ORF307 – Optimization 13. Duality

Ed Forum

- For phase 1 vs phase 2, I understand it finds an extreme point that is not necessarily the optimal but I do not understand how it gets this point by setting x = 0 and y = b.
- how does the simplex method's approach to handling degeneracy and cycling impact its efficiency and reliability in practical applications, such as logistics or resource allocation? Are there examples where alternative methods might be more effective due to these issues?

Complexity

Complexity of a single simplex iteration

- 1. Compute the reduced costs \bar{c}
 - Solve $A_B^T p = c_B$
 - $\bar{c} = c A^T p$
- 2. If $\bar{c} \geq 0$, x optimal. break
- 3. Choose j such that $\bar{c}_i < 0$

- 4. Compute search direction d with $d_j = 1$ and $A_B d_B = -A_j$
- 5. If $d_B \ge 0$, the problem is **unbounded** and the optimal value is $-\infty$. **break**
- 6. Compute step length $\theta^\star = \min_{\{i \in B \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$
- 7. Define y such that $y = x + \theta^* d$
- 8. Get new basis \bar{B} (i exits and j enters)

Linear system solutions

Very similar linear systems

$$A_B^T p = c_B$$

$$A_B d_B = -A_j$$

LU factorization

 $(2/3)n^3$ flops

$$A_B = PLU$$
 \longrightarrow

Easy linear systems

 $4n^2$ flops

$$U^T L^T P^T p = c_B$$
$$PLU d_B = -A_j$$

Factorization is expensive

Do we need to recompute it at every iteration?

Basis update

Index update

- j enters $(x_j$ becomes θ^*)
- $i = B(\ell)$ exists (x_i becomes 0)

Basis matrix change

$$A_{\bar{B}} = A_B + (A_i - A_j)e_{\ell}^T$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{array}{c} B = \{4, 1, 6\} & \rightarrow & \bar{B} = \{4, 1, 2\} \\ & \bullet & 2 \text{ enters} \\ & \bullet & 6 = B(3) \text{ exists} \end{array}$$

Example

$$B = \{4, 1, 6\} \rightarrow \bar{B} = \{4, 1, 2\}$$

$$A_{B} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 1 \\ 0 & 2 & 2 \end{bmatrix}$$

Smarter linear system solution

Basis matrix change

Matrix inversion lemma

(from homework 2)

$$A_{\bar{B}} = A_B + (A_i - A_j) e_{\ell}^T \longrightarrow$$

$$A_{\bar{B}} = A_B + \overbrace{(A_i - A_j)}^{c} e_{\ell}^{T} \longrightarrow (A_B + ve_{\ell}^{T})^{-1} = \left(I - \frac{1}{1 + e_{\ell}^{T} A_B^{-1} v} A_B^{-1} ve_{\ell}^{T}\right) A_B^{-1}$$

Solve
$$A_{\bar{B}}d_{\bar{B}}=-A_{j}$$

- 1. Solve $A_B z^1 = e_\ell$ ($2n^2$ flops)
- 2. Solve $A_B z^2 = -A_i$ ($2n^2$ flops)
- 3. Solve $d_{\bar{B}} = z^2 \frac{v^T z^2}{1 \perp v T \sim 1} z^1$

Remarks

- Same complexity for $A_B^T p = c_B \ (4n^2 \ \text{flops})$
- k-th next iteration ($4kn^2$ flops, derive as exercise...)
- Once in a while (e.g., k = 100), better to refactor A_B

Complexity of a single simplex iteration

- 1. Compute the reduced costs \bar{c}
 - Solve $A_B^T p = c_B$
 - $\bar{c} = c A^T p$
- 2. If $\bar{c} \geq 0$, x optimal. break
- 3. Choose j such that $\bar{c}_j < 0$

- 4. Compute search direction d with $d_j = 1$ and $A_B d_B = -A_j$
- 5. If $d_B \ge 0$, the problem is **unbounded** and the optimal value is $-\infty$. **break**
- 6. Compute step length $\theta^* = \min_{\{i \in B | d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$
- 7. Define y such that $y = x + \theta^* d$
- 8. Get new basis \bar{B} (i exits and j enters)

Bottleneck
Two linear systems

Matrix inversion lemma trick $\approx n^2$ per iteration

(very cheap)

