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Ed Forum

* | was wondering if there would be any chance to delve further into portfolio
theory for this class.

« How does the inclusion of a risk-free asset impact the overall optimization
strategy and the resulting asset allocation?






Least squares with equality constraints

The (linearly) constrained least squares problem is Problem data

minimize  ||[Axz — bl|* * m x n matrix A, m-vector b
subjectto Cx =d » p x n matrix C, p-vector d
/ objective
equality function

constraints

Definitions Interpretations

+ is feasible if Cr = d - Combine solving linear equations
+* is a solution if with least squares.

e Op* = d - Like a bi-objective least squares

o || Az* — b2 < ||Az — b]|? with co weight on second objective,

for any z satisfying C'xz = d |Cz —d]|*. 4



Portfolio optimization

How shall we choose the portfolio weight vector w?
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High (mean) return Low risk
avg(r) std(r)



Portfolio optimization

How shall we choose the portfolio weight vector w?

Goals

High (mean) return Low risk
avg(r) std(r)

Data

- We know realized asset returns but not future ones
- Optimization. We choose w that would have worked well in the past
* True goal. Hope it will work well in the future (just like data fitting)



Portfolio optimization

As constrained least squares

minimize  |[|[Rw — p1]||?
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Portfolio optimization

As constrained least squares
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Portfolio optimization

As constrained least squares

minimize

subject to

Rw — pl||?
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1 1S the n-vector of
average returns per asset

avg(r) = (1/T)1" (Rw)

= (1/T)(R" 1) w = p' w

Solution via KKT linear system
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Rewrite right-hand side
20Tu| [0 2T
1 = 1] +p| O

p 0 0

Optimal portfolios




Optimal portfolios
Hf;vv = C((-ffﬂ-z_ =\ V’u\ = /\f:ii, _(_Jof("qz

Rewrite right-hand side

Two fund theorem
Optimal portfolio w is an affine function of p
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Rewrite right-hand side

Optimal portfolios 2pTn]  [0]  [2Tu
1 = 1] +p| O
P 0 0

Two fund theorem

Optimal portfolio w is an affine function of p
—1 ~ - —1 ~ -

w 2RTR 1 u 0 2RTR 1 u 2T 11
21l=1 17 0 0 1{+p| 17 0 0 0
2] I ,uT 0 O_ _O_ I ,uT 0 O_ I 1 )

We can rewrite the first n-components as
the combination of two portfolios (funds)

w = Wy + PU

/

R(isk-fBe)e Other optimal portfolio .
p —



Example
20 assets over 2000 days (past)

« Optimal portfolios on a
straight line

* Line starts at risk-free
portfolio (p = 0)

* 1/n much better than
single portfolios

Annualized return

-0,

Risk-free

0 0.1 0.2 0.3 0.4

Annualized risk

0.5

0.6

0.7



The big assumption

Future returns will look like past ones

» You are warned this is false, every time you invest
» |t Is often reasonable
» During crisis, market shifts, other big events not true
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Robinhood #

Future returns will look like past ones

© 2021 Robinhood. All rights reserved.

* You are warned this Is false, every time you invest e e e
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o I 't i S Of'te n re aS O n a b I e \ Robinhood Financial, Robinhood Securities, and Robinhood Crypto.

All investments involve risk and loss of capital.

» During crisis, market shifts, other big events not true

If assumption holds (even approximately), a good w on past returns
leads to good future (unknown) returns



The big assumption

Robinhood #

Future returns will look like past ones

© 2021 Robinhood. All rights reserved.

* You are warned this is false, every time you invest e e sttt st e
o I 't i S Of'te n re aS O n a b I e \ Robinhood Financial, Robinhood Securities, and Robinhood Crypto.

All investments involve risk and loss of capital.

