ORF307 – Optimization ### 7. Linear optimization ### Ed Forum - I was wondering if there would be any chance to delve further into portfolio theory for this class. - How does the inclusion of a risk-free asset impact the overall optimization strategy and the resulting asset allocation? # Recap ## Least squares with equality constraints The (linearly) constrained least squares problem is #### Problem data - $m \times n$ matrix A, m-vector b - $p \times n$ matrix C, p-vector d #### **Definitions** x is feasible if Cx = d x^{\star} is a solution if - $Cx^* = d$ - $||Ax^* b||^2 \le ||Ax b||^2$ for any x satisfying Cx = d #### Interpretations - Combine solving linear equations with least squares. - Like a bi-objective least squares with ∞ weight on second objective, $\|Cx-d\|^2$. How shall we choose the portfolio weight vector w? How shall we choose the portfolio weight vector w? #### Goals High (mean) return $\mathbf{avg}(r)$ Low risk $\mathbf{std}(r)$ How shall we choose the portfolio weight vector w? #### Goals High (mean) return $\mathbf{avg}(r)$ Low risk std(r) #### **Data** - We know realized asset returns but not future ones - Optimization. We choose w that would have worked well in the past - True goal. Hope it will work well in the future (just like data fitting) #### As constrained least squares minimize $$\|Rw - \rho \mathbf{1}\|^2$$ subject to $$\begin{bmatrix} \mathbf{1}^T \\ \mu^T \end{bmatrix} w = \begin{bmatrix} 1 \\ \rho \end{bmatrix}$$ #### As constrained least squares minimize $$\|Rw - \rho \mathbf{1}\|^2$$ subject to $$\begin{bmatrix} \mathbf{1}^T \\ \mu^T \end{bmatrix} w = \begin{bmatrix} 1 \\ \rho \end{bmatrix}$$ μ is the n-vector of average returns per asset $$\mathbf{avg}(r) = (1/T)\mathbf{1}^T(Rw)$$ $$= (1/T)(R^T\mathbf{1})^Tw = \mu^Tw$$ #### As constrained least squares minimize $$\|Rw - \rho \mathbf{1}\|^2$$ subject to $$\begin{bmatrix} \mathbf{1}^T \\ \mu^T \end{bmatrix} w = \begin{bmatrix} 1 \\ \rho \end{bmatrix}$$ μ is the n-vector of average returns per asset $$\mathbf{avg}(r) = (1/T)\mathbf{1}^T(Rw)$$ $$= (1/T)(R^T\mathbf{1})^Tw = \mu^Tw$$ #### Solution via KKT linear system $$\begin{bmatrix} 2R^TR & \mathbf{1} & \mu \\ \mathbf{1}^T & 0 & 0 \\ \mu^T & 0 & 0 \end{bmatrix} \begin{bmatrix} w \\ z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 2\rho T\mu \\ 1 \\ \rho \end{bmatrix}$$ ## Optimal portfolios #### Rewrite right-hand side $$\begin{bmatrix} 2\rho T\mu \\ 1 \\ \rho \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \rho \begin{bmatrix} 2T\mu \\ 0 \\ 0 \end{bmatrix}$$ ## Optimal portfolios $$M\tilde{w} = q_1 + pq_2 - 3 \tilde{w} = Mq_1 + pKq_2$$ #### Rewrite right-hand side $$\begin{bmatrix} 2\rho T\mu \\ 1 \\ \rho \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \rho \begin{bmatrix} 2T\mu \\ 0 \\ 0 \end{bmatrix}$$ #### Two fund theorem Optimal portfolio w is an affine function of ρ $$\begin{bmatrix} w \\ z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 2R^T R & \mathbf{1} & \mu \\ \mathbf{1}^T & 0 & 0 \\ \mu^T & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \rho \begin{bmatrix} 2R^T R & \mathbf{1} & \mu \\ \mathbf{1}^T & 0 & 0 \\ \mu^T & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 2T\mu \\ 0 \\ 1 \end{bmatrix}$$ ## Optimal portfolios #### Rewrite right-hand side $$\begin{bmatrix} 2\rho T\mu \\ 1 \\ \rho \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \rho \begin{bmatrix} 2T\mu \\ 0 \\ 0 \end{bmatrix}$$ #### Two fund theorem Optimal portfolio w is an affine function of ρ $$\begin{bmatrix} w \\ z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 2R^TR & \mathbf{1} & \mu \\ \mathbf{1}^T & 0 & 0 \\ \mu^T & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \rho \begin{bmatrix} 2R^TR & \mathbf{1} & \mu \\ \mathbf{1}^T & 0 & 0 \\ \mu^T & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 2T\mu \\ 0 \\ 1 \end{bmatrix}$$ We can rewrite the first n-components as the combination of two portfolios (funds) ### Example ### 20 assets over 2000 days (past) - Optimal portfolios on a straight line - Line starts at risk-free portfolio ($\rho = 0$) - 1/n much better than single portfolios #### Future returns will look like past ones - You are warned this is false, every time you invest - It