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13. Duality
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Ed Forum

 For phase 1 vs phase 2, | understand it finds an extreme point that is not
necessarily the optimal but | do not understand how it gets this point by
settingx=0andy =D.

 how does the simplex method's approach to handling degeneracy and
cycling impact its efficiency and reliability in practical applications, such as
logistics or resource allocation? Are there examples where alternative
methods might be more effective due to these issues?



Complexity



Complexity of a single simplex iteration

1. Compute the reduced costs ¢

» Solve Agp — CRB
»c=c— Alp

2. If ¢ > 0, x optimal. break

3. Choose j such that ¢; < 0

4.

. Compute step length 6* =  min ( wz)

Compute search direction d with
dj — 1 and ABCZB — —Aj

. Ifdg > 0, the problem is unbounded

and the optimal value is —occ. break

{ieB|d; <0} d;

. Define y such that y = = + 6*d

. Get new basis B (i exits and j enters)



Complexity of a single simplex iteration

1. Compute the reduced costs ¢ 4,

» Solve Agp — CRB
»c=c— Alp

2. If ¢ > 0, x optimal. break

3. Choose j such that ¢; < 0

. Compute step length 6* =  min ( x’)

Compute search direction d with
dj — 1 and ABdB — —Aj

. Ifdg > 0, the problem is unbounded

and the optimal value is —occ. break

{ieB|d; <0} d;

. Define y such that y = = + 6*d

. Get new basis B (i exits and j enters)

Bottleneck
Two linear systems



Linear system solutions

Very similar linear
systems

Agp — CR
ABdB — —Aj



Linear system solutions

Very similar linear LU factorization
systems (2/3)n? flops
Agp — CR

— > A =PL
Apdp = —A, o Y



Linear system solutions

Very similar linear LU factorization Easy linear systems
systems (2/3)n> flops 4n? flops
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BPZOB . Ap=PLU ——s P=cp

Apdp = —A, PLUdp = —A,



Linear system solutions

Very similar linear LU factorization Easy linear systems
systems (2/3)n> flops 4n? flops
AT — UTLTPT _
BPZOB . Ap=PLU ——s P=cp
Apdp = —A; PLUdp = —A;

Factorization Is expensive

Do we need to recompute it at every iteration?



Basis update

Index update

* j enters (x; becomes 6%)
» ¢ = B(/{) exists (x; becomes 0)
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Basis update

Index update

* j enters (x; becomes 6*) Basis matrix change
- i = B(/) exists (x; becomes 0) Ag = A+ (4; — Aj)e,

) Example
1 2 2 1 0 0 B={4,1,6} — DB=1{4,1,2}
A=12 1 2 0 1 0 2 enters
2 2 1 0 0 1 * 6 = B(3) exists




Basis update

Index update

* j enters (x; becomes 6*) Basis matrix change
- i = B({) exists (z; becomes 0) Ap = Ap + (& — AQer

i Example
1 2210 0 B={4,16) — B={410)
A=12 1 2 0 1 0 « 2 enters
2 2 1 0 0 1 * 6 = B(3) exists
Ap Aser Ages
1 1 o) [o o 0 0 o 11 2
Ag= |0 2 0 0 (10 0 Jol=|0 2 1
0 2 0 01\2] [0 0|1 0 2 2




Smarter linear system solution

Matrix inversion lemma
Basis matrix change (from homework 2)

—_— — |
Ap=Ap+{Ai-Ajer  —— (Ao Fver) = (I 1+ el At

A;%éf) A;l



Smarter linear system solution

Matrix inversion lemma

Basis matrix change (from homework 2)
/_})ﬁ . ]. —1 —1
AB:AB+(A7;_AJ-)@€T — (AB—l—veéT) 1 — (I 1+egAglvAB ve?) Ag

Solve Agdg — —Aj
1. Solve Apz! = e, (2n° flops)
2. Solve Agz* = —A; (2n” flops)

T _2

3. Solve dg = 2° vz ol

14+v1 21




Smarter linear system solution

Matrix inversion lemma

Basis matrix change (from homework 2)
/_})ﬁ . ]. —1 —1
AB:AB+(A7;_AJ-)@€T — (AB—l—veéT) 1 — (I 1+egAglvAB ve?) Ag

