ORF307 – Optimization

7. Linear optimization

Ed Forum

- I was wondering if there would be any chance to delve further into portfolio theory for this class.
- How does the inclusion of a risk-free asset impact the overall optimization strategy and the resulting asset allocation?

Recap

Least squares with equality constraints

The (linearly) constrained least squares problem is

Problem data

- $m \times n$ matrix A, m-vector b
- $p \times n$ matrix C, p-vector d

Definitions

x is feasible if Cx = d x^{\star} is a solution if

- $Cx^* = d$
- $||Ax^* b||^2 \le ||Ax b||^2$ for any x satisfying Cx = d

Interpretations

- Combine solving linear equations with least squares.
- Like a bi-objective least squares with ∞ weight on second objective, $\|Cx-d\|^2$.

How shall we choose the portfolio weight vector w?

How shall we choose the portfolio weight vector w?

Goals

High (mean) return $\mathbf{avg}(r)$

Low risk $\mathbf{std}(r)$

How shall we choose the portfolio weight vector w?

Goals

High (mean) return $\mathbf{avg}(r)$

Low risk std(r)

Data

- We know realized asset returns but not future ones
- Optimization. We choose w that would have worked well in the past
- True goal. Hope it will work well in the future (just like data fitting)

As constrained least squares

minimize
$$\|Rw - \rho \mathbf{1}\|^2$$
 subject to
$$\begin{bmatrix} \mathbf{1}^T \\ \mu^T \end{bmatrix} w = \begin{bmatrix} 1 \\ \rho \end{bmatrix}$$

As constrained least squares

minimize
$$\|Rw - \rho \mathbf{1}\|^2$$
 subject to
$$\begin{bmatrix} \mathbf{1}^T \\ \mu^T \end{bmatrix} w = \begin{bmatrix} 1 \\ \rho \end{bmatrix}$$

 μ is the n-vector of

average returns per asset
$$\mathbf{avg}(r) = (1/T)\mathbf{1}^T(Rw)$$

$$= (1/T)(R^T\mathbf{1})^Tw = \mu^Tw$$

As constrained least squares

minimize
$$\|Rw - \rho \mathbf{1}\|^2$$
 subject to
$$\begin{bmatrix} \mathbf{1}^T \\ \mu^T \end{bmatrix} w = \begin{bmatrix} 1 \\ \rho \end{bmatrix}$$

 μ is the n-vector of average returns per asset

$$\mathbf{avg}(r) = (1/T)\mathbf{1}^T(Rw)$$
$$= (1/T)(R^T\mathbf{1})^Tw = \mu^Tw$$

Solution via KKT linear system

$$\begin{bmatrix} 2R^TR & \mathbf{1} & \mu \\ \mathbf{1}^T & 0 & 0 \\ \mu^T & 0 & 0 \end{bmatrix} \begin{bmatrix} w \\ z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 2\rho T\mu \\ 1 \\ \rho \end{bmatrix}$$

Optimal portfolios

Rewrite right-hand side

$$\begin{bmatrix} 2\rho T\mu \\ 1 \\ \rho \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \rho \begin{bmatrix} 2T\mu \\ 0 \\ 0 \end{bmatrix}$$

Optimal portfolios

$$M\tilde{w} = q_1 + pq_2 - 3 \tilde{w} = Mq_1 + pKq_2$$

Rewrite right-hand side

$$\begin{bmatrix} 2\rho T\mu \\ 1 \\ \rho \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \rho \begin{bmatrix} 2T\mu \\ 0 \\ 0 \end{bmatrix}$$

Two fund theorem

Optimal portfolio w is an affine function of ρ

$$\begin{bmatrix} w \\ z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 2R^T R & \mathbf{1} & \mu \\ \mathbf{1}^T & 0 & 0 \\ \mu^T & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \rho \begin{bmatrix} 2R^T R & \mathbf{1} & \mu \\ \mathbf{1}^T & 0 & 0 \\ \mu^T & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 2T\mu \\ 0 \\ 1 \end{bmatrix}$$

Optimal portfolios

Rewrite right-hand side

$$\begin{bmatrix} 2\rho T\mu \\ 1 \\ \rho \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \rho \begin{bmatrix} 2T\mu \\ 0 \\ 0 \end{bmatrix}$$

Two fund theorem

Optimal portfolio w is an affine function of ρ

$$\begin{bmatrix} w \\ z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 2R^TR & \mathbf{1} & \mu \\ \mathbf{1}^T & 0 & 0 \\ \mu^T & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \rho \begin{bmatrix} 2R^TR & \mathbf{1} & \mu \\ \mathbf{1}^T & 0 & 0 \\ \mu^T & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 2T\mu \\ 0 \\ 1 \end{bmatrix}$$