is often reasonable - During crisis, market shifts, other big events not true #### Future returns will look like past ones - You are warned this is false, every time you invest - It is often reasonable - During crisis, market shifts, other big events not true ### Future returns will look like past ones - You are warned this is false, every time you invest - It is often reasonable - During crisis, market shifts, other big events not true If assumption holds (even approximately), a good w on past returns leads to good future (unknown) returns ### Future returns will look like past ones - You are warned this is false, every time you invest - It is often reasonable - During crisis, market shifts, other big events not true If assumption holds (even approximately), a good w on past returns leads to good future (unknown) returns #### **Example** - Pick w based on last 2 years of returns - Use w during next 6 months ## Total portfolio value | | Return | | Risk | | | |-------------------|--------|------|-------|------|----------| | | Train | Test | Train | Test | Leverage | | Risk-free (1%) | 0.01 | 0.01 | 0.00 | 0.00 | 1.00 | | 10% | 0.10 | 0.08 | 0.09 | 0.07 | 1.96 | | 20% | 0.20 | 0.15 | 0.18 | 0.15 | 3.03 | | 40% | 0.40 | 0.30 | 0.37 | 0.31 | 5.48 | | 1/n | 0.10 | 0.21 | 0.23 | 0.13 | 1.00 | ### Build your quantitative hedge fund #### Rolling portfolio optimization For each period t, find weight w_t using L past returns $$r_{t-1}, \ldots, r_{t-L}$$ ### Build your quantitative hedge fund #### Rolling portfolio optimization For each period t, find weight w_t using L past returns r_{t-1}, \dots, r_{t-L} #### **Variations** - Update w every K periods (monthly, quarterly, ...) - Add secondary objective $\lambda \|w_t w_{t-1}\|^2$ to discourage turnover, reduce transaction cost - Add logic to detect when the future is likely to not look like the past - Add "signals" that predict future return of assets (Two er sentiment analysis) ## Today's lecture ### Linear optimization - Some simple examples - Linear optimization - Special cases - Standard form - Software and solution methods # Some simple examples ## Data-fitting example Fit a linear function $f(z) = x_1 + x_2 z$ to m data points (z_i, f_i) : ## Data-fitting example Fit a linear function $f(z) = x_1 + x_2 z$ to m data points (z_i, f_i) : #### Least squares way: minimize $$\sum_{i=1}^{m} (Ax - b)_i^2 = ||Ax - b||_2^2$$ **Good news**: solution is in closed form $x^* = (A^T A)^{-1} A^T b$ Bad news: solution is very sensitive to outliers! ## Data-fitting example Fit a linear function $f(z) = x_1 + x_2 z$ to m data points (z_i, f_i) : #### A different way: minimize $\sum_{i=1}^{i} |Ax - b|_i = ||Ax - b||_1$ Good news: solution is much more robust to outliers. **Bad news**: there is no closed form solution. ### Cheapest cat food problem - Choose quantities x_1, \ldots, x_n of n ingredients each with unit cost c_j . - Each ingredient j has nutritional content a_{ij} for nutrient i. - Require a minimum level b_i for each nutrient i. ### Cheapest cat food problem - Choose quantities x_1, \ldots, x_n of n ingredients each with unit cost c_i . - Each ingredient j has nutritional content a_{ij} for nutrient i. - Require a minimum level b_i for each nutrient i. minimize $$\sum_{j=1}^n c_j x_j$$ subject to $\sum_{j=1}^n a_{ij} x_j \geq b_i, \quad i=1\dots m$ $x_j \geq 0, \quad j=1\dots n$ ### Cheapest cat food problem - Choose quantities x_1, \ldots, x_n of n ingredients each with unit cost c_j . - Each ingredient j has nutritional content a_{ij} for nutrient i. - Require a minimum level b_i for each nutrient i. minimize $\sum_{j=1}^n c_j x_j$ subject to $\sum_{j=1}^n a_{ij} x_j \geq b_i, \quad i=1\dots m$ $x_j \geq 0, \quad j=1\dots n$ [Photo of Phoebe, my cat] ## Would you give her the optimal food? # Linear optimization ### Linear optimization #### Linear Programming (LP) minimize $$\sum_{i=1}^n c_i x_i$$ subject to $$\sum_{j=1}^n a_{ij} x_j \leq b_i, \quad i=1,\ldots,m$$ $$\sum_{j=1}^n d_{ij} x_j = f_i, \quad i=1,\ldots,p$$ #### Ingredients - n decision variables (or optimization variables): x_1, \ldots, x_n - Constant parameters (or problem data) : c_i , a_{ij} , b_i , d_{ij} , f_i - A linear objective function - A