Solve Agdg — —Aj
1. Solve Apz! = e, (2n° flops)
2. Solve Agz* = —A; (2n” flops)

T _2

3. Solve dg = 2° vz ol

14+v1 21

Remarks
» Same complexity for ALp = cp (4n? flops)
- k-th next iteration (4kn? flops, derive as exercise...)
* Once in a while (e.g., k = 100), better to refactor Ag 7



Complexity of a single simplex iteration

1. Compute the reduced costs ¢

» Solve Agp = CB
»c=c— Alp

2. If ¢ > 0, x optimal. break

3. Choose j such that ¢c; < 0

Bottleneck
Two linear systems

4.

. Compute step length 6 =  min ( xZ)

Compute search direction d with
dj — 1 and ABdB — —Aj

. If dg > 0, the problem is unbounded

and the optimal value Is —oo. break

{1€B|d; <0} dz

. Define y such that y = = + 6*d

. Get new basis B (i exits and j enters)
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Complexity of a single simplex iteration

1. Compute the reduced costs ¢

» Solve Agp — CRB
»c=c— Alp

2. If ¢ > 0, x optimal. break

3. Choose j such that ¢c; < 0

Bottleneck
Two linear systems

4.

——

. Compute step length 6 =  min ( xZ)

Compute search direction d with
dj — 1 and ABdB — —Aj

. If dg > 0, the problem is unbounded

and the optimal value Is —oo. break

{1€B|d; <0} dz

. Define y such that y = = + 6*d

. Get new basis B (i exits and j enters)

Matrix inversion lemma trick
~ n° per iteration
(very cheap)

How many iterations do we need? 8



Complexity of the simplex method

Example of worst-case behavior

Innocent-looking problem
minimize  —x,,
subjectto 0<z <1

2" vertices

2™ /2 vertices: cost =1
2™ /2 vertices: cost = 0




Complexity of the simplex method

Example of worst-case behavior -
*
Innocent-looking problem ?’
minimize —z, 2" vertices
. 2™ /2 vertices: cost =1
subjectto 0 <z <1 2" /2 vertices: cost = 0

Perturb unit cube
minimize  —x,
subjectto e<z; <1

€$7;_1§£Ei<1—€$7;_1, iIQ,...,TL



Complexity of the simplex method

Example of worst-case behavior
minimize  —x.,
subjectto e<z; <1

€Er; -1 §$i<1_€$z’—17 222,

)

S

10



Complexity of the simplex method

Example of worst-case behavior
minimize  —x.,
subjectto e<z; <1

€$i_1§$i<1—€$i_1, iZZ,...,?’L M

L1
Theorem

%

» The vertices can be ordered so that each one Is adjacent to and has a

lower cost than the previous one

» There exists a pivoting rule under which the simplex method terminates

after 2™ — 1 1terations
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Complexity of the simplex method

Example of worst-case behavior

minimize  —x,,
subjectto e<z; <1

€$i_1§$i<1—€$i_1, iZZ,...,?’L

L1
Theorem
» The vertices can be ordered so that each one Is adjacent to and has a
lower cost than the previous one

» There exists a pivoting rule under which the simplex method terminates
after 2" — 1 iterations

Remark
A different pivot rule would have converged in one iteration.

» We have a bad example for every pivot rule.

10



Complexity of the simplex method

We do not know any polynomial | _
version of the simplex method, ———  Still open research question!

no matter which pivoting rule we pick.
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Worst-case

There are problem instances where the simplex method will run an exponential
number of iterations in terms of the dimensions, e.g. 2"
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Complexity of the simplex method

We do not know any polynomial | _
version of the simplex method, ———  Still open research question!

no matter which pivoting rule we pick.

Worst-case

There are problem instances where the simplex method will run an exponential
number of iterations in terms of the dimensions, e.g. 2"

Good news: average-case

Practical performance is very good. On average, it stops in n iterations.
11



Average simplex complexity

Random LPs minimize ¢!« n variables
subjectto Az <b 3n constraints
lterations n Time n°
3000 i —— Cubic polynomial °
-------- Square polynomial

0 6000
iq"c:: 4000-
£
= 2000

O_

0 250 500 750 1000 0 250 500 750 1000

n n






Linear optimization formulations

Standard form LP Inequality form LP
minimize c'x minimize ¢’z
subjectto Ax =0 subjectto Ax <b

r > 0

14



Today’s agenda
Duality

* Obtaining lower bounds
 [he dual problem
 Weak and strong duality

15



Obtaining lower bounds




Obtaining lower bounds

A simple example

minimize  x1 + 3x-
subjectto z; + 319 > 2

What is a lower bound on the optimal cost?