Complexity of the simplex method

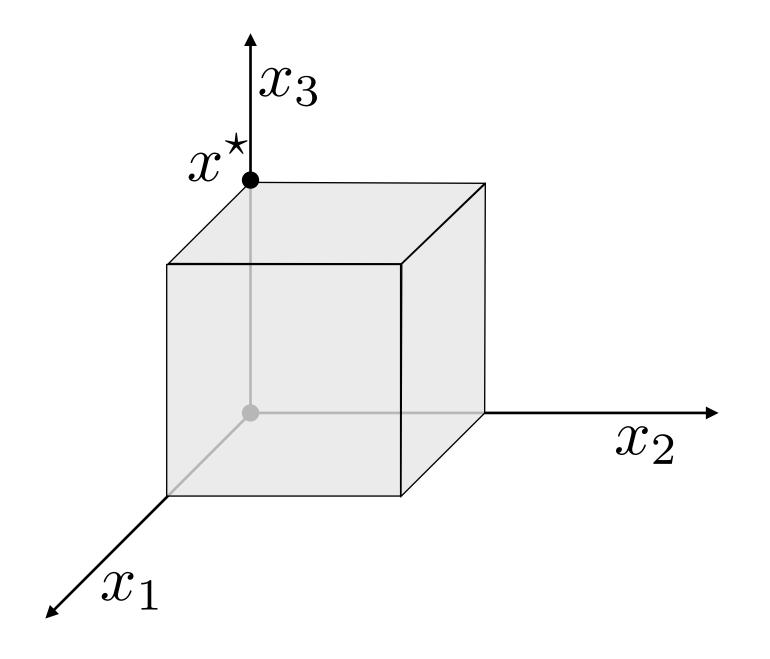
Example of worst-case behavior

Innocent-looking problem

minimize $-x_n$ subject to 0 < x < 1

2^n vertices

 $2^n/2$ vertices: $\cos t = 1$ $2^n/2$ vertices: $\cos t = 0$



Perturb unit cube

minimize
$$-x_n$$

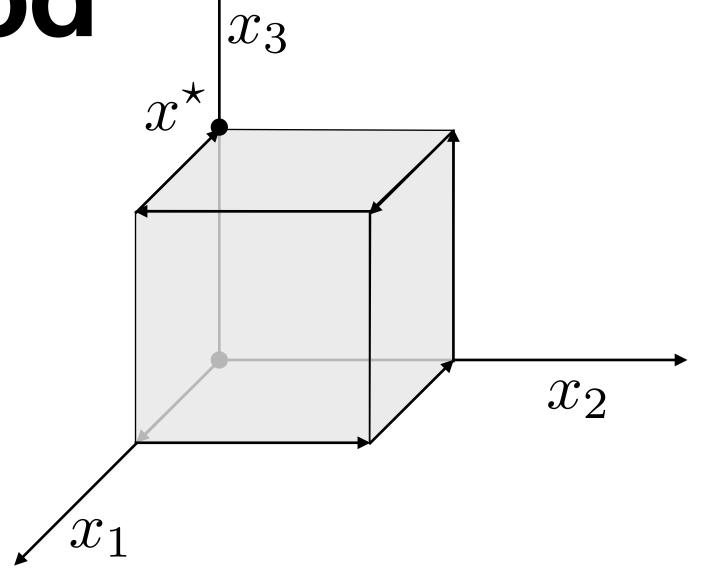
subject to
$$\epsilon \leq x_1 \leq 1$$

$$\epsilon x_{i-1} \le x_i \le 1 - \epsilon x_{i-1}, \quad i = 2, \dots, n$$

Complexity of the simplex method

Example of worst-case behavior

minimize
$$-x_n$$
 subject to $\epsilon \le x_1 \le 1$
$$\epsilon x_{i-1} \le x_i \le 1 - \epsilon x_{i-1}, \quad i=2,\dots,n$$



Theorem

- The vertices can be ordered so that each one is adjacent to and has a lower cost than the previous one
- There exists a pivoting rule under which the simplex method terminates after $2^n 1$ iterations

Remark

- A different pivot rule would have converged in one iteration.
- We have a bad example for every pivot rule.

Complexity of the simplex method

We do **not know any polynomial version of the simplex method**,
no matter which pivoting rule we pick.