collection of m inequality constraints and p equality constraints ### Where does linear optimization appear? Supply chain management Assignment problems Scheduling and routing problems Finance Optimal control problems Network design and network operations Many other domains... ### A brief history of linear optimization #### 1940s: - Foundations and applications in economics and logistics (Kantorovich, Koopmans) - 1947: Development of the simplex method by Dantzig #### 1950s - 70s: - Applications expand to engineering, OR, computer science... - 1975: Nobel prize in economics for Kantorovich and Koopmans #### 1980s: - Development of polynomial time algorithms for LPs - 1984: Development of the interior point method by Karmarkar #### -Today: Continued algorithm development. Expansion to very large problems. ## Why linear optimization? #### "Easy" to solve - It is solvable in polynomial time, tractable in practice - State-of-the-art software can solve LPs with tens of thousands of variables. We can solve LPs with millions of variables with specific structure. #### **Extremely versatile** Can model many real-world problems, either exactly or approximately. #### **Fundamental** - The theory of linear optimization lays the foundation for most optimization theories - Underpins solutions for more complicated problems, e.g. integer problems. ## A simple example **Goal** find point as far left as possible, in the unit box X, and restricted to the line L ## A simple example Goal find point as far left as possible, in the unit box X, and restricted to the line L ``` import cvxpy as cp x = cp.Variable(2) objective = x[0] constraints = [-1 \le x[0], x[0] \le 1, \#inequalities -1 <= x[1], x[1] <= 1, #inequalities x[0] + x[1] == -1] #equalities prob = cp.Problem(cp.Minimize(objective), constraints) prob.solve() ``` ### Linear optimization #### Using vectors $\begin{array}{lll} \text{minimize} & \sum_{i=1}^n c_i x_i & \text{minimize} & c^T x \\ \text{subject to} & \sum_{j=1}^n a_{ij} x_j \leq b_i, & i=1,\ldots,m & \longrightarrow & \text{subject to} & a_i^T x \leq b_i, & i=1,\ldots,m \\ & \sum_{j=1}^n d_{ij} x_j = f_i, & i=1,\ldots,p & & d_i^T x = f_i, & i=1,\ldots,p \end{array}$ $$c,\ a_i,\ d_i\ ext{are}\ n ext{-vectors}$$ $c=(c_1,\ldots,c_n)$ $a_i=(a_{i1},\ldots,a_{in})$ $d_i=(d_{i1},\ldots,d_{in})$ ### Linear optimization #### **Using matrices** $$\begin{array}{lll} \text{minimize} & \sum_{i=1}^n c_i x_i & \text{minimize} & c^T x \\ \text{subject to} & \sum_{j=1}^n a_{ij} x_j \leq b_i, & i=1,\ldots,m & \longrightarrow & \text{subject to} & Ax \leq b \\ & \sum_{j=1}^n d_{ij} x_j = f_i, & i=1,\ldots,p & Dx = f \end{array}$$ A is $m \times n$ -matrix with elements a_{ij} and rows a_i^T D is $p \times n$ -matrix with elements d_{ij} and rows d_i^T All (in)equalities are elementwise # Optimization terminology $$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \\ & Dx = f \end{array}$$ x is **feasible** if it satisfies the constraints $Ax \leq b$ and Dx = f. The **feasible set** is the set of all feasible points x^{\star} is optimal if it is feasible and $c^Tx^{\star} \leq c^Tx$ for all feasible x The optimal value is $p^{\star} = c^T x^{\star}$ # Special cases # What can go wrong? #### Problem might be "too hard" minimize $$x_1$$ subject to $-1 \le x_1 \le 1$ $-1 \le x_2 \le 1$ $x_1 + x_2 = -1$ $x_1 \le -2$ #### Remarks - The feasible set is empty. - The problem is therefore infeasible. - Define the optimal value as $p^* = +\infty$. ### What can go wrong? #### Problem might be "too easy" minimize $$x_1$$ subject to $\frac{-1}{-1} \le x_1 \le 1$ $\frac{-1}{-1} \le x_2 \le 1$ $\frac{x_1 + x_2 = -1}{-1}$ #### Remarks - The value of c^Tx is **unbounded below** on the feasible set. - Define the optimal value as $p^* = -\infty$. What can go "a little bit" wrong? More than one optimizer minimize $$x_1+x_2= \infty$$ subject to $-1 \le x_1 \le 1$ $-1 \le x_2 \le 1$ $x_1+x_2=-1$ - The optimal value is $p^* = -1$ - There is more than one x^* that achieves $p^* = c^T x^*$ - The optimizer is non-unique x_2 # Feasibility problems The constraints satisfiability problem ``` \begin{array}{ll} \text{find} & x \\ \text{subject to} & Ax \leq b \\ & Dx = f \end{array} ``` ### Feasibility