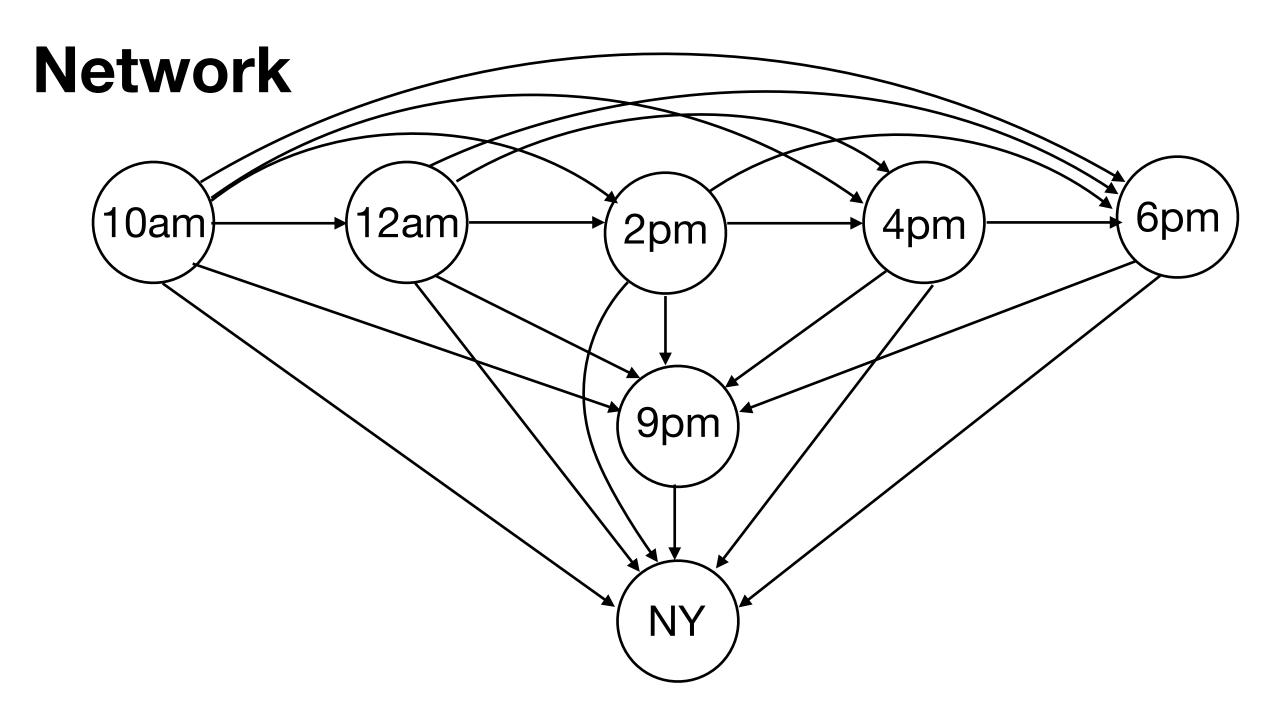
 b_i reserved passengers for flight i

- 9pm flight: $b_i = 0$
- NY supply: total reserved passeng.

Capacities

 u_j maximum passengers over arc j

- Between flights: $u_j = \infty$
- To NY: u_i = flight capacity



Network flow formulation

minimize $c^T x$

subject to Ax = b

Decisions

 x_j : passengers flowing on arc j

Costs

 c_j : cost of moving passenger on arc j

- Between flights: \$50/hour
- To 9pm flight: \$75 additional
- To NY: \$0 (as scheduled)

Supplies

 b_i reserved passengers for flight i

- 9pm flight: $b_i = 0$
- NY supply: total reserved passeng.

Capacities

 u_j maximum passengers over arc j

- Between flights: $u_j = \infty$
- To NY: u_i = flight capacity

Network flow solutions

Goal: create equivalent network without arc capacities

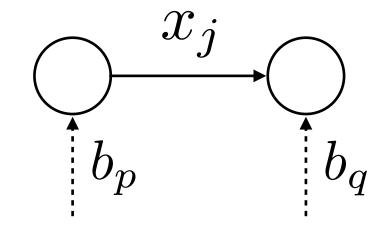
 $\begin{array}{ll} \text{minimize} & c^Tx \\ \text{subject to} & Ax = b \\ & 0 < x < u \end{array}$

Goal: create equivalent network without arc capacities

Idea: slack variables

$$x_j \le u_j \quad \Rightarrow \quad x_j + s_j = u_j, \ s_j \ge 0$$

Nodes/arcs interpretation



Idea: slack variables

$$x_j \le u_j \quad \Rightarrow \quad x_j + s_j = u_j, \ s_j \ge 0$$

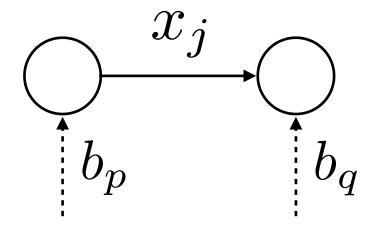
Network structure lost no longer one -1 and one 1 per column

$$\cdots + x_j \dots = b_p$$

$$\cdots - x_j \dots = b_q$$

$$x_j + s_j = u_j$$

Nodes/arcs interpretation



Idea: slack variables

$$x_j \le u_j \quad \Rightarrow \quad x_j + s_j = u_j, \ s_j \ge 0$$

 $\cdots + x_j \dots = b_p$

 $x_j + s_j = u_j$

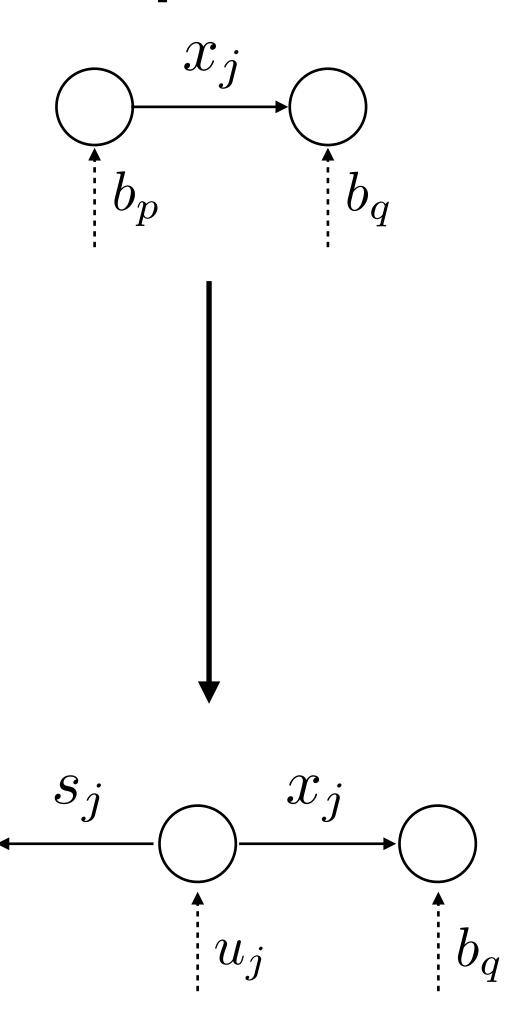
 $\cdots - x_j \ldots = b_q \qquad) x_j = u_j - s_j$

Network structure lost no longer one -1 and one 1 per column

(new node and new arc)

and one 1 per column $x_j + s_j = u_j$ $\cdots - s_j = b_p - c_0$ recovered $\cdots - x_j \ldots = b_q$

Nodes/arcs interpretation



Equivalent uncapacitated network flow

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

- A still an arc-node incidence matrix
- Can we say something about the extreme points?