Still **open research question!**

Worst-case

There are problem instances where the simplex method will run an **exponential number of iterations** in terms of the dimensions, e.g. 2^n

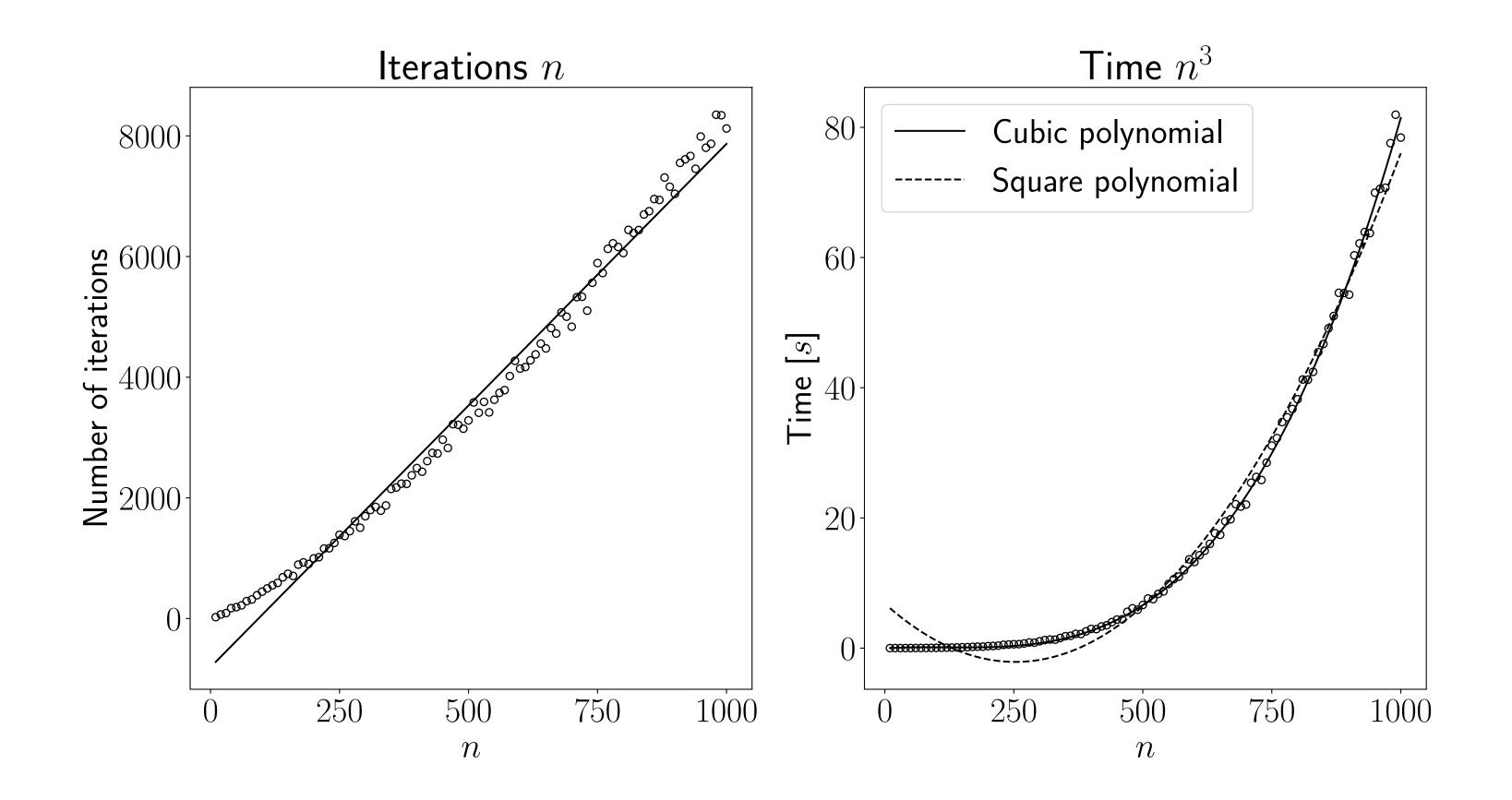
Good news: average-case Practical performance is very good. On average, it stops in n iterations.