problems The constraints satisfiability problem # Feasibility problems The constraints satisfiability problem find x subject to $Ax \le b$ is a special case of subject to $Ax \le b$ subject to $Ax \le b$ Dx = f #### Remarks - $p^* = 0$ if constraints are feasible (consistent). Every feasible x is optimal - $p^* = \infty$ otherwise #### **Definition** $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$ - Minimization - Equality constraints - Nonnegative variables - Matrix notation for theory - Standard form for algorithms Transformation tricks (min(5x) max cx #### Change objective If "maximize", use -c instead of c and change to "minimize". #### **Transformation tricks** #### Change objective If "maximize", use -c instead of c and change to "minimize". #### Eliminate inequality constraints If $Ax \le b$, define s and write Ax + s = b, $s \ge 0$. If $Ax \ge b$, define s and write Ax - s = b, $s \ge 0$. s are the slack variables #### **Transformation tricks** #### **Change objective** If "maximize", use -c instead of c and change to "minimize". #### Eliminate inequality constraints If $Ax \leq b$, define s and write Ax + s = b, $s \geq 0$. If $Ax \ge b$, define s and write Ax - s = b, $s \ge 0$. s are the slack variables #### Change variable signs If $x_i \leq 0$, define $y_i = -x_i$. #### **Transformation tricks** #### Change objective If "maximize", use -c instead of c and change to "minimize". #### Eliminate inequality constraints If $Ax \le b$, define s and write Ax + s = b, $s \ge 0$. If $Ax \ge b$, define s and write Ax - s = b, $s \ge 0$. s are the slack variables #### Change variable signs If $x_i \leq 0$, define $y_i = -x_i$. #### Eliminate "free" variables If x_i unconstrained, define $x_i = x_i^+ - x_i^-$, with $x_i^+ \ge 0$ and $x_i^- \ge 0$. #### Transformation example minimize $$2x_1 + 4x_2$$ subject to $x_1 + x_2 \ge 3$ $3x_1 + 2x_2 = 14$ x_1 $$A = \begin{bmatrix} 1 & 1 & -1 & -1 \\ 3 & 2 & -20 \end{bmatrix} = \begin{bmatrix} 3 \\ 14 \end{bmatrix}$$ minimize $$2x_1 + 4x_2^+ - 4x_2^-$$ subject to $x_1 + x_2^+ - x_2^- - x_3 = 3$ $3x_1 + 2x_2^+ - 2x_2^- = 3$ $$= 14$$ $$x_3 \ge 0.$$ min Cx St. Axsh # Software ### Solvers for linear programs #### Algorithms and theory are very mature: • Simplex methods, interior-point methods, first order methods etc #### Software is widely available: - Can solve problems up to several million variables - Widely used in industry and academic research ### Solvers for linear programs #### Algorithms and theory are very mature: • Simplex methods, interior-point methods, first order methods etc #### Software is widely available: - Can solve problems up to several million variables - Widely used in industry and academic research #### **Examples** - Commercial solvers: Mosek, CPLEX, Gurobi, Matlab (linprog) - Free solvers : GLPK, CLP, SCS, OSQP ### Modelling tools for linear programs **Modelling tools** simplify the formulation of LPs (and other problems) - Accept optimization problem in common notation (max, $||\cdot||_1,\ldots$) - Recognize problems that can be converted to LPs - Automatically convert to input format required by a specific LP solver ### Modelling tools for linear programs Modelling tools simplify the formulation of LPs (and other problems) - Accept optimization problem in common notation ($\max, \|\cdot\|_1, \ldots$) - Recognize problems that can be converted to LPs - Automatically convert to input format required by a specific LP solver #### **Examples** - AMPL, GAMS - CVX, YALMIP (Matlab) - CVXPY, Pyomo (Python) - JuMP.jl, Convex.jl (Julia) # Simple example revisited **Goal** find point as far left as possible, in the unit box X, and restricted to the line L ``` import cvxpy as cp x = cp.Variable(2) objective = x[0] constraints = [cp.norm(x, 'inf') <= 1, #inequalities</pre> cp.sum(x) == -1] #equalities prob = cp.Problem(cp.Minimize(objective), constraints) prob.solve() ``` ### References - Bertsimas, Tsitsiklis: Introduction to Linear Optimization - Chapter 1: Introduction - R. Vanderbei: Linear Programming Foundations and Extensions - Chapter 1: intro to linear programming ### Next time #### Piecewise linear optimization - Optimization problems with norms and max functions - Some applications