Total unimodularity

A matrix is **totally unimodular** if all its minors are -1,0 or 1 (minor is the determinant of a square submatrix of A)

Total unimodularity

A matrix is **totally unimodular** if all its minors are -1,0 or 1 (minor is the determinant of a square submatrix of A)

example: a node-arc incidence matrix of a directed graph

$$A = \begin{bmatrix} 1 & 0 & -1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 & -1 & 0 \\ -1 & -1 & 0 & 1 & 0 & -1 \end{bmatrix}$$

Total unimodularity

A matrix is **totally unimodular** if all its minors are -1,0 or 1 (minor is the determinant of a square submatrix of A)

example: a node-arc incidence matrix of a directed graph

$$A = \begin{bmatrix} 1 & 0 & -1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 & -1 & 0 \\ -1 & -1 & 0 & 1 & 0 & -1 \end{bmatrix}$$

properties

- the entries of A_{ij} (i.e., its minors of order 1) are -1, 0, or 1
- The inverse of any nonsingular square submatrix of A has entries +1, -1, or 0

Integrality theorem

Given a polyhedron

$$P = \{ x \in \mathbf{R}^n \mid Ax = b, \quad x \ge 0 \}$$

where

- \bullet A is totally unimodular
- ullet b is an integer vector

all the extreme points of P are integer vectors.

Integrality theorem

Given a polyhedron

$$P = \{ x \in \mathbf{R}^n \mid Ax = b, \quad x \ge 0 \}$$

where

- \bullet A is totally unimodular
- ullet b is an integer vector

all the extreme points of P are integer vectors.

Proof

- All extreme points are basic feasible solutions with $x_B=A_B^{-1}b$ and $x_i=0,\ i\neq B$
- A_B^{-1} has integer components because of total unimodularity of A
- b has also integer components
- Therefore, also x is integral

Implications for network and combinatorial optimization

Minimum cost network flow

minimize
$$c^Tx$$
 subject to $Ax = b$
$$0 \le x \le u$$
 If b and u are integral solutions x^* are integral

Implications for network and combinatorial optimization

Minimum cost network flow

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & 0 \leq x \leq u \end{array}$$

If b and u are integral solutions x^{\star} are integral

Integer linear programs

$$\begin{array}{ll} \text{minimize} & c^Tx \\ \text{subject to} & Ax = b \\ & 0 \leq x \leq u \\ & x \in \mathbf{Z}^n \end{array}$$

Very difficult in general (more on this in a few weeks)

Implications for network and combinatorial optimization

Minimum cost network flow

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & 0 \leq x \leq u \end{array}$$

If b and u are integral solutions x^{\star} are integral

Integer linear programs

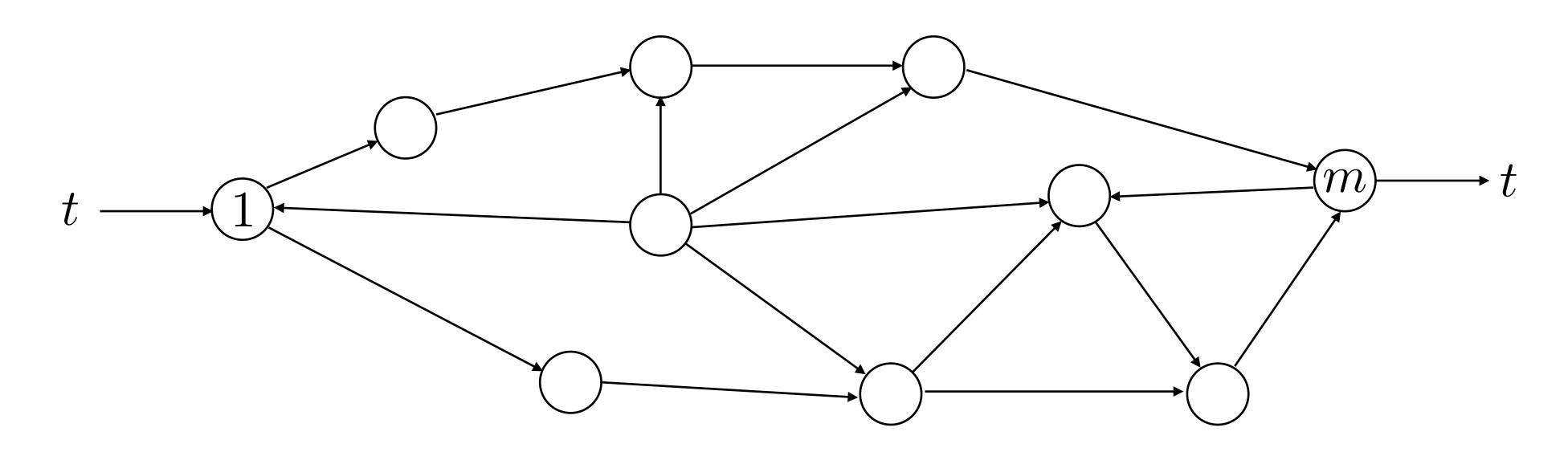
$$\begin{array}{ll} \text{minimize} & c^Tx \\ \text{subject to} & Ax = b \\ & 0 \leq x \leq u \\ & x \in \mathbf{Z}^n \end{array}$$

Very difficult in general (more on this in a few weeks)

If A totally unimodular and b,u integral, we can relax integrality and solve a fast LP instead