17



Obtaining lower bounds

A simple example

minimize  x1 + 3x-
subjectto z; + 319 > 2

What is a lower bound on the optimal cost?

A lower bound Is 2 because x1 + 3z > 2

17



Obtaining lower bounds

Another example

minimize x1 + 3x-
subjectto x1 + 9 > 2
L9 Z 1

What is a lower bound on the optimal cost?

18



Obtaining lower bounds

Another example

minimize x1 + 3x-
subjectto x1 + 9 > 2
L9 Z 1

What is a lower bound on the optimal cost?

Let’s sum the constraints
1 (x1+ a9 > 2)

=11+ 3x9 > 4
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Obtaining lower bounds

Another example

minimize x1 + 3x-
subjectto x1 + 9 > 2
L9 Z 1

What is a lower bound on the optimal cost?

Let’s sum the constraints
1 (x1+ a9 > 2)

=11+ 3x9 > 4

A lower bound Is 4

18



Obtaining lower bounds

A more Interesting example

minimize  x1 + 3x-
subjectto z; + x5 > 2
L9 Z 1

561—513223

How can we obtain a lower bound?

19



Obtaining lower bounds

A more Interesting example

minimize  x1 + 3x-
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L9 Z 1
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Add constraints
Y1 - (1 + 29 > 2)

+ y2 - (2 > 1)
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Obtaining lower bounds

A more Interesting example

minimize  x1 + 3x-
subjectto z; + x5 > 2
L9 Z 1

561—513223

How can we obtain a lower bound?

Add constraints Match cost coefficients
y1 - (1 + 22 > 2) y1+ys =1

+ Yo - (z2 > 1) Y1+ Y2 —ys = 3

+y3’($1—$223) y17y27y320

= (y1 +y3)T1 + (y1 + Y2 — y3)x2 > 2y1 + Y2 + 3y3

Bound
19



Obtaining lower bounds

A more Interesting example

minimize  x1 + 3x-
subjectto z; + x5 > 2
L9 Z 1

561—513223

How can we obtain a lower bound?

Add constraints Match cost coefficients Many options

y1 - (1 + 22 > 2) y1+ys =1
+ y2 - (2 > 1) Y1 +y2 —ys = 3 y = (1,2,0) = Bound 4
+y3’($1—$223) y17y27y320

= (y1 +y3)T1 + (y1 + Y2 — y3)x2 > 2y1 + Y2 + 3y3

Bound
19



Obtaining lower bounds

A more Interesting example

minimize  x1 + 3x-
subjectto z; + x5 > 2
L9 Z 1

561—513223

How can we obtain a lower bound?

Add constraints Match cost coefficients Many options
y1 - (r1 + 22 > 2) yr+ys =1 ( ) = Bound
PN = (1,2,0) = Bouna 4
. > y1 +y2 —ys =3 Y ) £
+y2 - (22 2 1) - y = (0,4,1) = Bound 7
—|—y3°($1—$223) y17y27y3_0

= (y1 +y3)T1 + (y1 + Y2 — y3)x2 > 2y1 + Y2 + 3y3

Bound
19



Obtaining lower bounds

A more Interesting example

minimize  x1 + 3x-
subjectto z; + x5 > 2
L9 Z 1

561—513223

How can we obtain a lower bound?

Add constraints Match cost coefficients Many options
y1 - (21 + 22 > 2) — ( ) = Bound
B — = (1,2,0) = Bound 4
. ~ Y1+ Y2 —ys =3 Y ) £
+y2 - (22 2 1) - y =(0,4,1) = Bound 7
—|—y3°($1—$223) y17y27y3_0
= (y1 +y3)r1 + (Y1 + Y2 — ¥3)x2 > 2y1 + y2 + 3y3 How can we get the best one?