» During crisis, market shifts, other big events not true

If assumption holds (even approximately), a good w on past returns
leads to good future (unknown) returns

Example

* Pick w based on last 2 years of returns
» Use w during next 6 months



Total portfolio value

Portfolio value (thousand dollars)

150-

100-

-
-

—_
-

Return Risk
Train Test Train Test Leverage
Risk-free (1%) 0.01 0.01 0.00 0.00 1.00
10% 0.10 0.08 0.09 0.07 1.96
20% 0.20 0.15 0.18 0.15 3.03
40% 0.40 0.30 0.37 0.31 5.48
1/n 0.10 0.21 0.23 0.13 1.00
Train " Test
—— Risk-free (1%)
10% "
— 2%
—— 0%
I 1/n 14‘
12 '
10
_, \/W
0 500 1000 2000 0 100 200 300 400 500
Day Day
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Build your quantitative hedge fund

Rolling portfolio optimization

For each period t, find weight w; using L past returns
Ft—15-- s Tt—L

11



Build your quantitative hedge fund

Rolling portfolio optimization

For each period t, find weight w; using L past returns
Ft—15-- s Tt—L

Variations
- Update w every K periods (monthly, quarterly, ...)

- Add secondary objective \||w; — w;_1]|* to
discourage turnover, reduce transaction cost

- Add logic to detect when the future is likely to
not look like the past

- Add “signals” that predict future return of assets
(Twer sentiment analysis)

11



Today'’s lecture

Linear optimization

¢ Some simple examples
* Linear optimization

e Special cases

e Standard form

o« Software and solution methods

12



Some simple examples



f(z)

Data-fitting example

Fit a linear function f(z) = x1 + =22 to m data points (z;, f;):

Approximation problem Ax ~ b where

2 - 0
151
10 1

o Ot

—101 *°
—15-

—201

—10 _5 0 5 10

2

fi
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Data-fitting example

Fit a linear function f(z) = x1 + =22 to m data points (z;, f;):

Approximation problem Ax ~ b where

20_ 0

—10

Iz | ¢ - f1
: L1 .
L2
_1 Zm, |~~~ _fm_
A ' b

Least squares way:

minimize ) (Az —b); = || Az — b|[3

1=1

Good news: solution is in closed form z* = (A1 A)~1 AT
Bad news: solution is very sensitive to outliers!

15



Data-fitting example

Fit a linear function f(z) = x1 + =22 to m data points (z;, f;):

<1 _
: : : L1
Approximation problem Ax ~ b where N
2
2o | N—~—
—_—— T
20{ A
151
10- A different way:

1=1

2

fi

minimize Z Az — b|; = || Az — b||;

—10- Good news: solution is much more robust to outliers.

—15- Bad news: there is no closed form solution.

—10 _5 0 5 10
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Cheapest cat food problem

- Choose quantities z1, ..., z,, of n ingredients each with unit cost c;.
- Each ingredient j has nutritional content a;; for nutrient .

» Require a minimum level b; for each nutrient s.

17



Cheapest cat food problem

- Choose quantities z1, ..., z,, of n ingredients each with unit cost c;.
- Each ingredient j has nutritional content a;; for nutrient .

» Require a minimum level b; for each nutrient s.

. . mn
minimize ) ., ¢;x;
. mn .

r; >0, 7=1...n
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Cheapest cat food problem

- Choose quantities z1, ..., z,, of n ingredients each with unit cost c;.
- Each ingredient j has nutritional content a;; for nutrient .

» Require a minimum level b; for each nutrient s.

_ . /a)

minimize > i—1 CjT; & =TI
. n . e Lo BN A

SUbJeCt to ijl CI,ZJQCJ > bi, 1 =1...m [Photo of Phoebe, my cat]

r; >0, g=1...n Would you give her
the optimal food ?

17



Linear optimization



Linear optimization

Linear Programming (LP)

minimize > ., ¢,
. n .

Z?Zldijxj:fi, i:].,...,p

Ingredients

- n decision variables (or optimization variables): =1, ..., z,

- Constant parameters (or problem data) : c¢;, a;;, b;, d;;, fi

» A linear objective function

» A collection of m inequality constraints and p equality constraints

19



Where does linear optimization appear?