Average simplex complexity

Random LPs

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$

n variables 3n constraints



Recap

Linear optimization formulations

Standard form LP

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$

Inequality form LP

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$

Today's agenda Duality

- Obtaining lower bounds
- The dual problem
- Weak and strong duality

A simple example

minimize
$$x_1 + 3x_2$$
 subject to $x_1 + 3x_2 \ge 2$

What is a lower bound on the optimal cost?

A lower bound is 2 because $x_1 + 3x_2 \ge 2$

Another example

minimize
$$x_1 + 3x_2$$
 subject to $x_1 + x_2 \ge 2$ $x_2 \ge 1$

What is a lower bound on the optimal cost?

Let's sum the constraints

$$1 \cdot (x_1 + x_2 \ge 2)$$

$$+ 2 \cdot (x_2 \ge 1)$$

$$= x_1 + 3x_2 > 4$$

A lower bound is 4

A more interesting example

minimize
$$x_1+3x_2$$
 subject to $x_1+x_2\geq 2$ $x_2\geq 1$ $x_1-x_2\geq 3$

How can we obtain a lower bound?

Add constraints

$$y_{1} \cdot (x_{1} + x_{2} \ge 2)$$

$$+ y_{2} \cdot (x_{2} \ge 1)$$

$$+ y_{3} \cdot (x_{1} - x_{2} \ge 3)$$

$$\Rightarrow (y_{1} + y_{3}) \overline{x_{1} + (y_{1} + y_{2} - y_{3})} x_{2} \ge 2y_{1} + y_{2} + 3y_{3}$$

Match cost coefficients

$$y_1 + y_3 = 1$$

 $y_1 + y_2 - y_3 = 3$
 $y_1, y_2, y_3 \ge 0$

Many options

$$y = (1, 2, 0) \Rightarrow \text{Bound } 4$$

 $y = (0, 4, 1) \Rightarrow \text{Bound } 7$

How can we get the **best one**?

Bound

A more interesting example — Best lower bound

We can obtain the best lower bound by solving the following problem

maximize
$$2y_1 + y_2 + 3y_3$$

subject to $y_1 + y_3 = 1$
 $y_1 + y_2 - y_3 = 3$
 $y_1, y_2, y_3 \ge 0$

This linear optimization problem is called the dual problem

The dual problem

Lagrange multipliers

Consider the LP in standard form

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

Lower bound

$$g(y) \le c^T x^* + y^T (Ax^* - b) = c^T x^*$$

Relax the constraint

$$g(y) = \min_{x} c^T x + y^T (Ax - b)$$
 subject to $x \ge 0$

Best lower bound

The dual

Dual function

$$g(y) = \underset{x \ge 0}{\text{minimize}} \left(c^T x + y^T (Ax - b) \right)$$
$$= -b^T y + \underset{x \ge 0}{\text{minimize}} \left(c + A^T y \right)^T x$$

$$g(y) = \begin{cases} -b^T y & \text{if } c + A^T y \ge 0 \\ -\infty & \text{otherwise} \end{cases}$$

Dual problem (find the best bound)

$$\label{eq:gy} \begin{array}{lll} \text{maximize} & g(y) &= & \text{maximize} & -b^T y \\ & & \text{subject to} & A^T y + c \geq 0 \end{array}$$

Primal and dual problems

Primal problem

minimize $c^T x$ subject to Ax = b x > 0

Dual problem

 $\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$

Primal variable $x \in \mathbf{R}^n$

Dual variable $y \in \mathbf{R}^m$

The dual problem carries useful information for the primal problem

Duality is useful also to solve optimization problems

Dual of inequality form LP

What if you find an LP with inequalities?

minimize
$$c^T x$$
 subject to $Ax \leq b$

- 1. We could first transform it to standard form
- 2. We can compute the dual function (same procedure as before)

Relax the constraint

$$g(y) = \min_{x} i \sum_{x} c^{T}x + y^{T}(Ax - b)$$

Lower bound

$$g(y) \leq c^T x^\star + y^T (Ax^\star - b) \leq c^T x^\star$$
 we must have $y > 0$