Bound
19



Obtaining lower bounds

A more Interesting example — Best lower bound

We can obtain the best lower bound by solving the following problem

maximize 2y + y2 + 3y3
subjectto y; +y3 =1
Y1 T+ Y2 — Y3z =
Y1,Y2,Y3 = 0

20



Obtaining lower bounds

A more Interesting example — Best lower bound

We can obtain the best lower bound by solving the following problem

maximize 2y + y2 + 3y3
subjectto y; +y3 =1
Y1 T Y2 — Yz =
Y1,Y2,ys = 0

This linear optimization problem is called the dual problem

20



The dual problem



Lagrange multipliers

Consider the LP in standard form
minimize ¢’z
subjectto Az =0

r > 0

22



Lagrange multipliers

Consider the LP in standard form Relax the constraint

minimize ¢’z

subjectto Az =0
r > 0

g(y) = minimize c¢'z+y! (Ax —b)

subjectto x>0

22



Lagrange multipliers

Consider the LP in standard form
minimize ¢’z .
subjectto Arxr=b —> X

r > 0

Lower bound

g(y) <cla*+y' (Az* —b) =c' 2*

= O

9(y)

Relax the constraint

minimize ¢’z + y! (Az — b)

subjectto x>0

22



Lagrange multipliers

Consider the LP in standard form Relax the constraint
minimize ¢!z

g(y) = minimize cl'z+y! (Axz — )
subjectto Az =0 ) x

subjectto x>0

xr >0
| ower bound Best lower bound
gy) <c'a* +y' (Ax* —b) =c' 2 maximize g¢g(y)

t,_?-d Y

22



The dual

Dual function

g(y) = minimize (¢ z + y" (Az — b))

x>0

—by + mir;iggize (c + ATy)T x

23



The dual

Dual function

o e e T T B
g(y) = minimize (c"z+y" (Ax — b))

— —bly + mir;;ig(])ize (c -+ ATy)T x

—b'y ife+ Ay >0
g(y) = |
— 00 otherwise



The dual

Dual function

o e e T T B
g(y) = minimize (c"z+y" (Ax — b))

— —bly + mir;;ig(])ize (c -+ ATy)T x

() = —b'y ife+ Aty >0
A7) 2o otherwise
Dual problem (find the best bound)

maximize g¢(y) = maximize —bly
/ - T
subjectto A"y+c>0

23



Primal and dual problems

Primal problem Dual problem
minimize ¢’z maximize —b7y
subjectto  Ax =b subjectto ATy +c¢ >0

r >0

Primal variable z € R" Dual variable y € R™

24



Primal and dual problems

Primal problem Dual problem
minimize ¢!z maximize —bTy
subjectto Ax =b subjectto ATy + ¢ >0

r > (
Primal variable z ¢ R" Dual variable y € R™

The dual problem carries useful information for the primal problem

24



Primal and dual problems

Primal problem Dual problem
minimize ¢!z maximize —bTy
subjectto Ax =b subjectto ATy + ¢ >0

r > (
Primal variable z ¢ R" Dual variable y € R™

The dual problem carries useful information for the primal problem

Duality is useful also to solve optimization problems

24



Dual of inequality form LP

What if you find an LP with inequalities?
minimize c¢''z
subjectto Az <b

25



Dual of inequality form LP

What if you find an LP with inequalities?
minimize c¢''z
subjectto Az <b

1. We could first transform it to standard form
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Dual of inequality form LP

What if you find an LP with inequalities?
minimize c¢''z
subjectto Az <b

1. We could first transform it to standard form
2. We can compute the dual function (same procedure as before)

Relax the constraint

g(y) = minimize clz+y! (Ax —b)
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Dual of inequality form LP

What if you find an LP with inequalities?
minimize c¢''z
subjectto Az <b

1. We could first transform it to standard form
2. We can compute the dual function (same procedure as before)

Relax the constraint Lower bound :<£ )

we must have y > 0

g(y) = minimize c'z+y' (Az —b) gly) < c'a” +y' (Az* —b)y<c o’

25



Dual of LP with inequalities

Derivation
Dual function

g(y) = minimize (c"'z+y" (Az — b))

