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Ed Forum

e Midterm

Do we need to know how to compute least square solutions? yes! (small
linear systems by hand, you don’t need to invert matrices)

 Will we be expected to recreate the proofs on the lecture slides for
midterms?

* |n searching for basic solutions how many inequalities must be tight? Is it m
or n-m?






Constructing a basic solution
Two equalities (m =2,n = 3)
minimize ¢!z
subjectto z; +x3 =1
(1/2)x1 + a2 + (1/2)x3 =1
T1,T2,T3 > (

L2
n —m = 1 Inequalities have to be tight: z; =0
Set 1 = 0 and solve
372 p— — p—
1/2 1 1/2 1 1 1/2| |x3 1
- = _IS_ I — - - — — -

($2,$3) — (05, 1)



Constructing basic solution

1. Choose any m independent columns of A: Ag(1y,..., Apm)
2. Letx;, =0foralli# B(1),...,B(m)
3. Solve Ax = b for the remaining (1), .., TB(m)

Basis Basis columns Basic variables

matrix r - i i

| | | B()
AB — AB(l) AB(Q) Co AB(m) y LB = — Solve ABCCB = b

- | | ZB(m).

If t5 > 0, then z Is a basic feasible solution



Standard form polyhedra

Standard form LP Standard form polyhedron
minimize c'x P={x| Az =0, z > 0}
subjectto Az =10

r > 0 3

Assumption
A € R™*"™ has full row rank m <n

Interpretation
P is an (n — m)-dimensional surface



Standard form polyhedra

Visualization
P={x|Az=b, x >0}, n—m=2

Three dimensions Higher dimensions
L3
Y N
\

/ N

N -
=\ °
03




Equivalence

Theorem

Given a nonempty polyhedron P = {x | Ax < b}

Let z € P

r 1S a vertex <« x Is an extreme point «<— =z is a basic feasible solution



Optimality of extreme points

minimize clx
subjectto Ax <9

i P has at least one extreme point
» There exists an optimal solution =*

Then, there exists an optimal solution which is an extreme point of P

We only need to search between extreme points



Conceptual algorithm

e Start at corner

* Visit neighboring corner that
Improves the objective
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Today’s agenda

The simplex method

- [terate between neighboring basic solutions
- Optimality conditions
- Simplex iterations
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The simplex method

George Dantzig
Top 10 algorithms of the 20th century i

’ - .
i’ : s
’ - 4 P e
. '

1946: Metropolis algorithm
1947: Simplex method
1950: Krylov subspace method

1951: The decompositional approach to matrix computations
1957: The Fortran optimizing compiler

1959: QR algorithm

1962: Quicksort

1965: Fast Fourier transform

1977 Integer relation detection

1987: Fast multipole method

[SIAM News (2000)] 12



Neighboring basic solutions



Neighboring solutions

Two basic solutions are neighboring if their

basic indices differ by exactly one variable

Example

xl_ b
9 To —d
0 rg| = | —1
4 | |24 14
T5
B=1{1,3,4}

0.1
3.0

—1.7
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Feasible directions

Conditions Given a basis matrix Ap =

Ap)

P={z|Ax=b, z>0) we have basic feasible solution z:

°* Ip solves ABZE‘B =5

» x; =0, Vi # B(1),...,B(m)

Let x € P, a vector d Is a feasible direction at «
if 460 > 0 for which z + 6d € P

Feasible direction d
* Alx +0d) =b=—= Ad =0
e v+ 60d >0

AB(m)_

15



P={x|Ax=0b, x >0}

Feasible directions Feasible direction d

Computation + Alx +0d) =b=—= Ad =0
e x+60d >0

Nonbasic indices (z; = 0)
* d; =1 — Add j to basis B

Basic indices (rp > 0)

Ad=0=) Aid;=Apdg+A;=0=>dp solves Apdp=—A,

1—=1
Non-negativity (hon-degenerate assumption)

» Non-basic variables: x; = 0. Nonnegative direction d; > 0
- Basic variables: x5 > 0. Therefore 460 > 0 such that x5 + 6dg > 0

16



Feasible directions

Example

P=Ax|xz1+204+23=2, x>0}

r = (2,0,0) B = {1}

Basicindex j =3 —— d=(—-1,0,1)

d; =1
ABdB — —Aj —> dB = —1

17



How does the cost change?