Dual of LP with inequalities

Derivation

Dual function

$$g(y) = \underset{x}{\text{minimize}} \left(c^T x + y^T (Ax - b) \right)$$
$$= -b^T y + \underset{x}{\text{minimize}} \left(c + A^T y \right)^T x$$

$$g(y) = \begin{cases} -b^T y & \text{if } c + A^T y = 0 \text{ (and } y \ge 0) \\ -\infty & \text{otherwise} \end{cases}$$

Dual problem (find the best bound)

General forms

Standard form LP

Primal Dual

$$\begin{array}{lll} \text{minimize} & c^T x & \\ & -b^T y \end{array}$$

subject to
$$Ax = b$$
 subject to $A^Ty + c \ge 0$

$$x \ge 0$$

Inequality form LP

Primal Dual

minimize
$$c^Tx$$
 maximize $-b^Ty$

subject to
$$Ax \leq b$$
 subject to $A^Ty + c = 0$

$$y \ge 0$$

LP with inequalities and equalities

Primal Dual

minimize
$$c^Tx$$
 maximize $-b^Ty-d^Tz$

subject to
$$Ax \leq b$$
 subject to $A^Ty + C^Tz + c = 0$

$$Cx = d$$
 $y \ge 0$

Example from before

minimize
$$x_1+3x_2$$
 subject to $x_1+x_2\geq 2$ $x_2\geq 1$ $x_1-x_2\geq 3$

Inequality form LP

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$$

$$c = (1,3)$$

$$A = \begin{bmatrix} -1 & -1 \\ 0 & -1 \\ -1 & 1 \end{bmatrix}$$

$$b = (-2, -1, -3)$$

Dual

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$$

maximize
$$2y_1 + y_2 + 3y_3$$
 subject to $-y_1 - y_3 = -1$ $-y_1 - y_2 + y_3 = -3$ $y_1, y_2, y_3 \ge 0$

To memorize

Ways to get the dual

- Derive dual function directly
- Transform the problem in inequality form LP and dualize

Sanity-checks and signs convention

- Consider constraints as $Ax b \le 0$ or Ax b = 0 (not ≥ 0)
- Each dual variable is associated to a primal constraint
- y free for primal equalities and $y \ge 0$ for primal inequalities

Dual of the dual

Theorem

If we transform the primal into its dual and then transform the dual to its dual, we obtain a problem equivalent to the original problem. In other words, the **dual of** the dual is the primal.

Exercise

Derive dual and dualize again

Primal			Dual		
minimize	$c^T x$	maximize	$-b^T y - d^T z$		
subject to	$Ax \leq b$	subject to	$A^T y + C^T z + c = 0$		
	Cx = d		$y \ge 0$		

Theorem

If we transform a linear optimization problem to another form (inequality form, standard form, inequality and equality form), the dual of the two problems will be equivalent.

Weak and strong duality

Optimal objective values

Primal

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax < b \end{array}$

 p^{\star} is the primal optimal value

Primal infeasible: $p^* = +\infty$ Primal unbounded: $p^* = -\infty$

Dual

 $\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$

 d^{\star} is the dual optimal value

Dual infeasible: $d^* = -\infty$

Dual unbounded: $d^* = +\infty$

Weak duality

Theorem

If x, y satisfy:

- x is a feasible solution to the primal problem
- y is a feasible solution to the dual problem

$-b^T y \le c^T x$

Proof

We know that $Ax \leq b$, $A^Ty + c = 0$ and $y \geq 0$. Therefore,

$$0 \le y^{T}(b - Ax) = b^{T}y - y^{T}Ax = c^{T}x + b^{T}y$$

Remark

- Any dual feasible y gives a **lower bound** on the primal optimal value
- ullet Any primal feasible x gives an **upper bound** on the dual optimal value
- $c^T x + b^T y$ is the duality gap

Weak duality

Corollaries

Unboundedness vs feasibility

- Primal unbounded $(p^* = -\infty) \Rightarrow$ dual infeasible $(d^* = -\infty)$
- Dual unbounded $(d^* = +\infty) \Rightarrow$ primal infeasible $(p^* = +\infty)$

Optimality condition

If x, y satisfy:

- x is a feasible solution to the primal problem
- y is a feasible solution to the dual problem
- The duality gap is zero, *i.e.*, $c^Tx + b^Ty = 0$