— —bly+ minimize (c+ ATy)T T

20



Dual of LP with inequalities

Derivation
Dual function

g(y) = minimize (c"'z+y" (Az — b))

— —bly+ minimize (c+ ATy)T T

g(y) =

—bly ife+A'y=0 (andy > 0)
—o0o  otherwise

20



Dual of LP with inequalities

Derivation

Dual function
g(y) = minimize (¢’ z + y' (Az — b))

— —bly+ minimize (c+ ATy)T T

—bly ife+A'y=0 (andy > 0)
g(y) = |
— 00 otherwise

Dual problem (find the best bound)
maximize ¢(y) maximize —bly
Y , T
subjectto A" y+c=0
y >0

20



General forms

Standard form LP

Primal Dual
minimize ¢’z maximize —bly
subjectto Az =b subjectto Aly4c¢ >0
r > 0
Primal Inequality form LP Dual
minimize ¢! x maximize —b'y
subjectto Az < b subjectto Aly+4+c=0

y 20

27



General forms

Standard form LP

Primal Dual
minimize ¢’z maximize —bly
subjectto Ax =b subjectto ATy + ¢ >0
r > 0
Primal Inequality form LP Dual
minimize ¢T'x maximize —bly
subjectto Az < b subjectto Aly+4+c=0
y >0
LP with inequalities and equalities
Primal Dual
minimize ¢’z maximize —b'y—d'z
subjectto Az <b (&) subjectto ATy +CTz+c=0

27

Cx:d@B y >0



Example from before

minimize x1 + 3x-
subjectto z; + x5 > 2
L9 > ]
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Example from before

minimize x1 + 3x-
subjectto z; + x5 > 2
L9 Z 1

a71—$223

Inequality form LP
minimize ¢’z
subjectto Ax <0

c=(1,3)
SRR

A=10 -1
—1 1

28



Example from before

minimize x1 + 3x-
subjectto z; + x5 > 2

Dual

maximize —bly

subjectto Aly+c=0
y >0

Inequality form LP
minimize ¢’z
subjectto Ax <0

c=(1,3)
SRR

A=10 -1
—1 1

28



Example from before

minimize x1 + 3x-
subjectto z; + x5 > 2
L9 Z 1

a71—$223

Dual

maximize —bly

subjectto Aly+c=0 —
y >0

c=(1,3)
Inequality form LP - -
minimize ¢’z o
_ A=10 -1
subjectto Ax <0 {1

maximize 2y; + ys + 3ys
subjectto —y; —y3 = —1
—Y1 — Y2 tys = —3
Y1,Y2,Y3 = 0

28



To memorize

Ways to get the dual

* Derive dual function directly
* [ransform the problem in inequality form LP and dualize

Sanity-checks and signs convention

» Consider constraints as Az — b < 0or Ax — b = 0 (not > 0)
» Each dual variable is associated to a primal constraint
- y free for primal equalities and y > 0 for primal inequalities

29



Dual of the dual

Theorem
If we transform the primal into its dual and then transform the dual to its dual, we

obtain a problem equivalent to the original problem. In other words, the dual of
the dual is the primal.

30



Dual of the dual

Theorem
If we transform the primal into its dual and then transform the dual to its dual, we

obtain a problem equivalent to the original problem. In other words, the dual of

the dual is the primal.

Exercise
Derive dual and dualize again

Primal Dual
L maximize —b'y—d'z

minimize c'x _
subjectto Ay +C'z+c=0

subjectto Az <b
y =0

CQIZ‘:d M

30



Dual of the dual

Theorem
If we transform the primal into its dual and then transform the dual to its dual, we

obtain a problem equivalent to the original problem. In other words, the dual of
the dual is the primal.

Exercise
Derive dual and dualize again

Primal Dual

minimize ¢!z maximize —b'y—d'z

subjectto Ax <b subjectto Ay +C'z+c=0
Cr =d y >0

Theorem
If we transform a linear optimization problem to another form (inequality

form, standard form, inequality and equality form), the dual of the two 20
problems will be equivalent.