Supply chain management
Assignment problems

Scheduling and routing problems
Finance

Optimal control problems

Network design and network operations
Many other domains...

20



A brief history of linear optimization

1940s :
 Foundations and applications in economics and logistics (Kantorovich, Koopmans)

* 1947 : Development of the simplex method by Dantzig

1950s — 70s:
* Applications expand to engineering, OR, computer science...
1975 : Nobel prize in economics for Kantorovich and Koopmans

1980s:
 Development of polynomial time algorithms for LPs
* 1984 : Development of the interior point method by Karmarkar

— Today:
* (Continued algorithm development. Expansion to very large problems.

21



Why linear optimization?

“Easy” to solve
* |t is solvable in polynomial time, tractable in practice

o State-of-the-art software can solve LPs with tens of thousands of variables.
We can solve LPs with millions of variables with specific structure.

Extremely versatile
Can model many real-world problems, either exactly or approximately.

Fundamental

* The theory of linear optimization lays the foundation for most optimization
theories

* Underpins solutions for more complicated problems, e.g. integer problems.
22



A simple example

Goal find point as far left as possible,
In the unit box X,
and restricted to the line L

23



A simple example

Goal find point as far left as possible,

In the unit box X,

and restricted to the line L

tmport cvxpy as cp

X = cp.Vartiable(2)

objective = x[0]

constraints = [-1 <= x[0],
-1 <= X[l],
x[0] + x[1]

prob = cp.Problem(cp.Minimize(objective), constraints)
prob.solve()

x[0] <= 1,
X[1] <= 1,
== _1]




Linear optimization

Using vectors

minimize > " ¢, minimize

CTCE

subjectto > 7 a;z; <b;, i=1,...,m — subjectto alz <b,

Z?:ldij$j:fi7 iZl,...,p

c, a;, d; are n-vectors
c=(c1,...,Cn)

a; = (%1,---,@7;77,)

di = (di1,...,din)

d,LTa;' — fi,

25



Linear optimization

Using matrices

minimize Y ", ¢z minimize ¢’z
SUbjeCt {0 2?21 AL <b;, 1=1,....m —> SubjeCt to Ax <b
Z?Zldzj‘/ﬁ]:f@? Zzlaap DQZ‘If

A'is m x n-matrix with elements a;; and rows a;
D is p x n-matrix with elements d;; and rows d;

All (in)equalities are elementwise

20



Optimization terminology

minimize ¢l
subjectto Az <b
Dx=f

z is feasible if it satisfies the constraints Ax < band Dx = f

The feasible set is the set of all feasible points
r* is optimal if it is feasible and ¢! z* < ¢! x for all feasible x

The optimal value is p* = ¢! z*

27



Special cases



What can go wrong? "

Problem might be “too hard”

minimize
subjectto —1<z; <1 s
—1 <z, <1
r1 + xo = —1
T < —2
Remarks
» The feasible set is empty.

» The problem is therefore infeasible.
* Define the optimal value as p* = +oc.

29



What can go wrong?

Problem might be “too easy”

minimize  xi

subjectto —t<ux; <1
Tty =—1t
Remarks

« The value of ¢! z is unbounded below
on the feasible set.
» Define the optimal value as p* = —oc.

30



What can go “a little bit” wrong?

More than one optimizer N

minimize o + 19 = C\\X
subjectto —-1<zx; <1

—1 § L9 S 1
T1 + Lo = —1
\
Remarks
* The optimal value is p* = —1
» There is more than one z* that achieves p* = ¢! 2* T L

* The optimizer iIs non-unique

31



Feasibility problems

The constraints satisfiability problem

find X
subjectto Az <b
Dxr=f

32



Feasibility problems

The constraints satisfiability problem

find X | |
subject to Az < b IS a special case of
Dxr=f

minimize
subject to

0
Ax < b
Dxr=f

32



Feasibility problems

The constraints satisfiability problem

find y i i minimize
subjectto Az < b IS a special case of |
—_— subject to
Dx = f
Remarks