Maximum flow problem

Goal maximize flow from node 1 (source) to node m (sink) through the network



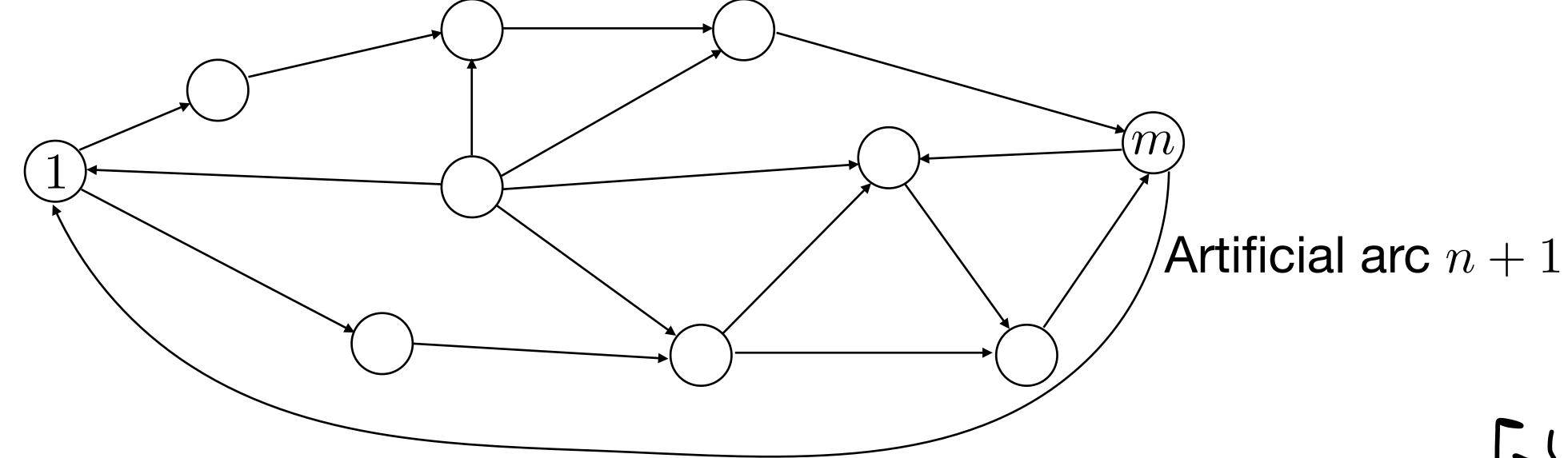
maximize 7

subject to
$$Ax = te$$

$$0 \le x \le u$$

$$e = (1, 0, \dots, 0, -1)$$

Maximum flow as minimum cost flow

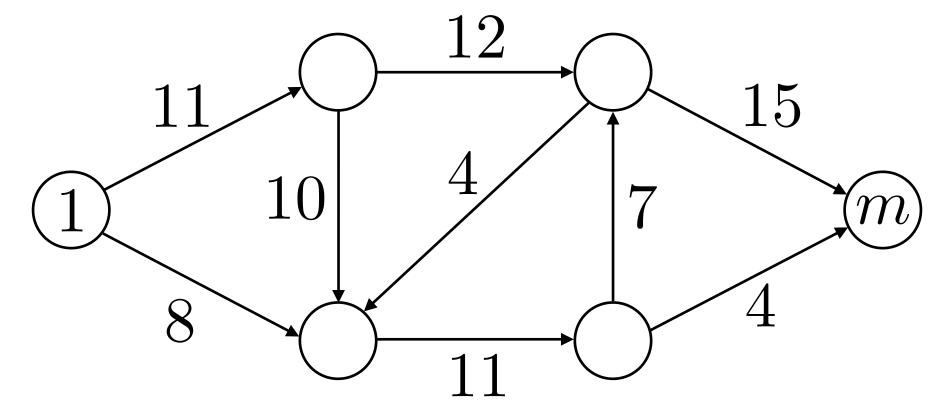


minimize

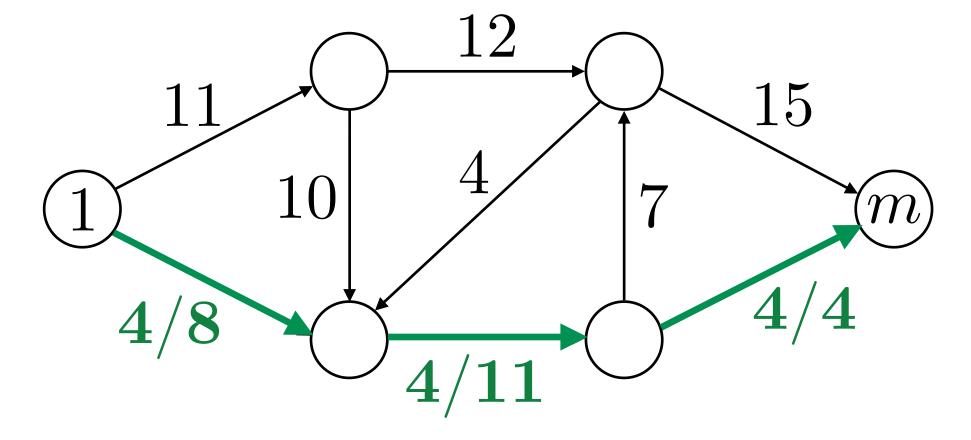
minimize
$$-t$$
 subject to $\begin{bmatrix} A & -e \end{bmatrix} \begin{bmatrix} x \\ t \end{bmatrix} = 0$

$$0 \le \begin{bmatrix} x \\ t \end{bmatrix} \le \begin{bmatrix} u \\ \infty \end{bmatrix}$$

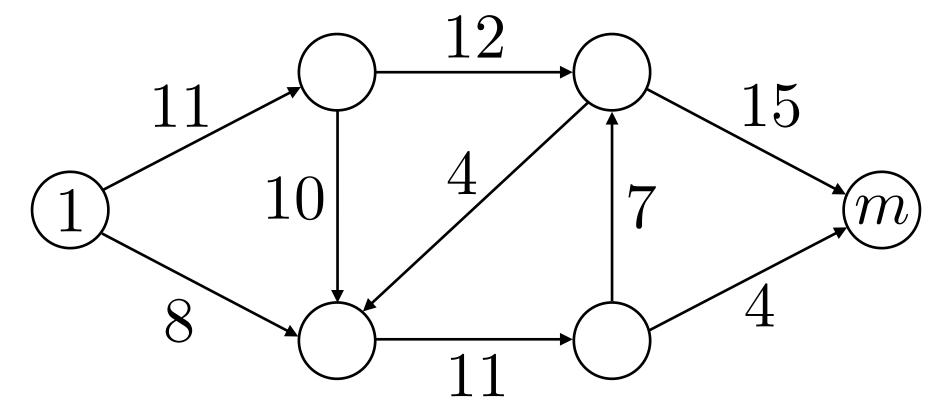
(arc capacities shown)