Cost improvement
cl(x+0d) —c'z = 0c'd

N

New cost Old cost

We call ¢; the reduced cost of
(introducing) variable z; in the basis

;i =c d= E cid; =c; +cgdp =c; —cgAgz A,
j=1

18



Reduced costs
Interpretation

Change in objective/marginal cost of adding z; to the basis

— 1

/ \

Cost per-unit increase Cost to change other variables

- compensating for x
of variable ; to enF:‘orce Axg =3 :

- ¢; > 0: adding z; will increase the objective (bad)
- ¢; < 0: adding z,; will decrease the objective (good)

Reduced costs for basic variables is O

CB(@) — CB(@) — CBA 1AB(@) — CB(@) — CB(A 1AB)

= CB(i) — CRei = CB(i) — ¢B(i) = U 19



Vector of reduced costs

Reduced costs Full vector in one shot?

_ T 1—1 _ = _
Cj—Cj—CBAB Aj C—(Cl,...,Cn)

|Isolate basis B-related components p

(they are the same across ;) Obtain p by solving linear system

o A—INT T

Note: (M—1)1 = (M*)~!
for any square invertible M

Computing reduced cost vector

1. Solve Agp = CRB
2. c=c—A'p 20



Optimality conditions




Optimality conditions

Theorem

Let £ be a basic feasible solution associated with basis B
Let ¢ be the vector of reduced costs.

If ¢ > 0, then z Is optimal

Remark
This is a stopping criterion for the simplex algorithm.

If the neighboring solutions do not improve the cost, we are done
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Optimality conditions

Proof

For a basic feasible solution x with basis B the reduced costs are ¢ > 0.

Consider any feasible solution y and defined =y — «

Since z and y are feasible, then Ax = Ay = b and Ad = 0
Ad=Apdp + Y Aid;=0 = dp=-)Y Ag'Aid,
i€N i€N

The change in objective is

CTd — ngB -+ Z Cidi — Z(CZ — C%AglAz)dz — Z Eidi

ieN ieN ieN
Sincey>0andx; =0, 1€ N,thend;, =y, —x; > 0,1 N

crd=c'(y—2)>0 = cly>c

N are the
nonbasic indices
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Simplex iterations



Stepsize

What happens if some ¢; < 07

We can decrease the cost by bringing z; into the basis

How far can we go?

0" =max{f |0 >0and x + 0d > 0}

Unbounded

If d > 0, then 6 = oco. The LP I1s unbounded.
Bounded

If d; < 0 for some 7, then 0" = min

{2|d; <0}

(

d 1s the 7-th basic direction

— 1111l
di {t€B|d; <0} d@

(SinCe d; >0, 2 % B)
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Moving to a new basis

Next feasible solution
x + 07d

L B (#)
dp(0)

Let B(¢) € {B(1),...,B(m)} be the index such that §* = . Then,

$B(g) —|— H*dB(g) — O
New solution

* T () becomes 0 (exits)
- x,; becomes 6* (enters)

New basis

AB — _AB(l) .« o AB(g_D A] AB(€—|—1) .« .. AB(m)_



An iteration of the simplex method

First part
We start with
 a basic feasible solution x _
» abasis matrix Agp = |Ag@ny ..., Apm)

1. Compute the reduced costs ¢

» Solve Agp = CRB
cc=c—A'p

2. If ¢ > 0, x optimal. break

3. Choose j such that ¢; < 0



An iteration of the simplex method

Second part

4. Compute search direction d with d; =1 and Agpdp = —A;

5. If dg > 0, the problem is unbounded and the optimal value is —oc. break

6. Compute step length 6* =  min ( %)

{1€B|d; <0} dz
/. Define y such that y = x + 6*d

8. Get new basis B (i exits and j enters)
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Example

P={x|x14+x2+2x3=2, x>0}

r = (2,0,0) B ={1}

Basicindex j =3 —— d=(-1,0,1)
d; =1
ABdB — —Aj — dp = —1
L1

Stepsize 0* = = 2
dq

New solution y =z +6"d = (0,0,2) B = {3}
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Finite convergence

Assume that

» P={x| Az =b,x > 0} not empty
» Every basic feasible solution non degenerate

Then

» The simplex method terminates after a finite number of iterations
» At termination we either have one of the following

- an optimal basis B
- adirection d such that Ad =0, d > 0, ¢’ d < 0 and the optimal cost is —cc

30



Finite convergence
Proof sketch

At each Iteration the algorithm improves

» by a positive amount 6*
- along the direction d such that ¢! d < 0

Therefore
» The cost strictly decreases

* No basic feasible solution can be visited twice

Since there is a finite number of basic feasible solutions
The algorithm must eventually terminate

31



The simplex method

Today, we learned to:

» |terate between basic feasible solutions

e Verify optimality and unboundedness conditions
* Apply a single iteration of the simplex method

* Prove finite convergence of the simplex method in the non-degenerate case
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Next lecture

* Finding initial basic feasible solution
 Degeneracy

o Complexity
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