- p* = 0 if constraints are feasible (consistent).
Every feasible z is optimal
* p* = oo otherwise

0
Ax < b
Dx = f

32



Standard form



Standard form
Definition

minimize L r e Minimization
subjectto Az =b * Equality constraints

r >0  Nonnegative variables

 Matrix notation for theory

o Standard form for algorithms

34



e, Cix.
Standard form o
Transformation tricks ,.( i X )

Change objective
If “maximize”, use —c instead of c and change to “minimize”.

35



Standard form

Transformation tricks

Change objective

If “maximize”, use —c instead of c and change to “minimize”.

Eliminate inequality constraints
If Ax < b, define s and write Ax +s =050, s > 0.
If Ax > b, define s and write Ax — s =0b, s > 0.

s are the slack variables

35



Standard form

Transformation tricks

Change objective

If “maximize”, use —c instead of c and change to “minimize”.

Eliminate inequality constraints
If Ax < b, define s and write Ax +s =050, s > 0.
If Ax > b, define s and write Ax — s =0b, s > 0.

Change variable signs
If z; <0, define y;, = —x;.

s are the slack variables
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Standard form

Transformation tricks

Change objective
If “maximize”, use —c instead of c and change to “minimize”.

Eliminate inequality constraints
If Ax < b, define s and write Ax +s =050, s > 0.
If Ax > b, define s and write Ax — s =0b, s > 0.

s are the slack variables

Change variable signs
If z; <0, define y;, = —x;.

Eliminate “free” variables_ |
If ; unconstrained, define z; = =" — x;, with z;” > 0 and z; > 0.

1

35



Standard form A s ):4 [ . IJ

Transformation example

< ) minimize 2x; + 445
= Ko L % subjectto z; + (x> 3 ¢ 3(2/ ((«,-4~10\
3r1 + 2x9= 14
1 >0

minimize  2x;

. i - = M~ C Y
subjectto =~ + x5 — =z,  — x3=3
2 . Ax=,
T — N
L1, x2 9 $2 9 z3 2 O



Software




Solvers for linear programs

Algorithms and theory are very mature:

o Simplex methods, interior-point methods, first order methods etc

Software is widely available:
* (Can solve problems up to several million variables

 Widely used in industry and academic research

38



Solvers for linear programs

Algorithms and theory are very mature:

o Simplex methods, interior-point methods, first order methods etc

Software is widely available:
* (Can solve problems up to several million variables
 Widely used in industry and academic research

Examples

 Commercial solvers : Mosek, CPLEX, Gurobi, Matlab (linprog)
* Free solvers : GLPK, CLP, SCS, OSQP

38



Modelling tools for linear programs

Modelling tools simplify the formulation of LPs (and other problems)
* Accept optimization problem in common notation (max, || - ||1,.. ")
 Recognize problems that can be converted to LPs

 Automatically convert to input format required by a specific LP solver

39



Modelling tools for linear programs

Modelling tools simplify the formulation of LPs (and other problems)
* Accept optimization problem in common notation (max, || - ||1,.. ")
 Recognize problems that can be converted to LPs

 Automatically convert to input format required by a specific LP solver

Examples

« AMPL, GAMS

e CVX, YALMIP (Matlab)

« CVXPY, Pyomo (Python)
e JuMP,jl, Convex.jl (Julia)



Simple example revisited

Goal find point as far left as possible,
In the unit box X,
and restricted to the line L

tmport cvxpy as cp

X = cp.Vartable(2)

objective = x[0]

constraints = [ cp.norm(Xx,

prob = cp.Problem(cp.Minimize(objective), constraints)
prob.solve()

40
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 R. Vanderbel: Linear Programming — Foundations and Extensions

* Chapter 1: intro to linear programming
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Next time

Piecewise linear optimization

* Optimization problems with norms and max functions

¢« Some applications

42