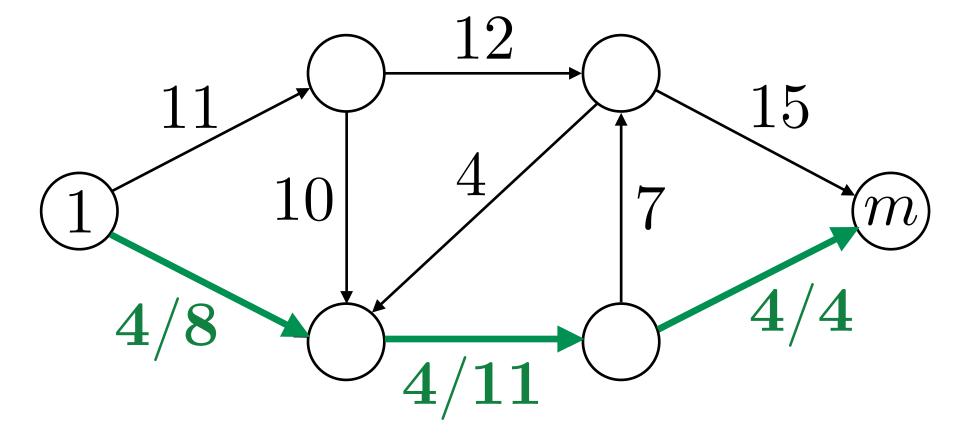
First flow



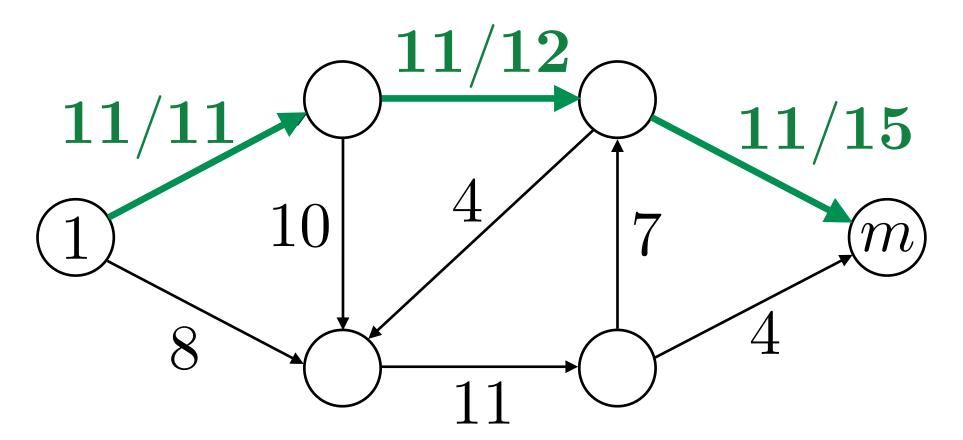
(arc capacities shown)



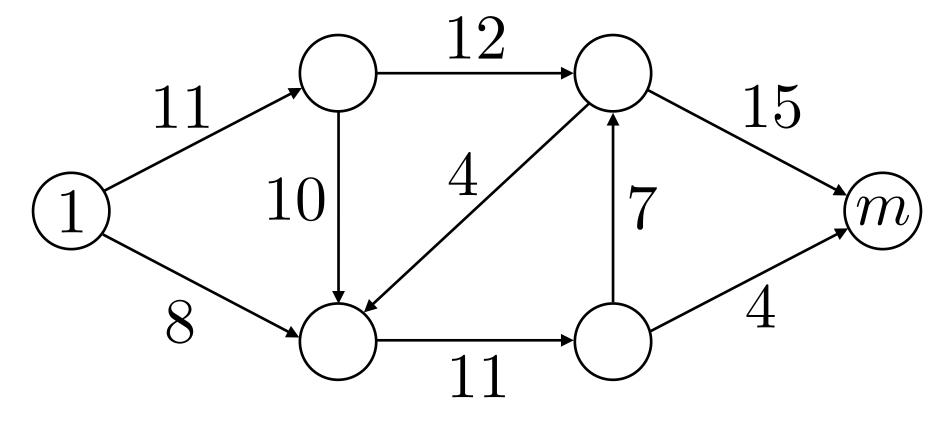
First flow



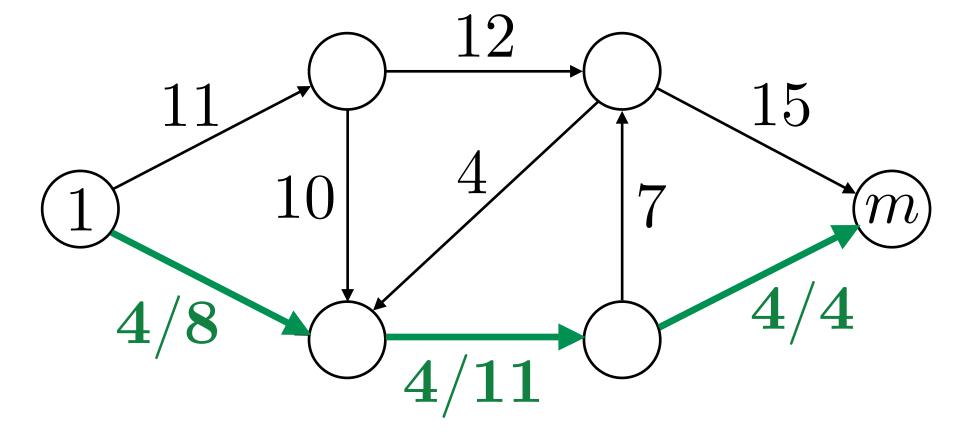
Second flow



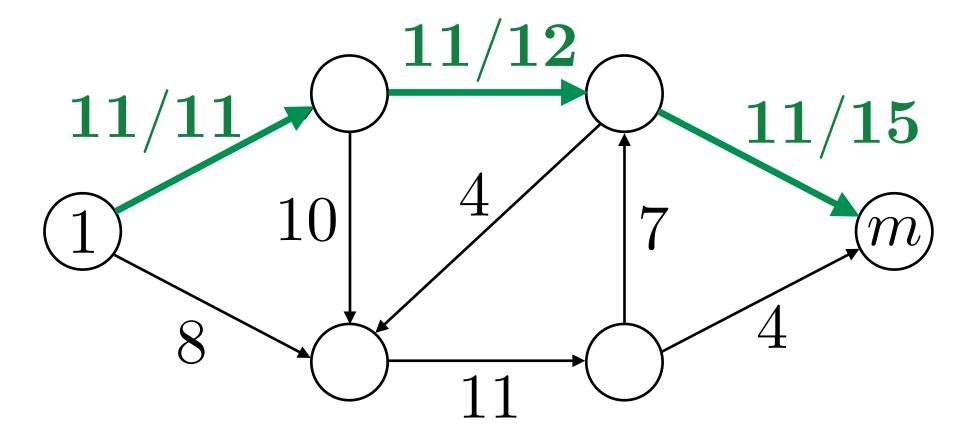
(arc capacities shown)