We can rewrite the first n-components as the combination of two portfolios (funds)

Example

20 assets over 2000 days (past)

- Optimal portfolios on a straight line
- Line starts at risk-free portfolio ($\rho = 0$)
- 1/n much better than single portfolios

Future returns will look like past ones

- You are warned this is false, every time you invest
- It is often reasonable
- During crisis, market shifts, other big events not true

Future returns will look like past ones

- You are warned this is false, every time you invest
- It is often reasonable
- During crisis, market shifts, other big events not true

Future returns will look like past ones

- You are warned this is false, every time you invest
- It is often reasonable
- During crisis, market shifts, other big events not true

If assumption holds (even approximately), a good w on past returns leads to good future (unknown) returns

Future returns will look like past ones

- You are warned this is false, every time you invest
- It is often reasonable
- During crisis, market shifts, other big events not true

If assumption holds (even approximately), a good w on past returns leads to good future (unknown) returns

Example

- Pick w based on last 2 years of returns
- Use w during next 6 months

Total portfolio value

	Return		Risk		
	Train	Test	Train	Test	Leverage
Risk-free (1%)	0.01	0.01	0.00	0.00	1.00
10%	0.10	0.08	0.09	0.07	1.96
20%	0.20	0.15	0.18	0.15	3.03
40%	0.40	0.30	0.37	0.31	5.48
1/n	0.10	0.21	0.23	0.13	1.00

Build your quantitative hedge fund

Rolling portfolio optimization

For each period t, find weight w_t using L past returns

$$r_{t-1}, \ldots, r_{t-L}$$

Build your quantitative hedge fund

Rolling portfolio optimization

For each period t, find weight w_t using L past returns r_{t-1}, \dots, r_{t-L}

Variations

- Update w every K periods (monthly, quarterly, ...)
- Add secondary objective $\lambda \|w_t w_{t-1}\|^2$ to discourage turnover, reduce transaction cost
- Add logic to detect when the future is likely to not look like the past
- Add "signals" that predict future return of assets (Two er sentiment analysis)

Today's lecture

Linear optimization

- Some simple examples
- Linear optimization
- Special cases
- Standard form
- Software and solution methods

Some simple examples

Data-fitting example

Fit a linear function $f(z) = x_1 + x_2 z$ to m data points (z_i, f_i) :

Data-fitting example

Fit a linear function $f(z) = x_1 + x_2 z$ to m data points (z_i, f_i) :

Least squares way:

minimize
$$\sum_{i=1}^{m} (Ax - b)_i^2 = ||Ax - b||_2^2$$

Good news: solution is in closed form $x^* = (A^T A)^{-1} A^T b$ Bad news: solution is very sensitive to outliers!

Data-fitting example

Fit a linear function $f(z) = x_1 + x_2 z$ to m data points (z_i, f_i) :

A different way:

minimize $\sum_{i=1}^{i} |Ax - b|_i = ||Ax - b||_1$

Good news: solution is much more robust to outliers.

Bad news: there is no closed form solution.

Cheapest cat food problem

- Choose quantities x_1, \ldots, x_n of n ingredients each with unit cost c_j .
- Each ingredient j has nutritional content a_{ij} for nutrient i.
- Require a minimum level b_i for each nutrient i.

Cheapest cat food problem

- Choose quantities x_1, \ldots, x_n of n ingredients each with unit cost c_i .
- Each ingredient j has nutritional content a_{ij} for nutrient i.
- Require a minimum level b_i for each nutrient i.

minimize
$$\sum_{j=1}^n c_j x_j$$
 subject to $\sum_{j=1}^n a_{ij} x_j \geq b_i, \quad i=1\dots m$ $x_j \geq 0, \quad j=1\dots n$

Cheapest cat food problem

- Choose quantities x_1, \ldots, x_n of n ingredients each with unit cost c_j .
- Each ingredient j has nutritional content a_{ij} for nutrient i.
- Require a minimum level b_i for each nutrient i.

minimize $\sum_{j=1}^n c_j x_j$ subject to $\sum_{j=1}^n a_{ij} x_j \geq b_i, \quad i=1\dots m$ $x_j \geq 0, \quad j=1\dots n$

[Photo of Phoebe, my cat]

Would you give her the optimal food?

Linear optimization

Linear optimization

Linear Programming (LP)

minimize
$$\sum_{i=1}^n c_i x_i$$
 subject to
$$\sum_{j=1}^n a_{ij} x_j \leq b_i, \quad i=1,\ldots,m$$

$$\sum_{j=1}^n d_{ij} x_j = f_i, \quad i=1,\ldots,p$$

Ingredients

- n decision variables (or optimization variables): x_1, \ldots, x_n
- Constant parameters (or problem data) : c_i , a_{ij} , b_i , d_{ij} , f_i
- A linear objective function
- A collection of m inequality constraints and p equality constraints

Where does linear optimization appear?