Weak and strong duality




Optimal objective values

Primal
minimize clx
subjectto Az <b

p* 1S the primal optimal value

Primal infeasible: p* = +oc
Primal unbounded: p* = —o0¢

Dual
maximize —bly

subjectto Aly+c=0

y 2> 0

d* 1s the dual optimal value

Dual infeasible: d* = —o¢

Dual unbounded: d* =

O

32



Weak duality

Theorem
If x,y satisty:

» x IS a feasible solution to the primal problem
» y IS a feasible solution to the dual problem

S

—bly<c'z

33



Weak duality

Theorem
If x,y satisty:

» x IS a feasible solution to the primal problem
] x . _>
» y IS a feasible solution to the dual problem

T
Proof ~Ay=¢
We know that Az < b, A'y + ¢ = 0’and y > 0. Therefore,
0<y' (b—Ax)=by—y Ar=c'z+b'y

(D —
20 ® =C

—bly<c'z

33



Weak duality

Theorem
If x,y satisty:

» x IS a feasible solution to the primal problem T T
» y IS a feasible solution to the dual problem > b y~crx

Proof
We know that Az < b, Ay + ¢ = 0andy > 0. Therefore,

0<y' (b—Ax)=by—y Ar=c'z+b'y

Remark
» Any dual feasible y gives a lower bound on the primal optimal value

» Any primal feasible x gives an upper bound on the dual optimal value
- ¢!z 4+ bly is the duality gap

33



Weak duality

Corollaries

Unboundedness vs feasibility
* Primal unbounded (p* = —o0) = dual infeasible (d* = —o0)
* Dual unbounded (d* = +o0) = primal infeasible (p* = +o0)

34



Weak duality

Corollaries

Unboundedness vs feasibility
* Primal unbounded (p* = —o0) = dual infeasible (d* = —o0)
* Dual unbounded (d* = +o0) = primal infeasible (p* = +o0)

Optimality condition

If x, y satisfy:
» x IS a feasible solution to the primal problem
» y Is a feasible solution to the dual problem
- The duality gap is zero, i.e., cl'z + bl y =0

Then x and y are optimal solutions to the primal and dual problem respectively o



Strong duality

Theorem
If a linear optimization problem has an optimal solution, so does its dual, and
the optimal value of primal and dual are equal

d*:p*

35



Strong duality

Constructive proof
Given a primal optimal solution x> we will construct a dual optimal solution y*
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Strong duality

Constructive proof
Given a primal optimal solution x> we will construct a dual optimal solution y*

Apply simplex to problem in standard form
minimize ¢!z
subjectto Az =0
r > 0
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Strong duality

Constructive proof
Given a primal optimal solution x> we will construct a dual optimal solution y*

Apply simplex to problem in standard form

minimize ¢’z - optimal basis B
subjectto Az =b  —— ¢ optimal solution z* with Az =0
>0 » reduced costs ¢ =c — AT AL cg > 0
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AT;‘- #_-: - C = :_P
Strong duality =% =1

Constructive proof
Given a primal optimal solution x> we will construct a dual optimal solution y*

Apply simplex to problem in standard form

minimize ¢’z - optimal basis B
subjectto Az =b  —— ¢ optimal solution z* with Az =0
>0 » reduced costs ¢ =c — AT AL cg > 0

Define y* such that y* = —AZ;TCB. Therefore, A y* + ¢ > 0 (y* dual feasible).
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Strong duality

Constructive proof
Given a primal optimal solution x> we will construct a dual optimal solution y*

Apply simplex to problem in standard form

& -l
minimize ¢’ » optimal basis B XA b
subjectto Ar=b  —— < optimal solution z* with‘ABa;’é —p}
> 0 » reduced costs ¢ =c — AT AL cg > 0

Define y* such that y* = —AZ;TCB. Therefore, A y* + ¢ > 0 (y* dual feasible).

bl y* = b (AL cg) = ch(AZ'D) = chrly =l x*

-
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Strong duality

Constructive proof
Given a primal optimal solution x> we will construct a dual optimal solution y*

Apply simplex to problem in standard form

minimize ¢’z - optimal basis B
subjectto Az =b  —— ¢ optimal solution z* with Az =0
>0 » reduced costs ¢ =c — AT AL cg > 0

Define y* such that y* = —A;TCB. Therefore, A y* + ¢ > 0 (y* dual feasible).
—bly* = b (A, cg) = ch(AZ'D) = chrly =l x*

By weak duality theorem corollary, y* is an optimal solution of the dual.