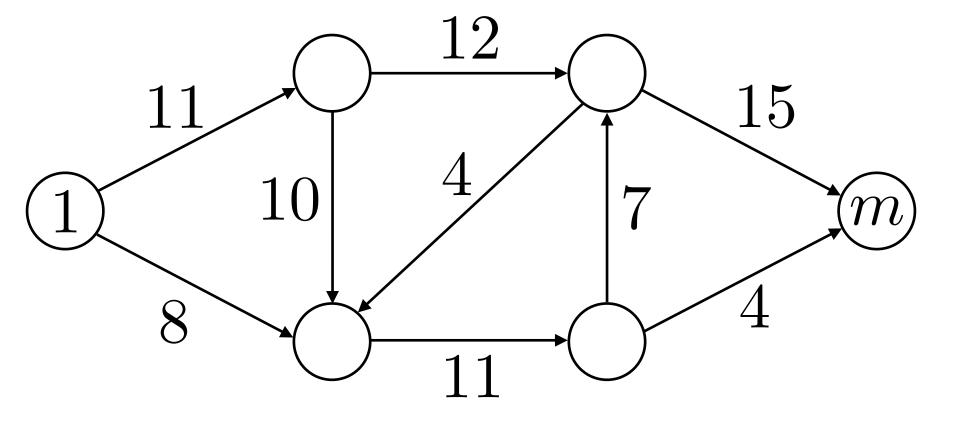
First flow



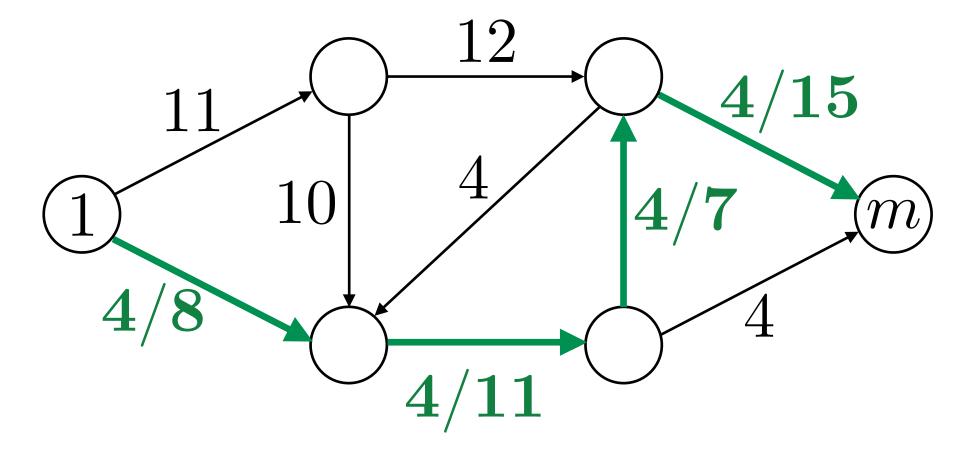
Second flow



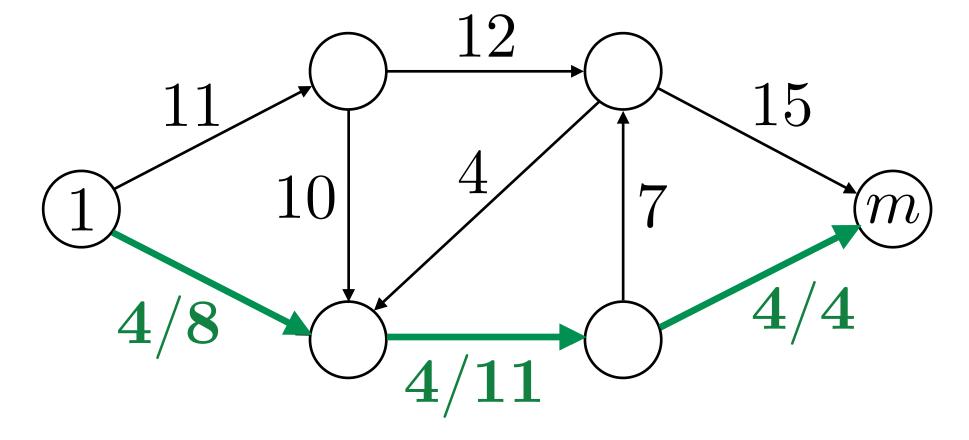
(arc capacities shown)



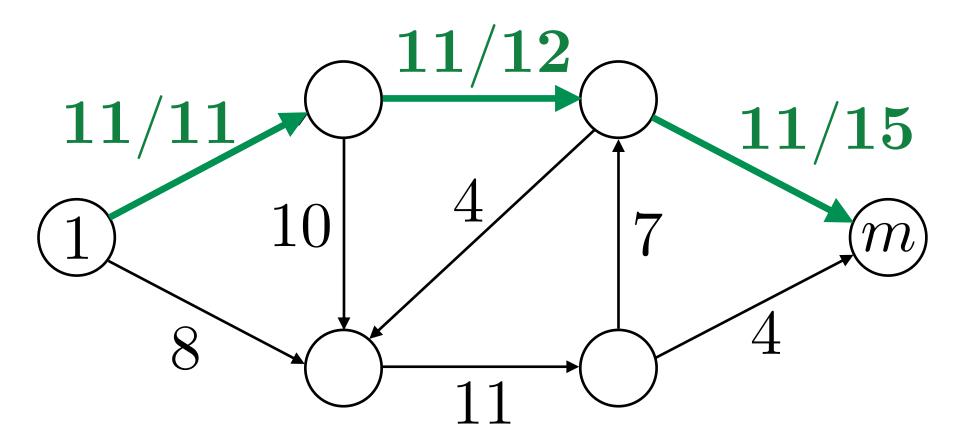
Third flow



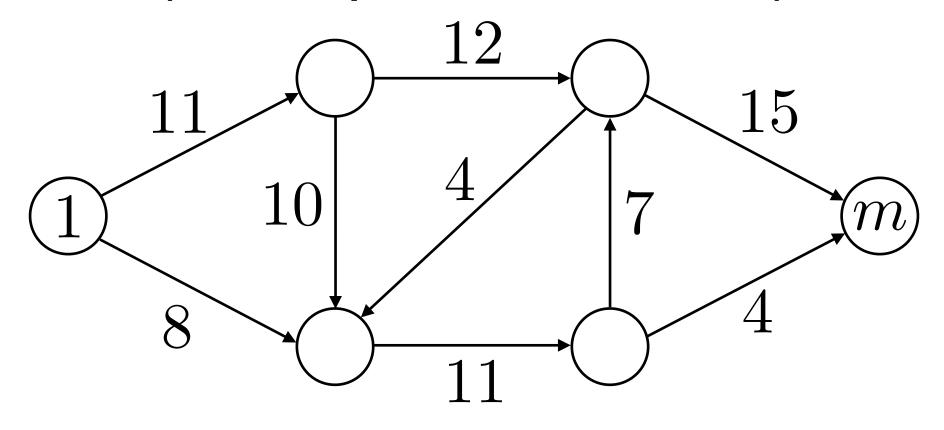
First flow



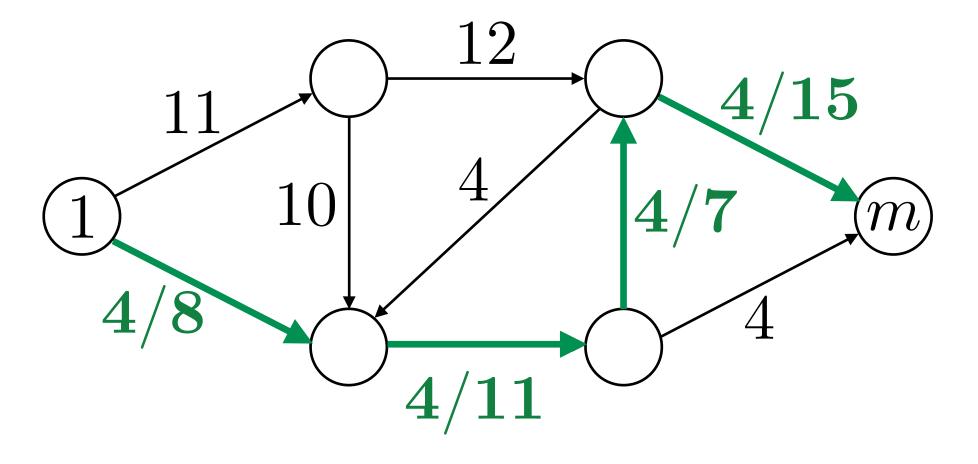
Second flow



(arc capacities shown)