Supply chain management

Assignment problems

Scheduling and routing problems

Finance

Optimal control problems

Network design and network operations

Many other domains...

A brief history of linear optimization

1940s:

- Foundations and applications in economics and logistics (Kantorovich, Koopmans)
- 1947: Development of the simplex method by Dantzig

1950s - 70s:

- Applications expand to engineering, OR, computer science...
- 1975: Nobel prize in economics for Kantorovich and Koopmans

1980s:

- Development of polynomial time algorithms for LPs
- 1984: Development of the interior point method by Karmarkar

-Today:

Continued algorithm development. Expansion to very large problems.

Why linear optimization?

"Easy" to solve

- It is solvable in polynomial time, tractable in practice
- State-of-the-art software can solve LPs with tens of thousands of variables.
 We can solve LPs with millions of variables with specific structure.

Extremely versatile

Can model many real-world problems, either exactly or approximately.

Fundamental

- The theory of linear optimization lays the foundation for most optimization theories
- Underpins solutions for more complicated problems, e.g. integer problems.

A simple example

Goal find point as far left as possible, in the unit box X, and restricted to the line L

A simple example

Goal find point as far left as possible, in the unit box X, and restricted to the line L

```
import cvxpy as cp
x = cp.Variable(2)
objective = x[0]
constraints = [-1 \le x[0], x[0] \le 1, \#inequalities
              -1 <= x[1], x[1] <= 1, #inequalities
              x[0] + x[1] == -1] #equalities
prob = cp.Problem(cp.Minimize(objective), constraints)
prob.solve()
```


Linear optimization

Using vectors

 $\begin{array}{lll} \text{minimize} & \sum_{i=1}^n c_i x_i & \text{minimize} & c^T x \\ \text{subject to} & \sum_{j=1}^n a_{ij} x_j \leq b_i, & i=1,\ldots,m & \longrightarrow & \text{subject to} & a_i^T x \leq b_i, & i=1,\ldots,m \\ & \sum_{j=1}^n d_{ij} x_j = f_i, & i=1,\ldots,p & & d_i^T x = f_i, & i=1,\ldots,p \end{array}$

$$c,\ a_i,\ d_i\ ext{are}\ n ext{-vectors}$$
 $c=(c_1,\ldots,c_n)$ $a_i=(a_{i1},\ldots,a_{in})$ $d_i=(d_{i1},\ldots,d_{in})$

Linear optimization

Using matrices

$$\begin{array}{lll} \text{minimize} & \sum_{i=1}^n c_i x_i & \text{minimize} & c^T x \\ \text{subject to} & \sum_{j=1}^n a_{ij} x_j \leq b_i, & i=1,\ldots,m & \longrightarrow & \text{subject to} & Ax \leq b \\ & \sum_{j=1}^n d_{ij} x_j = f_i, & i=1,\ldots,p & Dx = f \end{array}$$

A is $m \times n$ -matrix with elements a_{ij} and rows a_i^T D is $p \times n$ -matrix with elements d_{ij} and rows d_i^T All (in)equalities are elementwise

Optimization terminology

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \\ & Dx = f \end{array}$$

x is **feasible** if it satisfies the constraints $Ax \leq b$ and Dx = f. The **feasible set** is the set of all feasible points

 x^{\star} is optimal if it is feasible and $c^Tx^{\star} \leq c^Tx$ for all feasible x

The optimal value is $p^{\star} = c^T x^{\star}$

Special cases

What can go wrong?

Problem might be "too hard"

minimize
$$x_1$$
 subject to $-1 \le x_1 \le 1$ $-1 \le x_2 \le 1$ $x_1 + x_2 = -1$ $x_1 \le -2$

Remarks

- The feasible set is empty.
- The problem is therefore infeasible.
- Define the optimal value as $p^* = +\infty$.

What can go wrong?

Problem might be "too easy"

minimize
$$x_1$$
 subject to $\frac{-1}{-1} \le x_1 \le 1$ $\frac{-1}{-1} \le x_2 \le 1$ $\frac{x_1 + x_2 = -1}{-1}$

Remarks

- The value of c^Tx is **unbounded below** on the feasible set.
- Define the optimal value as $p^* = -\infty$.

What can go "a little bit" wrong?