Therefore, d* = p*. B



Exception to strong duality

Primal Dual
maximize vy

subjectto O0-y+1=0
y =0

minimize x
subjectto 0.z < -1

Optimal value is p* = 400 Optimal value is d* = —oc
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Exception to strong duality

Primal Dual
maximize vy

subjectto O0-y+1=0
y =0

minimize x
subjectto 0.z < -1

Optimal value is p* = 400 Optimal value is d* = —oc

Both primal and dual infeasible
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Relationship between primal and dual

p* = 400 p* finite p* = —00
I — 4 primal inf.
- T dual unb.
- timal
I* finite optimal values
equal
Jr — _ . primal unb.
o0 exception dual inf

» Upper-right excluded by weak duality
* (1,1) and (3, 3) proven by weak duality
* (3,1) and (2, 2) proven by strong duality






Production problem

maximize xi1 + 2x-
subjectto z; <100

219 < 200

1 + xo < 150

L1, L2 2 0




Production problem

maximize xi + 2xo <+— Profits
subjectto z; <100

219 < 200

1+ 2o < 150

L1, L2 2 0




Production problem

maximize xq1 + 2xo <+— Profits
subjectto z; <100

209 < 200 «—— Resources
Tr1 + T2 S 150

L1, L2 2 0
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Production problem

maximize xq1 + 2xo <+— Profits

subjectto x; < 100 B
c=(—1,—2)
209 < 200 «<—— Resources - -
x1,To > 0
b A=11 1
Dualize 1 0
minimize !z 0 —1

1. Transform in inequality form . i i
quality subjectto Az < b b = (100, 200, 150, 0, 0)
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Production problem

maximize xq1 + 2xo <+— Profits

subjectto x; < 100 B
c=(—1,—2)
209 < 200 «<—— Resources - -
x1,To > 0
b A=11 1
Dualize 1 0
minimize !z 0 —1

1. Transform in inequality form . i i
quality subjectto Az < b b = (100, 200, 150, 0, 0)

maximize —bly
2. Derive dual subjectto Aly+c=0
Y > () 40



Production problem

Dualized

maximize
subject to

—bTy
Aty +c=0
y >0

c=(—1,—-2)
TS
0 2
A=1]1 1
—1 0
0 -1

b = (100, 200, 150, 0, 0)
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Production problem

Dualized
maximize —bly
subjectto ATy +c =0
y > 0
Fill-in data

minimize  100y; + 200ys + 150ys3
subjectto y1 +y3—ys =1
202 + Y3 — Y5 = 2
Y1,Y2, Y3, Y4,Y5 = 0

b = (100, 200, 150, 0, 0)
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Production problem c=(-1,-2)

Dualized 10
maximize —b'y 0 2
subjectto Aly+c=0 A=1|1 1
y >0 -1 0
0 —1

b = (100, 200, 150, 0, 0)

Fill-in data Eliminate variables
minimize 100y, + 200y + 150y3 minimize 100y, + 200y + 150y3
subjectto vy + ys3 —/ﬂ: 1 subjectto y; +ys >1

—_—
292+3/37’g5=2 2Y2 +ys = 2

Yi1,Y2,Y3, Y4, Ys > 0 Yi1,Y2,Ys >0 41



Production problem

The dual

minimize  100y; + 200ys

subjectto vy +y3>1
2y + Y3 > 2
Y1,Y2,ys = 0

15Oy3
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Production problem

The dual
minimize  100y; + 200ys + 150ys3
subjectto y; +y3 > 1 ol @
2y2 + Y3 > 2 // (%)
Y1,Y2,Y3 = 0

Interpretation

» Sell all your resources at a fair (minimum) price
» Selling must be more convenient than producing:

— Product 1 (price 1, needs 1x resource 1 and 3): y; +y3 > 1
— Product 2 (price 2, needs 2 x resource 2 and 1x resource 3): 2ys + yz > 2
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Linear optimization duality

Today, we learned to:
 Dualize linear optimization problems
 Prove weak and strong duality conditions

* Interpret simple dual optimization problems
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Next lecture

More on duality:
 Game theory
 Complementary slackness

e Farkas lemma
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