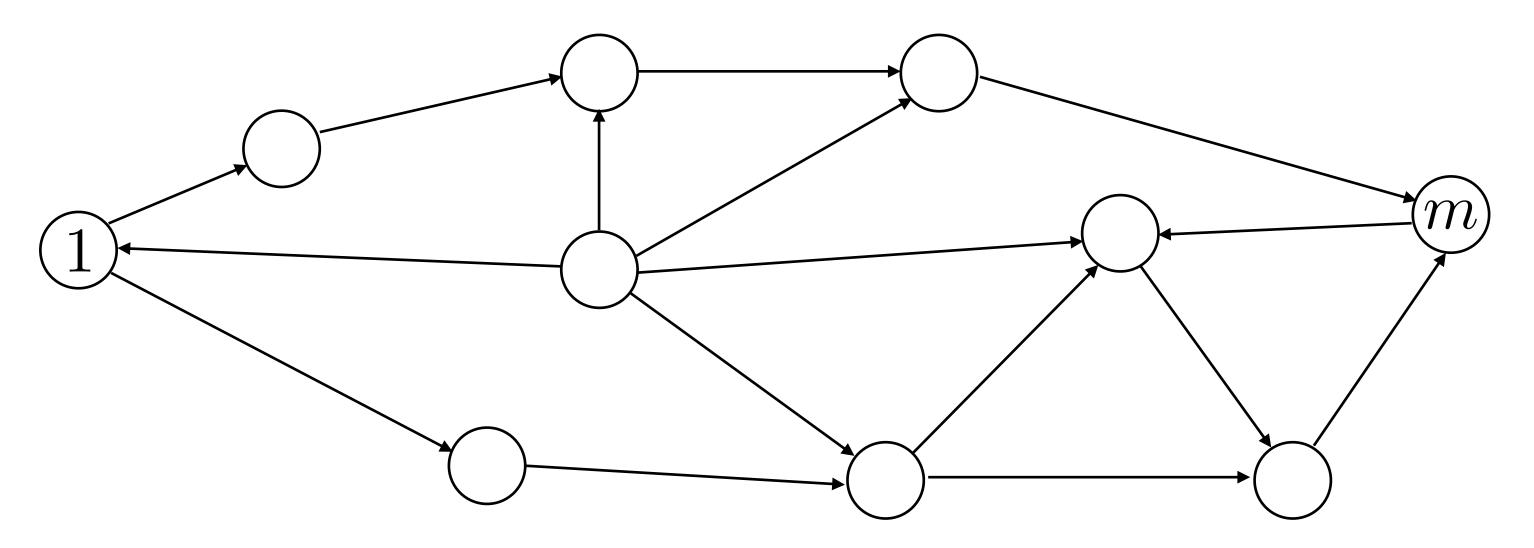
Third flow



Total flow: 19

Shortest path problem

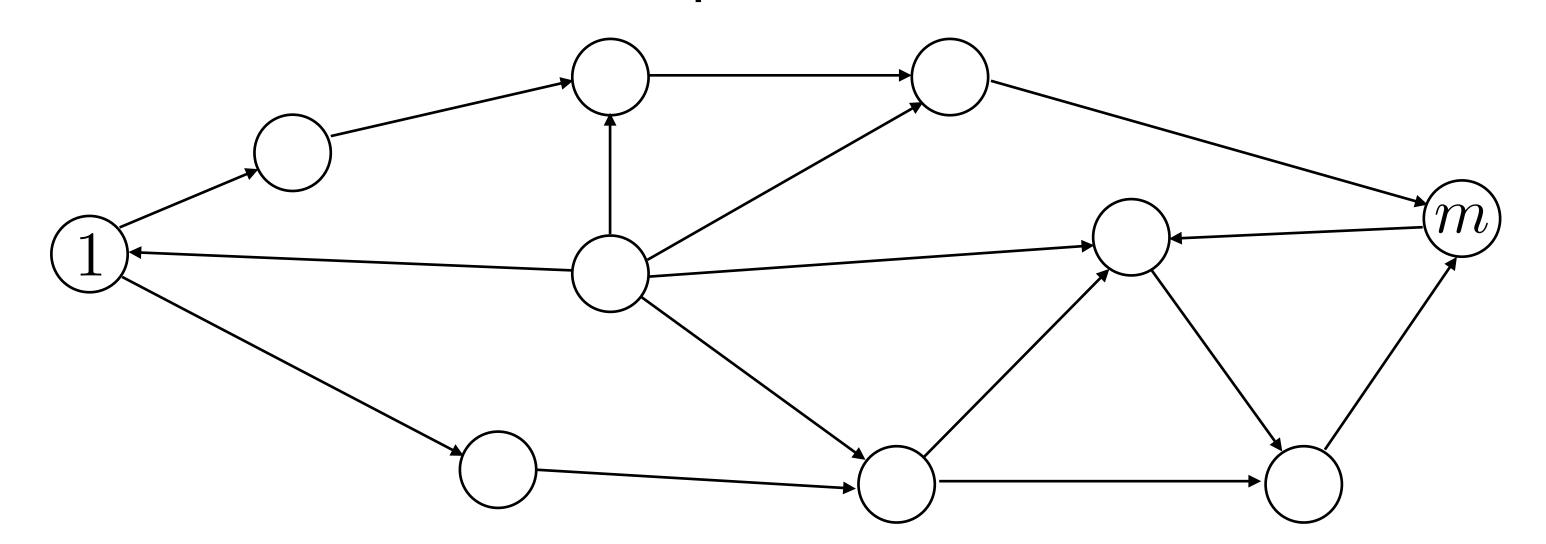
Goal Find the shortest path between nodes 1 and m



paths can be represented as vectors $x \in \{0,1\}^n$

Shortest path problem

Goal Find the shortest path between nodes 1 and m



paths can be represented as vectors $x \in \{0, 1\}^n$

Formulation

minimize $c^T x$

subject to Ax = e

$$x \in \{0, 1\}^n$$

- c_j is the "length" of arc j
- $e = (1, 0, \dots, 0, -1)$
- Variables are binary (include or not arc in path)

```
\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = e \\ & x \in \{0,1\}^n \end{array}
```


subject to
$$Ax = e$$

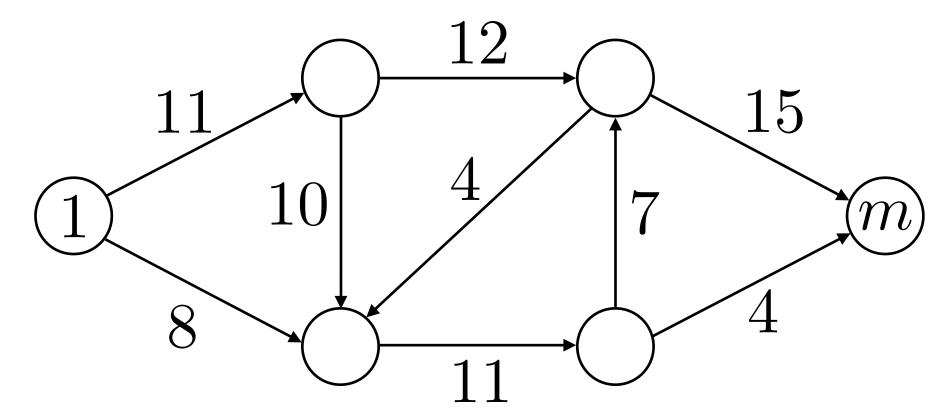
 $x \in \{0, 1\}^n$

minimize
$$c^T x$$
 subject to $Ax = e$
$$0 < x < 1$$

minimize c^Tx minimize c^Tx subject to Ax = e subject to Ax = e $x \in \{0,1\}^n$ $0 \le x \le 1$ Extreme points satisfy $x_i \in \{0,1\}$