More than one optimizer

minimize
$$x_1+x_2= \infty$$
 subject to $-1 \le x_1 \le 1$ $-1 \le x_2 \le 1$ $x_1+x_2=-1$

- The optimal value is $p^* = -1$
- There is more than one x^* that achieves $p^* = c^T x^*$
- The optimizer is non-unique

 x_2

Feasibility problems

The constraints satisfiability problem

```
\begin{array}{ll} \text{find} & x \\ \text{subject to} & Ax \leq b \\ & Dx = f \end{array}
```

Feasibility problems

The constraints satisfiability problem

Feasibility problems

The constraints satisfiability problem

find x subject to $Ax \le b$ is a special case of subject to $Ax \le b$ subject to $Ax \le b$ Dx = f

Remarks

- $p^* = 0$ if constraints are feasible (consistent). Every feasible x is optimal
- $p^* = \infty$ otherwise

Definition

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$

- Minimization
- Equality constraints
- Nonnegative variables

- Matrix notation for theory
- Standard form for algorithms

Transformation tricks (min(5x)

max cx

Change objective

If "maximize", use -c instead of c and change to "minimize".

Transformation tricks

Change objective

If "maximize", use -c instead of c and change to "minimize".

Eliminate inequality constraints

If $Ax \le b$, define s and write Ax + s = b, $s \ge 0$.

If $Ax \ge b$, define s and write Ax - s = b, $s \ge 0$.

s are the slack variables

Transformation tricks

Change objective

If "maximize", use -c instead of c and change to "minimize".

Eliminate inequality constraints

If $Ax \leq b$, define s and write Ax + s = b, $s \geq 0$.

If $Ax \ge b$, define s and write Ax - s = b, $s \ge 0$.

s are the slack variables

Change variable signs

If $x_i \leq 0$, define $y_i = -x_i$.

Transformation tricks

Change objective

If "maximize", use -c instead of c and change to "minimize".

Eliminate inequality constraints

If $Ax \le b$, define s and write Ax + s = b, $s \ge 0$.

If $Ax \ge b$, define s and write Ax - s = b, $s \ge 0$.

s are the slack variables

Change variable signs

If $x_i \leq 0$, define $y_i = -x_i$.

Eliminate "free" variables

If x_i unconstrained, define $x_i = x_i^+ - x_i^-$, with $x_i^+ \ge 0$ and $x_i^- \ge 0$.

Transformation example

minimize
$$2x_1 + 4x_2$$
 subject to $x_1 + x_2 \ge 3$ $3x_1 + 2x_2 = 14$

 x_1

$$A = \begin{bmatrix} 1 & 1 & -1 & -1 \\ 3 & 2 & -20 \end{bmatrix} = \begin{bmatrix} 3 \\ 14 \end{bmatrix}$$

minimize
$$2x_1 + 4x_2^+ - 4x_2^-$$

subject to $x_1 + x_2^+ - x_2^- - x_3 = 3$
 $3x_1 + 2x_2^+ - 2x_2^- = 3$

$$= 14$$

$$x_3 \ge 0.$$

min Cx St. Axsh

Software

Solvers for linear programs

Algorithms and theory are very mature:

• Simplex methods, interior-point methods, first order methods etc

Software is widely available:

- Can solve problems up to several million variables
- Widely used in industry and academic research

Solvers for linear programs

Algorithms and theory are very mature:

• Simplex methods, interior-point methods, first order methods etc

Software is widely available:

- Can solve problems up to several million variables
- Widely used in industry and academic research

Examples

- Commercial solvers: Mosek, CPLEX, Gurobi, Matlab (linprog)
- Free solvers : GLPK, CLP, SCS, OSQP

Modelling tools for linear programs

Modelling tools simplify the formulation of LPs (and other problems)

- Accept optimization problem in common notation (max, $||\cdot||_1,\ldots$)
- Recognize problems that can be converted to LPs
- Automatically convert to input format required by a specific LP solver

Modelling tools for linear programs

Modelling tools simplify the formulation of LPs (and other problems)

- Accept optimization problem in common notation ($\max, \|\cdot\|_1, \ldots$)
- Recognize problems that can be converted to LPs
- Automatically convert to input format required by a specific LP solver

Examples

- AMPL, GAMS
- CVX, YALMIP (Matlab)
- CVXPY, Pyomo (Python)
- JuMP.jl, Convex.jl (Julia)

Simple example revisited

Goal find point as far left as possible, in the unit box X, and restricted to the line L

```
import cvxpy as cp
x = cp.Variable(2)
objective = x[0]
constraints = [ cp.norm(x, 'inf') <= 1, #inequalities</pre>
                cp.sum(x) == -1] #equalities
prob = cp.Problem(cp.Minimize(objective), constraints)
prob.solve()
```


References

- Bertsimas, Tsitsiklis: Introduction to Linear Optimization
 - Chapter 1: Introduction
- R. Vanderbei: Linear Programming Foundations and Extensions
 - Chapter 1: intro to linear programming

Next time

Piecewise linear optimization

- Optimization problems with norms and max functions
- Some applications