Then x and y are optimal solutions to the primal and dual problem respectively

Strong duality

Theorem

If a linear optimization problem has an optimal solution, so does its dual, and the optimal value of primal and dual are equal

$$d^{\star} = p^{\star}$$

Strong duality

Constructive proof

Given a primal optimal solution x^* we will construct a dual optimal solution y^*

Apply simplex to problem in standard form

minimize
$$c^Tx$$
 • optimal basis B subject to $Ax=b$ • optimal solution x^\star with $A_Bx_B^\star=b$ • reduced costs $\bar{c}=c-A^TA_B^{-T}c_B\geq 0$

Define y^* such that $y^* = -A_B^{-T} c_B$. Therefore, $A^T y^* + c \ge 0$ (y^* dual feasible).

$$-b^T y^* = -b^T (-A_B^{-T} c_B) = c_B^T (A_B^{-1} b) = c_B^T x_B^* = c^T x^*$$

By weak duality theorem corollary, y^* is an optimal solution of the dual. Therefore, $d^* = p^*$.

Exception to strong duality

Primal

 $\begin{array}{ll} \text{minimize} & x \\ \text{subject to} & 0 \cdot x < -1 \end{array}$

Optimal value is $p^* = +\infty$

Dual

maximize
$$y$$
 subject to $0 \cdot y + 1 = 0$ $y \ge 0$

Optimal value is $d^* = -\infty$

Both primal and dual infeasible

Relationship between primal and dual

	$p^{\star} = +\infty$	p^\star finite	$p^{\star} = -\infty$
$d^{\star} = +\infty$	primal inf. dual unb.		
d^\star finite		optimal values equal	
$d^{\star} = -\infty$	exception		primal unb. dual inf

- Upper-right excluded by weak duality
- (1,1) and (3,3) proven by weak duality
- (3,1) and (2,2) proven by strong duality

Example

Production problem

maximize $x_1 + 2x_2$ subject to $x_1 \le 100$

$$x_1 + 2x_2$$
 — Profits

$$2x_2 \le 200 \qquad \longleftarrow$$

$$x_1 + x_2 \le 150$$

$$x_1, x_2 \ge 0$$

$$c = (-1, -2)$$

$$\begin{bmatrix}
 1 & 0 \\
 0 & 2 \\
 1 & 1 \\
 -1 & 0 \\
 0 & -1
 \end{bmatrix}$$

1. Transform in inequality form

minimize
$$c^T x$$
 subject to $Ax \leq b$

Resources

$$b = (100, 200, 150, 0, 0)$$

maximize
$$-b^Ty$$
 subject to $A^Ty+c=0$ $y\geq 0$

Production problem

Dualized

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$$

$$c = (-1, -2)$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 1 & 1 \\ -1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$b = (100, 200, 150, 0, 0)$$

Fill-in data

minimize
$$100y_1 + 200y_2 + 150y_3$$
 subject to $y_1 + y_3 - y_4 = 1$ $2y_2 + y_3 - y_5 = 2$ $y_1, y_2, y_3, y_4, y_5 \ge 0$

Eliminate variables

minimize
$$100y_1 + 200y_2 + 150y_3$$
 subject to $y_1 + y_3 \ge 1$ $2y_2 + y_3 \ge 2$ $y_1, y_2, y_3 \ge 0$ 41

Production problem

The dual

minimize
$$100y_1 + 200y_2 + 150y_3$$
 subject to $y_1 + y_3 \ge 1$ $2y_2 + y_3 \ge 2$ $y_1, y_2, y_3 \ge 0$

Interpretation

- · Sell all your resources at a fair (minimum) price
- Selling must be more convenient than producing:
 - Product 1 (price 1, needs $1 \times$ resource 1 and 3): $y_1 + y_3 \ge 1$
 - Product 2 (price 2, needs $2 \times$ resource 2 and $1 \times$ resource 3): $2y_2 + y_3 \ge 2$

Linear optimization duality

Today, we learned to:

- Dualize linear optimization problems
- Prove weak and strong duality conditions
- Interpret simple dual optimization problems

References

- Bertsimas and Tsitsiklis: Introduction to Linear Optimization
 - Chapter 4: Duality theory
- R. Vanderbei: Linear Programming Foundations and Extensions
 - Chapter 5: Duality theory

Next lecture

More on duality:

- Game theory
- Complementary slackness
- Farkas lemma