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = e \\ & x \in \{0,1\}^n \end{array}$

Example (arc costs shown)



Relaxation

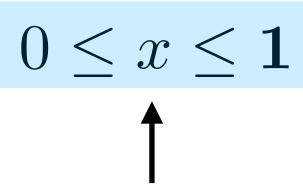
minimize $c^T x$ subject to Ax = e $0 \le x \le 1$

Extreme points satisfy $x_i \in \{0, 1\}$

minimize c^Tx subject to Ax=e $x\in\{0,1\}^n$

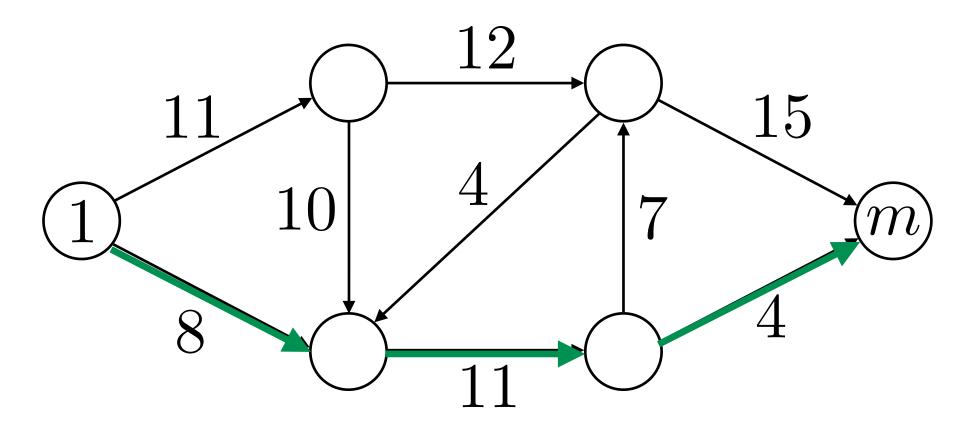
Relaxation

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = e \end{array}$



Extreme points satisfy $x_i \in \{0, 1\}$

Example (arc costs shown)



$$c=(11,8,10,12,4,11,7,15,4)$$
 $x^{\star}=(0,1,0,0,0,1,0,0,1)$ $c^{T}x^{\star}=223$ 23

Assignment problem

Goal match N persons to N tasks

- Each person assigned to one task, each task to one person
- C_{ij} Cost of matching person i to task j

Assignment problem

Goal match N persons to N tasks

- Each person assigned to one task, each task to one person
- C_{ij} Cost of matching person i to task j

LP formulation

minimize
$$\sum_{i,j=1}^N C_{ij} X_{ij}$$
 subject to $\sum_{i=1}^N X_{ij} = 1, \quad j=1,\dots,N$ $\sum_{j=1}^N X_{ij} = 1, \quad i=1,\dots,N$ $X_{ij} \in \{0,1\}$

Assignment problem

Goal match N persons to N tasks

- Each person assigned to one task, each task to one person
- C_{ij} Cost of matching person i to task j

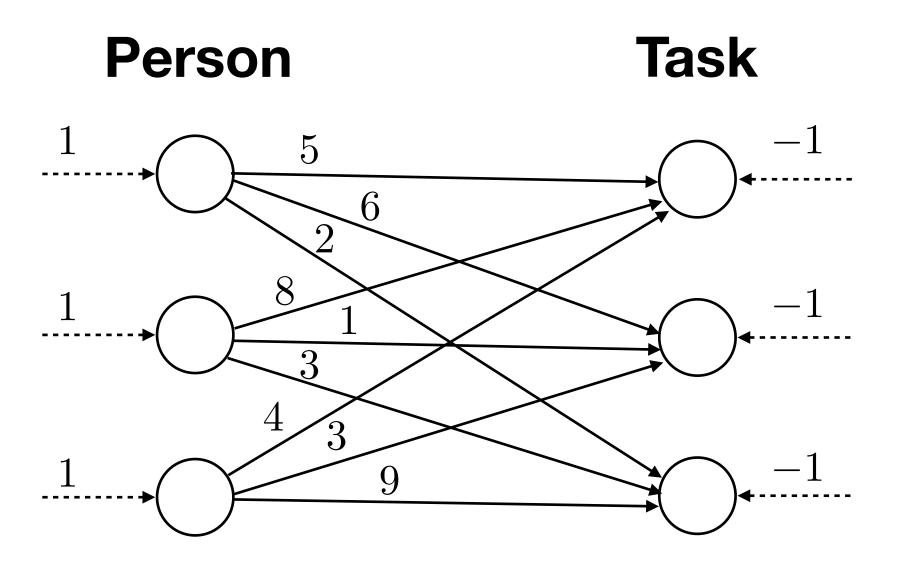
LP formulation

minimize
$$\sum_{i,j=1}^{N} C_{ij} X_{ij}$$

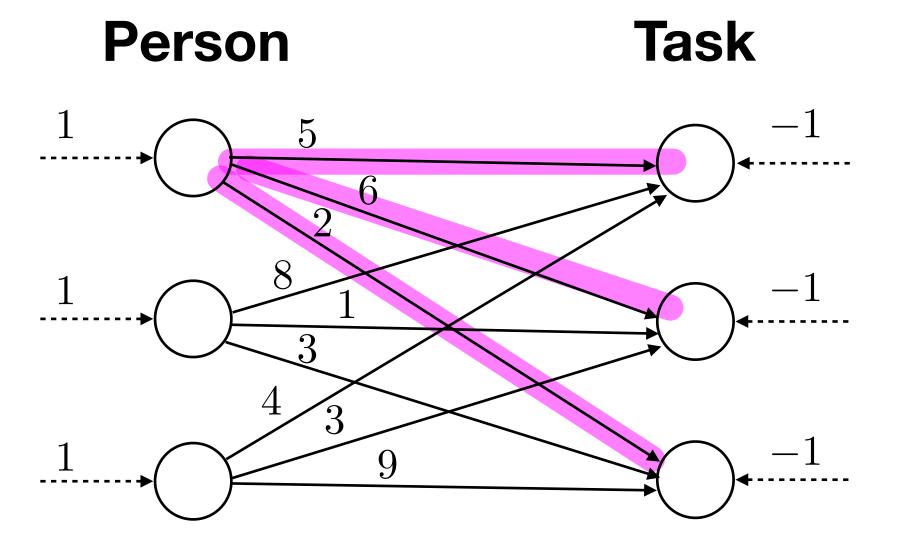
subject to
$$\sum_{i=1}^{N} X_{ij} = 1, \quad j = 1, \ldots, N$$

$$\sum_{j=1}^{N} X_{ij} = 1, \quad i = 1, \dots, N$$
 $X_{ij} \in \{0, 1\}$

How do you define the network?



(arc costs shown)

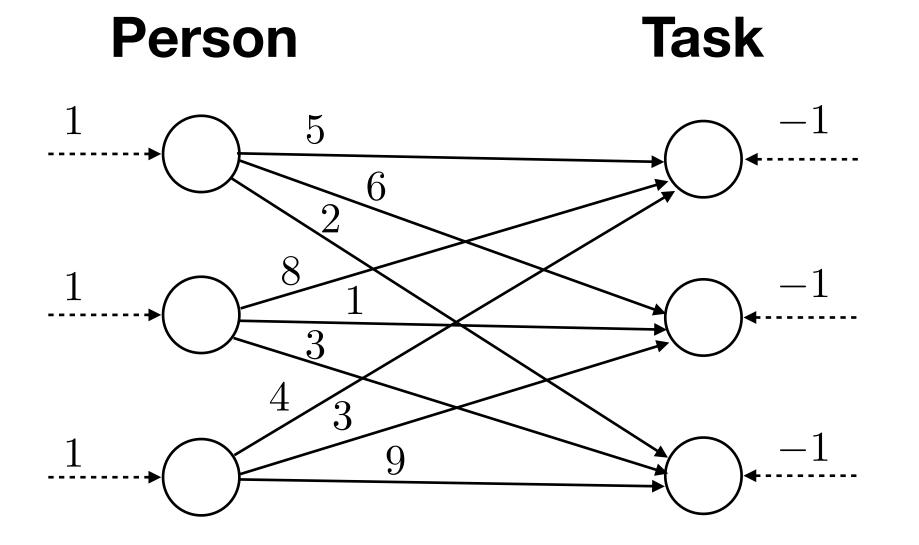


(arc costs shown)

$$C = (5,6,2,8,1,3,4,3,9)$$

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ -1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 0 & 0 & -1 \end{bmatrix}$$

$$b = (1,1,1,-1,-1,-1)$$



(arc costs shown)

$$C = (5, 6, 2, 8, 1, 3, 4, 3, 9)$$

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ -1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 0 & 0 & -1 \end{bmatrix}$$

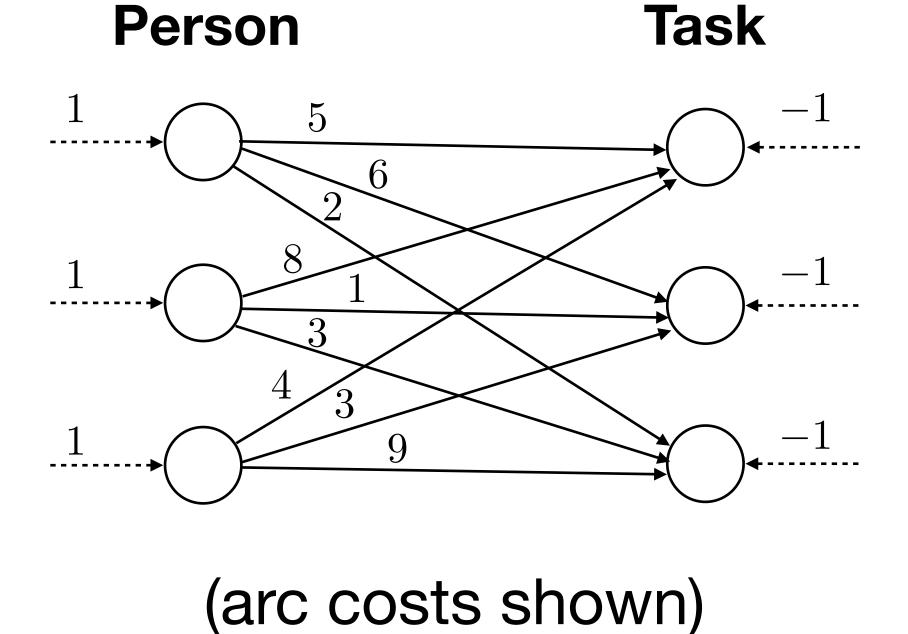
$$b = (1, 1, 1, -1, -1, -1)$$

Minimum cost network flow

minimize
$$c^Tx$$
 subject to $Ax = b$
$$0 \le x \le 1$$

Task assignment as

minimum cost network flow



$$c = (5, 6, 2, 8, 1, 3, 4, 3, 9)$$

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ -1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 0 & 0 & -1 \end{bmatrix}$$

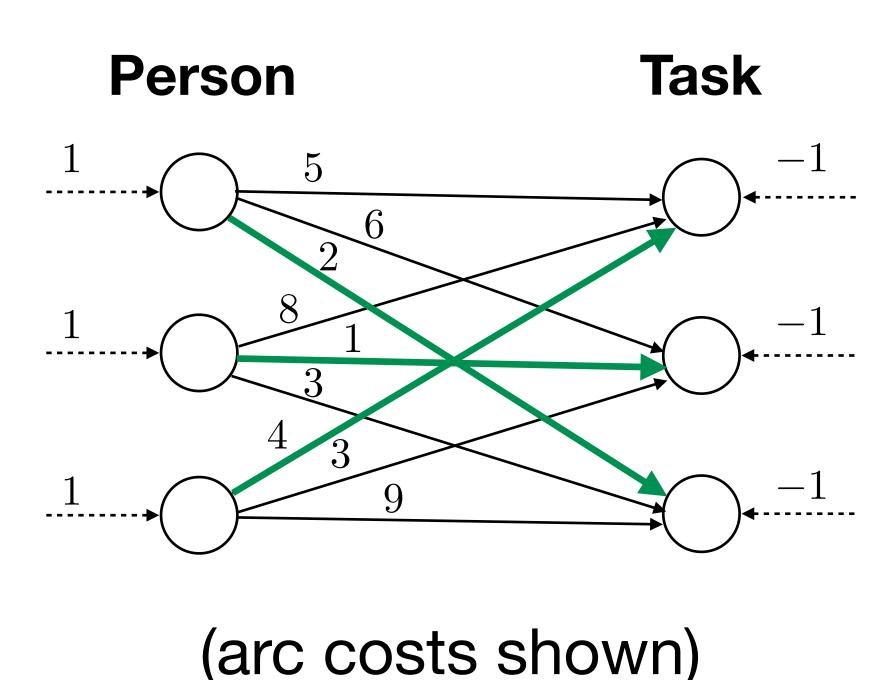
$$b = (1, 1, 1, -1, -1, -1)$$

Minimum cost network flow

minimize subject to Ax = b

Extreme points satisfy $x_i \in \{0, 1\}$

$$0 \le x \le 1$$



$$c = (5, 6, 2, 8, 1, 3, 4, 3, 9)$$

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ -1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 0 & 0 & -1 \end{bmatrix}$$

$$b = (1, 1, 1, -1, -1, -1)$$

Minimum cost network flow

minimize $c^T x$ subject to Ax = b

Extreme points satisfy $x_i \in \{0, 1\}$

$$0 \le x \le 1$$

Optimal solution

$$x^* = (0, 0, 1, 0, 1, 0, 0, 0, 1)$$

 $c^T x^* = 7$

Network optimization

Today, we learned to:

- Model flows across networks
- Formulate minimum cost network flow problems
- Analyze network flow problem solutions (integrality theorem)
- Formulate maximum-flow, shortest path, and assignment problems as minimum cost network flows

References

- D. Bertsimas and J. Tsitsiklis: Introduction to Linear Optimization
 - Chapter 7: Network flow problems

- R. Vanderbei: Linear Programming
 - Chapter 14: Network Flow Problems
 - Chapter 15: Applications

Next lecture

Interior point algorithms